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Abstract. In this paper we give characterizations for uniformly summable
multiplicative functions in additive arithmetical semigroups.

1. Introduction

Let (G, ∂) be an additive arithmetical semigroup. By definition G is a free
commutative semigroup with identity element 1G, generated by a countable
subset P of primes and admitting an integer valued degree mapping ∂ : G →
→ N ∪ {0}, which satisfies

(i) ∂(1G) = 0 and ∂(p) > 0 for all p ∈ P,

(ii) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,

(iii) the total number G(n) of elements a ∈ G of degree ∂(a) = n is
finite for each n ≥ 0.
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Obviously, G(0) = 1 and G is countable.
Let

π(n) := #{p ∈ P : ∂(p) = n}
denote the total number of primes of degree n in G. We obtain the identity, at
least in the formal sense,

Ẑ(z) :=

∞∑
n=0

G(n)zn = exp

( ∞∑
m=1

Λ(m)

m
zm

)
=

∞∏
n=1

(1 − zn)−π(n).

Ẑ can be considered as the zeta-function associated with the semigroup (G, ∂),
the coefficients Λ(n) are called the von Mangoldt coefficients.
The von Mangoldt coefficients and the coefficients π(n) are related by∑

d|n
dπ(d) = Λ(n).

In this paper we assume that Λ(n) = O(qn), and the generating function of
(G, ∂) has the form

(1.1) Ẑ(z) =
∞∑

n=0

G(n)zn =
Ĥ(z)

(1 − qz)δ
and converges for |z| < q−1,

where

(1.2) Ĥ(z) = O(1) for |z| < q−1, and lim
z→q−1

Ĥ(z) exists and is positive,

and δ > 0. By a recent paper of K.-H. Indlekofer (see [6]), the formal power
series Ĥ(z) is convergent for z = q−1 and equals lim

z→q−1
Ĥ(z), and

(1.3) G(n) ∼ Ĥ(q−1)

Γ(δ)
qnnδ−1

holds.
For each arithmetical function f̃ on G, f̃ : G → C, we associate a power series
F̂ , the generating function F̂ of f̃ , which is defined by

(1.4) F̂ (z) =
∑
a∈G

f̃(a)z∂(a) =

∞∑
n=0

⎛⎜⎜⎝ ∑
a∈G

∂(a)=n

f̃(a)

⎞⎟⎟⎠ zn,

and call the function f : N0 → C, given by

(1.5) f(n) =
∑
a∈G

∂(a)=n

f̃(a),

the summatory function of f̃ .
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Further, we introduce the means

M(n, f̃) :=

{ 1
G(n)f(n), if G(n) �= 0,

0, if G(n) = 0,

and say that the function f̃ possesses an (arithmetical) mean-value M(f̃), if
the limit

M(f̃) := lim
n→∞M(n, f̃)

exists.
For 1 ≤ α < ∞, define

||f̃ ||α := (lim sup
n→∞

M(n, |f̃ |α))1/α,

and let

Lα := {f̃ : G → C, ||f̃ ||α < ∞}

denote the linear space of functions on G with bounded seminorm || · ||α. If

�∞ := {f̃ : G → C, sup
g∈G

|f̃(g)| < ∞}

is the space of bounded functions on G, we introduce the space L∗(G) of uni-
formly summable functions on G as the || · ||1-closure of �∞(G).
Obviously, f̃ ∈ L∗ if and only if

lim
K→∞

sup
n≥1

M(n, |f̃K |) = 0,

where

f̃K(a) =

{
f̃(a), if |f̃(a)| ≥ K,
0, otherwise.

We remark that an arithmetical funtion f̃ is uniformly summable if and only if
(1.6)

∀ε > 0 : ∃γ > 0 : ∀n ∈ N : ∀S ⊆ G : (M(n,1S) < γ ⇒ M(n,1S |f̃ |) < ε),

which yields that from M(n, f̃) � 1 (n ≥ n1) follows M(n, f̃1G\S) � 1 for
n ≥ n1, if ε > 0 is small enough, and if S is as in (1.6). It is easy to show that,
if 1 < α < ∞,

�∞(G) � Lα � L∗ � L1.

The class of uniformly summable functions has been defined by Indlekofer (see
[3]) for functions defined on N, and he has given a complete characterization
of uniformly summable multiplicative functions (see Indlekofer [4]).
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The aim of this paper is to deal with analogous questions for additive arith-
metical semigroups, and to improve results obtained in the thesis of the first
author ([1]).

Here, as in the classical case, an arithmetical function f̃ : G → R is called
multiplicative if f̃(ab) = f̃(a)f̃(b) whenever a, b ∈ G are coprime, and an arith-
metical function g̃ on G is called additive if g̃(ab) = g̃(a) + g̃(b) for all coprime
a, b ∈ G.

If f̃ is a multiplicative function on G, then
∑
a∈G

∂(a)=0

f̃(a) = 1 ( �= 0), and we

assume that its generating function F̂ converges in some neighborhood of z = 0
and satisfies

F̂ (z) =
∞∑

n=0

⎛⎜⎜⎝ ∑
a∈G

∂(a)=n

f̃(a)

⎞⎟⎟⎠ zn =(1.7)

=
∏
p

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)
=:

=: exp

( ∞∑
m=1

Λf (m)

m
zm

)
.

Our modus procedendi is double tracked. On the one hand we want to weaken
the conditions imposed on the generating function of G. At the same time we
endeavor to deal with the greatest possible class of multiplicative functions.

Wehmeier [8] and Barát [1] considered multiplicative functions f̃ ∈ L∗ which
possess a mean-value M(f̃) different from zero, whereas Zhang could only deal
with multiplicative functions f̃ (M(f̃) �= 0) from Lα (α > 1). The assumptions
about G are (see [8])

G(n) = Aqn + r(n) with some specific r(n) = o(qn)

and (see [9])

G(n) = q−n
ν∑

j=1

Ajn
ρj−1 +O(qnn−γ), Aν > 0,

with γ > ρ+ 1 ≥ 2, and 0 < ρ1 < . . . < ρν = ρ. Then

Ẑ(z) = Ĥ(z)(1 − qz)−ρ (ρ ≥ 1),
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where

Ĥ(z) = Aν +

ν∑
j=1

Aj(1 − qz)ρ−ρj + (1 − qz)ρ
∞∑

n=1

O(n−γqn)zn.

Barát [1] assumed that, in addition to the conditions (1.1) and (1.2), the coef-
ficients of the generating function satisfy

(1.8) G(n) � nδ−1qn (δ > 0).

In this paper we weaken the assumptions about G by omitting the requirement
(1.8), and characterize multiplicative function f̃ ∈ L∗ the means of which
satisfy M(n, f̃) � 1 for n ≥ n1.

In the next section we introduce our results.

2. Results

Theorem 2.1. Let (G, ∂) be an additive arithmetical semigroup satisfying
Λ(n) = O(qn), (1.1), and (1.2) with δ > 0. Let f̃ be a multiplicative func-
tion, and α ≥ 1. If f̃ ∈ L∗ ∩ Lα, and if M(n, f̃) � 1 for n ≥ n1, then the
following assertions hold:

(2.1)
∑

p∈P,∂(p)≤n

|f̃(p)|≤ 3
2

Re f̃(p) − 1

q∂(p)
= O(1),

∑
p∈P,∂(p)≤n

|f̃(p)|≤ 3
2

|f̃(p)| − 1

q∂(p)
= O(1),

(2.2)
∑
p∈P

|f̃(p)|≤3/2

|f̃(p) − 1|2
q∂(p)

converges,

(2.3)
∑

p∈P ;n≥2

|f̃(pn)|λ
(q∂(p))n

converges,

(2.4)
∑
p∈P

||f̃(p)|−1|>1/2

|f̃(p)|λ
q∂(p)

converges for 1 ≤ λ ≤ α,
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and for each prime p

(2.5)

∞∑
n=1

f̃(pn)

qn∂(p)
+ 1 �= 0.

In the converse direction we deal with two cases: 1 ≤ δ and 0 < δ < 1. In
the first case we prove the following.

Theorem 2.2. Let (G, ∂) be an additive arithmetical semigroup satisfying the
conditions of Theorem 2.1 with δ ≥ 1. Let f̃ be a multiplicative function, and
let α ≥ 1. Assume that the conditions (2.1)–(2.5) hold. Then

(2.6) M(n, f̃) =
∏

p∈P,∂(p)≤n

(1 − q∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
+ o(1),

and f̃ ∈ L∗ ∩ Lα, and

(2.7) M(n, |f̃ |λ) =
∏

p∈P,∂(p)≤n

(1 − q∂(p))

(
1 +

∞∑
k=1

|f̃(pk)|λq−k∂(p)

)
+ o(1)

for 1 ≤ λ ≤ α.

For 0 < δ < 1 we need a further assumption on the multiplicative function
f̃ in order to prove our assertion.

Theorem 2.3. Let an additive arithmetical semigroup (G, ∂) fulfill the condi-
tions of Theorem 2.1, where 0 < δ < 1. Let α ≥ 1, and let f̃ be a multiplicative
function satisfying the following condition

(2.8) ∀ε > 0 : ∃K > 0 : ∀n ∈ N :

S = {a ∈ G : ∃ pk||a, p ∈ P ; |f̃(pk)|α > K} ⇒ M(n,1S |f̃ |α) < ε.

Assume that (2.1) holds, and the series (2.2)–(2.4) converge. Then

(2.9) M(n, f̃) =
∏

p∈P,∂(p)≤n

(1 − q∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
+ o(1),

and f̃ ∈ L∗ ∩ Lα, and

(2.10) M(n, |f̃ |λ) =
∏

p∈P,∂(p)≤n

(1 − q∂(p))

(
1 +

∞∑
k=1

|f̃(pk)|λq−k∂(p)

)
+ o(1)

for 1 ≤ λ ≤ α.
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3. Proof of Theorem 2.1

Since M(n, f̃) � 1 (n ≥ n1) and f̃ ∈ L∗ ∩ Lα with α ≥ 1, we obtain, if
ε > 0 is small enough, and with suitable K > 0,

1

G(n)

∑
a∈G,∂(a)=n

ε<|f̃(a)|≤K

1 � 1.

Define an additive function g̃ by

g̃(pk) =

{
log |f̃(pk)|, if f̃(pk) �= 0,
1, otherwise.

Then

(3.1)
1

G(n)

∑
a∈G,∂(a)=n

log ε<g̃(a)≤logK

1 � 1,

and g̃ is finitely distributed. This implies, by Lemma 2.17 in [1],

(3.2) g̃(a) = c∂(a) + h̃(a),

where the series
∑
p

|h̃(p)|>1

1
q∂(p) and

∑
p

|h̃(p)|<1

h̃(p)2

q∂(p) converge.

Further, by (1.13), c = 0 (for details see [1]).

Therefore the series

(3.3)
∑
p∈P

|g̃(p)|<1

(g̃(p))2

q∂(p)
and

∑
p∈P

|g̃(p)|>1

1

q∂(p)

converge.
If ||f̃(p)| − 1| ≤ η1, then the series expansion of the logarithm yields

log |f̃(p)| = log(1 + (|f̃(p)| − 1)) = |f̃(p)| − 1 +O((|f̃(p)| − 1)2),

so that, for η1 = 1/2,

||f̃(p)| − 1| ≤ 2| log |f̃(p)|| = 2|g̃(p)|
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and

|g̃(p)| ≤ 2||f̃(p)| − 1| ≤ 1.

Obviously,

∑
p∈P

|f̃(p)|<1/2

(|f̃(p)| − 1)2

q∂(p)
�

∑
p∈P

|g̃(p)|>| log(1/2)|

1

q∂(p)
< ∞

and ∑
p∈P

1/2≤|f̃(p)|≤3/2

(|f̃(p)| − 1)2

q∂(p)
�

∑
p∈P

|q̃(p)|≤1

(g̃(p))2

q∂(p)
< ∞.

Thus the series ∑
p∈P

|f̃(p)|≤3/2

(|f̃(p)| − 1)2

q∂(p)

converges. Furthermore

(3.4) |f̃(p) − 1|2 = (|f̃(p)| − 1)2 + 2(|f̃(p)| − 1) − 2(Re (f̃(p)) − 1).

We define

P1 := {p ∈ P ; eh̃(p) < 1 − η1}

and

P2 := {p ∈ P ; eh̃(p) > 1 + η1}

with 0 < η1 < 3/4.
Let, for some parameters k0 and n0,

S1 := {a ∈ G; ∃p ∈ P1 ∪ P2 : p|a, ∂(p) ≥ n0},

S2 := {a ∈ G; ∃p ∈ P : p2|a, ∂(p) ≥ n0},

and

S3 := {a ∈ G; ∃p ∈ P : pk0 |a, ∂(p) ≤ n0}.

Put

S := S1 ∪ S2 ∪ S3.

Let ε be an arbitrary fixed positive number. Choose K > 0 large enough, and
let k0, n0 be parameters, such that M(n,1S) < γ (cf. (1.6)) holds.
Concerning the second term on the right hand side of (3.4), we show that the
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sum
∑

∂(p)≤N

|f̃(p)|≤K

|f̃(p)|−1
q∂(p) is bounded. Let the multiplicative function f̃∗ be defined

as

(3.5) f̃∗ := f̃1G\S .

Then the function f̃∗ is bounded on the set of the prime powers. Since
M(n, f̃) � 1 (n ≥ n1) and f̃ ∈ L∗, there exists a natural number n′1, n

′
1 ≥ n0

and n′1 ≥ n1, such that

(3.6) |M(n, f̃∗)| � 1 for alln ≥ n′1, and uniformly for large k0.

Then, with Theorem 6 of [5], we obtain

(3.7)
∑
n≤N

∑
p,∂(p)=n

|f̃(p)|≤K

|f̃(p)| − 1

q∂(p)
= O(1).

Further (see Theorem 7, [5]), we conclude

∑
n≤N

∑
p∈P,∂(p)=n

|f̃(p)|≤3/2

Re (f̃(p)) − 1

q∂(p)
= O(1),

and this together with (3.7) shows that (2.1) holds.
Therefore the finite sums over the terms on the right hand side of (3.4), for
which ∂(p) ≤ N and |f̃(p)| ≤ K, are bounded, and this implies the convergence
of the series ∑

p∈P
|f̃(p)|≤3/2

|f̃(p) − 1|2
q∂(p)

,

i.e the convergence of (2.2).

Next we prove the convergence of the series (2.4). Let

S4 := {a ∈ G; ∃p ∈ P : p|a; ||f̃(p)| − 1| > 1/2, ∂(p) ≥ n0}.

Thus, if n0 is large enough, we obtain

(3.8) M(n, |f̃ |1G\S4
) � 1 for all n ≥ n′1.
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Now choose 1 < λ ≤ α, and β ∈ R with 1
λ + 1

β = 1. Then Hölder’s inequality
yields

1 � 1

G(n)

∑
a∈G

∂(a)=n

|f̃(a)| ≤ 1

G(n)

⎛⎜⎜⎝ ∑
a∈G

∂(a)=n

|f̃(a)|λ

⎞⎟⎟⎠
1
λ

G(n)
1
β =

=
G(n)1−

1
λ

G(n)

⎛⎜⎜⎝ ∑
a∈G

∂(a)=n

|f̃(a)|λ

⎞⎟⎟⎠
1
λ

=

=

⎛⎜⎜⎝ 1

G(n)

∑
a∈G

∂(a)=n

|f̃(a)|λ

⎞⎟⎟⎠
1
λ

= M(n, |f̃ |λ) 1
λ � 1,

since f̃ ∈ Lα. Hence

M(n, |f̃ |λ) � 1 for all n ≥ n′1.

Similarly
M(n, |f̃ |λ1G\S4

) � 1 for all n ≥ n′1.

For 0 < r = |z| < 1/q we obtain

1 �

Ẑ(r)
∞∑

n=0

⎛⎜⎝ ∑
a∈G\S4

∂(a)=n

|f̃(a)|λ

⎞⎟⎠ rn

Ẑ(r)
∞∑

n=0

⎛⎜⎝ ∑
a∈G

∂(a)=n

|f̃(a)|λ

⎞⎟⎠ rn

=
∏

p∈P,∂(p)≥n0

||f̃(p)|−1|>1/2

(
1 +

∞∑
k=1

|f̃(pk)|λrk∂(p)
)−1

.

(3.9)

The last product in (3.9) has the form
∞∏

n=1
(1 + bn), where bn ≥ 0. Therefore

there exists a real constant c1 such that, for all r < 1
q ,∑

p;||f̃(p)|−1|>1/2

|f̃(p)|λr∂(p) ≤ c1 < ∞.

Thus, for r → 1/q, ∑
p;||f̃(p)|−1|>1/2

|f̃(p)|λ
q∂(p)

< ∞,
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which yields the convergence of the series (2.4) for all 1 ≤ λ ≤ α.

Next, we prove the convergence of the series (2.3). Choose

S2 := {a ∈ G; ∃p ∈ P : p2|a; ∂(p) ≥ n0}.

Then, analogous to what we have seen above, we can prove that there exists a
real constant c2 such that for all r ∈ R∑

p∈P,k≥2
∂(p)≥n0

|f̃(pk)|λrk∂(p) ≤ c2 < ∞.

Thus, for r → 1/q, ∑
p∈P ;k≥2

|f̃(pk)|λ
qk∂(p)

< ∞

holds, and therefore the series (2.3) converges for all 1 ≤ λ ≤ α.

Next, we show the validity of (2.5) for every p ∈ P . We know (see [5]), that

(3.10) M(n, f̃∗) =
∏

∂(p)≤n

(
1 − q−∂(p)

)(
1 +

∞∑
k=1

f̃∗(pk)q−k∂(p)

)
+ o(1).

Suppose now that, for some p1 with ∂(p1) < n0, we have

1 +

∞∑
k=1

f̃(p1
k)q−k∂(p1) = 0.

Since

1 +

∞∑
k=1

f̃∗(p1k)q−k∂(p1) = 1 +

∞∑
k=k0

f̃(p1
k)q−k∂(p1),

we achieve a contradiction to (3.6).

This ends the proof of Theorem 2.1. �

4. Proof of Theorem 2.2

First we prove that M(n, f̃) � 1 (n ≥ n1). By the convergence of (2.4) and
the condition (2.5), there exists some number m0 sufficiently large such that
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|f̃(p)q−∂(p)| < 1
4 , and

(4.1)

∣∣∣∣∣1 +
∞∑
k=1

f̃(pk)(q−1eiΘ)k∂(p)

∣∣∣∣∣ > 1

2

holds for all p with ∂(p) ≥ m0, and all real Θ with |Θ| ≤ π. We write

F̂ (z) =
∏

p,∂(p)<m0

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

) ∏
p,∂(p)≥m0

|f̃(p)|<K

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)
×

×
∏

p,∂(p)≥m0

|f̃(p)|≥K

(
1 +

∞∑
k=1

f̃(pk)zk∂(p)

)
=:

=: Π1(z)Π2(z)Π3(z),

where the first product Π1(z) is absolutely convergent for |z| ≤ q−1, since each
factor of the finite product Π1(z) is convergent by (2.4). The third product
Π3(z) is also absolutely convergent for |z| ≤ q−1. We now estimate the second
product Π2(z):

Π2(z) =
∏

p,∂(p)≥m0

|f̃(p)|<K

(
1 +

∞∑
k=2

f̃(pk)zk∂(p)

)
1 − f̃(p)z∂(p)

1 − f̃(p)z∂(p)
=

=
∏

p,∂(p)≥m0

|f̃(p)|<K

(1 − f̃(p)z∂(p))−1×

×
∏

p,∂(p)≥m0

|f̃(p)|<K

(
1 +

∞∑
k=2

f̃(p)(f̃(pk) − f̃(pk−1))zk∂(p)

)
=:

=:Π4(z)Π5(z).

By the convergence of the series (2.4) the second product Π5(z) of the last
line is absolutely convergent for |z| ≤ q−1. We apply Theorem 4 of [5] to
the product Π4(z), that is a generating function of a completely multiplicative
function f̃1, where f̃1(p) = f̃(p) for ∂(p) ≥ m0, and |f̃(p)| < K, and f̃1(p) = 0
otherwise. We obtain∑

a∈G,∂(a)=n

f̃1(a) =
∏
p∈P

(1 − q∂(p))(1 − f̃(p)q−∂(p))−1G(n) + o(G(n)).
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Thus we can write

(4.2) F̂ (z) = Π4(z)(Π1(z)Π5(z)Π3(z)) =: Π4(z)A(z),

where A(z) is absolutely convergent for |z| = q−1. Applying Lemma 2.21 of [1]
it follows

M(f̃) = A(q−1)M(n, f̃1) + o(1),

and therefore

M(n, f̃) =
∏

p∈P,∂(p)≤n

(1 − q∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
+ o(1).

If α > 1 and ||f̃(p)| − 1| < 1/2, then

|f̃(p)|α − 1 = α(|f̃(p)| − 1) +O((|f̃(p)| − 1)2)

and

(|f̃(p)|α − 1)2 = O((|f̃(p)| − 1)2) = O(|f̃(p) − 1|2).

Therefore, in the same way as above, we deduce that

M(n, |f̃ |λ) =
∏

p∈P,∂(p)≤n

(1 − q∂(p))

(
1 +

∞∑
k=1

|f̃(pk)|λq−k∂(p)

)
+ o(1)

for 1 ≤ λ ≤ α and f̃ ∈ Lα.

Next, we prove that f̃ ∈ L∗. Using the equation (4.2) we can write the
multiplicative function f̃ as the convolution

(4.3) f̃ = f̃1 ∗ f̃2,

where f̃1 is the completely multiplicative function defined above, and f̃2 is a
multiplicative function, such that its generating function A(z) is absolutely
convergent for |z| ≤ q−1. Thus

(4.4)
∑
m∈N

∑
b∈G,∂(b)=m

|f̃2(b)|q−∂(b) < ∞.

Hence, for an arbitrary ε, there exists a natural number m0 such that∑
m≥m0

∑
b∈G,∂(b)=m

|f̃2(b)|q−∂(b) <
ε

2
.
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Using our assumptions (2.1)–(2.4) we deduce by Theorem 6 of [5] that
M(n, |f̃1|) � 1 and M(n, |f̃1|2) � 1 (n ≥ n1).
Let ε > 0 be arbitrary and fixed. We prove that there exists K0 such that

∑
a∈G,∂(a)=n

|f̃K0(a)| < εG(n)

holds for all n ∈ N. Consider∑
a∈G,∂(a)=n

|f̃K0(a)| =
∑

a,b∈G
|f̃1(a)||f̃2(b)|≥K0

∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)| =

=
∑

a,b∈G
|f̃1(a)||f̃2(b)|≥K0

|f̃2(b)|≥K1,∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)|+

+
∑

a,b∈G
|f̃1(a)||f̃2(b)|≥K0

|f̃2(b)|<K1,∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)| =:

=:Σ1 +Σ2,

where the parameter K1 is chosen such that ∂(b) ≥ m0 if |f̃2(b)| ≥ K1. Let us
now estimate Σ1. By our assumptions on the arithmetical semigroup, G(n) ∼
∼ qnnδ−1 (1 ≤ δ) holds, (see [6]) and we obtain

Σ1 =
∑
b∈G

|f̃2(b)|≥K1

∂(b)≤n

|f̃2(b)|
∑
a∈G

∂(a)=n−∂(b)

|f̃1(a)| ≤

≤
∑
b∈G

m0≤∂(b)≤n

|f̃2(b)|
∑
a∈G

∂(a)=n−∂(b)

|f̃1(a)| �
∑
b∈G

m0≤∂(b)≤n

|f̃2(b)|q−∂(b)G(n) <

<
ε

2
G(n),

whereby we have used the following

G(n−∂(b)) ∼ qn−∂(b)(n−∂(b))δ−1 = qnnδ−1(1−∂(b)/n)δ−1q−∂(b) � q−∂(b)G(n).

Afterwards, we estimate Σ2. We use (4.4) and G(n) ∼ qnnδ−1 to obtain the
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following

Σ2 =
∑

a,b∈G
|f̃2(b)|<K1

|f̃1(a)||f̃2(b)|≥K0,∂(a)+∂(b)=n

|f̃1(a)||f̃2(b)| =

=
∑

b∈G,|f̃2(b)|<K1

∑
a∈G

|f̃1(a)||f̃2(b)|≥K0

∂(a)=n−∂(b)

|f̃1(a)|2

|f̃1(a)|
≤

≤
∑

b∈G,|f̃2(b)|<K1

|f̃2(b)|
|f̃2(b)|
K0

∑
a∈G

∂(a)=n−∂(b)

|f̃1(a)|2 �

�K1

K0

∑
b∈G

|f̃2(b)|G(n − ∂(b)) ≤ ε

2
G(n),

since M(n, |f̃1|2) � 1.
Therefore f̃ ∈ L∗. This ends the proof of Theorem 2.2. �

5. Proof of Theorem 2.3

Let ε > 0 be arbitrary and fixed. Then, by (2.8), there exists K > 0 with

S = {a ∈ G : ∃ pk||a, p ∈ P, |f̃(pk)| > K},

such that

M(n, |f̃ |1S) < ε.

Let such a K be fixed. It yields

∣∣∣∣∣∣∣∣
1

G(n)

∑
a∈G

∂(a)=n

f̃(a) − 1

G(n)

∑
a∈G\S
∂(a)=n

f̃(a)

∣∣∣∣∣∣∣∣ < ε.
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By Theorems 4, 6, 7, and Corollary 5 from [5] we obtain

M(n,1G\S f̃) =
1

G(n)

∑
a∈G\S
∂(a)=n

f̃(a) =

=
∏
p∈P

|f̃(pk)|≤K,∂(p)≤n

(1 − q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
+ o(1).

Write the product on the right side in the form

∏
p∈P,∂(p)≤n

|f̃(p)|≤K2

|f̃(pk)|≤K,k=2,3,...

(1 − q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
×

×
∏

p∈P,∂(p)≤n

K≥|f̃(p)|>K2

|f̃(pk)|≤K

(1 − q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
=: Π1,K(n)Π2,K(n)

with some K2 > 0. The product Π2,K(n) is absolutely convergent for |z| ≤ q−1,
and

lim
n→∞ lim

K→∞
Π2,K(n) =

∏
p∈P

|f̃(p)|>K2

(1 − q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)

because of (2.3) and (2.4). We derive, where m0 is large enough,

Π1,K(n) =
∏

p∈P,∂(p)≤m0

|f̃(p)|≤K2

|f̃(pk)|≤K

(1 − q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
×

×
∏

p,m0<∂(p)≤n

|f̃(p)|≤K2

(1 − q−∂(p))(1 + f̃(p)q−∂(p))×

×
∏

p∈P,m0<∂(p)≤n

|f̃(p)|≤K2

|f̃(pk)|≤K

(1 + f̃(p)q−∂(p))−1

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
=:

=:Π3,K(n)Π4(n)Π5,K(n).
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Since Π3,K(n) and Π5,K(n) are absolutely convergent for K → ∞ and n → ∞,
we arrive at

M(n,1G\S f̃) = (1 + ϑε)
∏

p,∂(p)≤n

(1 − q−∂(p))

(
1 +

∞∑
k=1

f̃(pk)q−k∂(p)

)
+ o(1)

with |ϑ| ≤ 1, and (1.16) is proven.

Assertion (1.17) follows in the same way, since the corresponding series
(1.8)–(1.11) for |f̃ |λ are convergent, and thus f̃ ∈ Lα

Finally, we prove that f̃ ∈ L∗. For a real number K, K > 0 it yields

(5.1)
∑
a∈G

|f̃(a)|>K
∂(a)=n

|f̃(a)| =
∑

a∈G\S
|f̃(a)|>K
∂(a)=n

|f̃(a)| +
∑
a∈S

|f̃(a)|>K
∂(a)=n

|f̃(a)|,

where the second sum on the right hand side is < G(n)ε/2. Put f̃3 = f̃1G\S .
Then f̃3 is a multiplicative function with |f̃3(pk)| ≤ K, and the mentioned
results from [5] give M(n, |f̃3|2) = O(1). Therefore

∑
a∈G\S
|f̃(a)|>K
∂(a)=n

|f̃(a)| ≤
∑

a∈G\S
|f̃(a)|>K
∂(a)=n

|f̃(a)| |f̃(a)|
K

=

=
1

K

∑
a∈G

|f̃3(a)|>K
∂(a)=n

|f̃3(a)|2 < G(n)ε/2,

if K is large enough. By (5.1) it follows that f̃ ∈ L∗.
This ends the proof of Theorem 2.3. �
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