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Abstract. A twisted exponential sum over a curve defined by y� ≡ f(x)
(mod pm) in the ring of Gaussian integers is investigated.

1. Introduction

Let G be the ring of Gaussian integers and let f(x) be a polynomial m-th
degree from G[x]. Consider the congruence over G

(1) y� ≡ f(x) (mod γ),

where � ∈ Z, � ≥ 1, γ ∈ G.

Denote through C(�, f ; γ) the set of all solutions of the congruence (1).

The purpose of our paper is the derivation of the estimate for the sums

(2) Sl(f ;χ, γ) =
∑

x,y∈C(�,f ;γ)

χ(f(x))eπiSp(αx+βy
γ ),
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where χ is an arbitrary character of the group Gγ , and α, β ∈ G.

The exponential sums of a type of (2) over Z has been investigated by many
authors ([2],[3], [4], [10]).

Bearing in mind that the right and left hand sides of the equation (2) are
multiplicative at q, the problem of evaluation S(f ;χ, γ) reduces to a consid-
eration of the case of a prime power modulus γ = pn, p is a Gaussian prime
number.

The estimate of the sum S(f ;χ, pm) will carried out in two steps.

First, we construct the parametric representation of the solutions of con-
gruence (1) (for γ = pn), and then, the estimate of S(f ;χ, pm) will be reduced
to an estimate of a special exponential sum.

We will use the following notations:

• G :=
{
a+ bi|a, b ∈ Z, i2 = −1

}
;

• for α ∈ G we denote N(α) = |α|2, Sp(α) = 2
(α);

• Gγ (respectively, G∗γ) denotes the complete (respectively,
reduced) system of residues modulo γ in G;

• for α ∈ Q(i), α = pk α0

β0
, α0, β0 ∈ G, (α0, p) = (β0, p) = 1 we

denote νp(α) = k, k ∈ Z.

2. Parametric representation of solutions

Let f(x) = amxm + am−1x
m−1 + · · · + a0, aj ∈ Gpn , a0 = 1, (an, p) = 1, p

be a Gaussian prime integer.

For p ∈ G we have N(p) = p, where p = 2 or p ≡ 1 (mod 4), and then
Gpn ∼= Zpn . Thus the investigation of the behavior of the sum S(f, χ; pn)
reduces to the consideration of the corresponding sum S(f ;χ; pn) reduces to
the rational case. Hence, let further p = p ≡ 3 (mod 4).

Now, for n = 1 the ring Gp is a field Fp2 , and the considered problem is a
problem of an estimate of exponential sum over a finite field, which has been
decided by A. Weil[9] (see, also E. Bombieri[1]).

We will assume that n ≥ 2.

Let (x0, y0) be an arbitrary solution of the congruence

(3) y� ≡ f(x) (mod p).
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First one we can conclude that f(x0) �≡ 0 (mod p). Then the congruence
f(x0)z ≡ 1 (mod pn) has the unique solution. Let us denote it as z0. We will
suppose that 0 ≤ x0 ≤ p − 1, 1 ≤ z0 ≤ pn − 1.

For every t ∈ Gpn−1 we set A(t) = f(x0 + pt).

Assume that the congruence y� ≡ A(0) (mod p) has k, k ≥ 1, solutions,
and hence, the congruence

(4) y� ≡ A(t) (mod pn)

also has k solutions for every t.

Next, let us denote the solutions y1(t),. . . ,yk(t) for the congruence (4).
In particularly, we have k solutions y1(0),. . . ,yk(0). Let y(0) be one of the
solutions. From the definition of z0 we conclude that the congruence (4) is an
equivalent for

(5)

y� ≡ f(x0)

(
1 + f ′(x0)ptz0 +

1

2!
f ′′(x0)p

2t2z0 + · · ·

· · · + 1

m!
f (n)(x0)p

mtmz0

)
(mod pn).

Consider the function

(6) F (ω) =

(
1 + f ′(x0)z0ω +

1

2!
f ′′(x0)z0ω

2 + · · · + 1

m!
f (n)(x0)z0ω

m

) 1
�

and let
∞∑
j=0

Xjω
j be its formal expansion in Taylor’s series. It is obvious that

Xj are functions in x0, z0 for j = 0, 1, 2, . . ..

Now we equate two expressions for logarithmic derivative of F (ω) and then
equalize the coefficients at equal powers of ω. We get the recurrence relation

(7)

�(j + 1)Xj+1 = f ′(x0)z0(1 − �j)Xj + f ′′(x0)z0

(
1 − �(j − 1)

2

)
Xj−1+

+
f ′′′(x0)

2!
z0

(
1 − �(j − 1)

3

)
Xj−2 + · · ·

· · · + f (m)(x0)

(m − 1)!
z0

(
1 − �(j − m+ 1)

m

)
Xj−m+1

By an induction we easily infer that �(j + 1)!Xj+1 is Gaussian integer for
every j = 0, 1, 2, . . .. Moreover, since νp(j!) ≤ j

p−1 , we conclude that

(8) νp(Xjp
j) ≥ j − j

p − 1
− νp(�).
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Consider the polynomial Fs(ω) =
s∑

j=0

Xjω
j . For every s = 1, 2, . . ., by the

equation
(9)
F �
s (ω) − F �(ω) = (Fs(ω) − F (ω))

(
F �−1
s (ω) + F �−2

s (ω)F (ω) + · · · + F �−1(ω)
)
,

we deduce that F �
s (ω)−F �(ω) has an expansion in powers of ω and it does not

contain ωk, k = 0, 1, . . . , s.

Consequently, putting Xjp
j = Xjp

λj , νp(Xj) = 0, we obtain that for the
coefficients bj at t

j of the polynomial F �
s (pt)−F �(pt) the inequality νp(bj) ≥ μj ,

where μj ≥ min (λj1 + λj2) ≥ j p−2
p−1 , holds.

Thus, substituting the coefficients bj by Gaussian integers modulo pn, we
obtain that

F �
s (pt) − F �(pt) ≡ 0 (mod pn) if

[
(s+ 1)

p − 2

p − 1

]
≥ n.

Denote Φ(x0) ≡ Xj (mod pn), Φ(x0) ∈ G∗pn . So, we proved the following
assertion

Lemma 1. Let (�, p) = 1 and s =
[
p−1
p−2n

]
. There exists the polynomial ϕ(t) ∈

∈ G[t], degϕ(t) = s,

(10) ϕ(t) = Φ0(x0) + pλ1Φ1(x0)t+ pλ2Φ2(x0)t
2 + · · · pλsΦs(x0)t

s,

such that the solution of (5) that corresponds to y(0) is determined by the
congruence

y(t) ≡ y(0)ϕ(t) (mod pn), t ∈ Gpn−1 .

Moveover, Φ0(x0) = 1, λ1 = 1, λ2 = 2, λj ≤ j p−2
p−1 , j ≥ 3.

Corollary 1. Let y1(0),. . . ,yk(0) be all the solutions of congruence y� ≡ f(x0)
(mod pn), (f(x0), p) = 1. Then all solutions of the congruence

(11) y� ≡ f(x) (mod pn)

under condition x ≡ x0 (mod p), y ≡ yi(0) (mod p), i = 1, . . . , k, have the
representation

x ≡ x0 + pt, y = yi(0)ϕ(t) (mod pn), t ∈ Gpn−1 .

L.P. Postnikova[6] (see, also [8]) obtained an analogous assertion for the
congruence x2 + y2 ≡ � (mod pn) over Zpn .

Now let f(x0) ≡ 0 (mod pn). Then we have y0 ≡ 0 (mod p). We will
describe the solutions of the congruence (11) with the condition y ≡ 0 (mod p).



Twisted exponential sums 99

Let us put y = pry1, r ≥ 1, y1 ∈ G∗pn−r .

For r� ≥ n we have f(x) ≡ 0 (mod pn). Let x1,. . . ,xn be all the solutions
of the congruence f(x) ≡ 0 (mod pn) over Gpn . Then the pairs (xj , p

n0y),
n0 =

[
n
�

]
+ 1, y ∈ Gpn−n0 , j = 1, . . . , k, generate all the solutions of the

congruence (11) with the condition y� ≡ 0 (mod pn), f(x) ≡ 0 (mod pn).

For y = pry1, y1 ∈ G∗pn−r , r < n0, x = x0 + pr�x1, x0 ∈ Gpr� , x1 ∈ Gpn−r�

the corresponding value x finds from the solutions of the system of congruences

(12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f(x0) ≡ 0 (mod pr�)

y1 ≡ f(x0)

pr�
+ f ′(x0)x1 +

f ′(x0)

2!
pr�x2

1 + · · ·

· · · + f (m)(x0)

m!
p(m−1)r� (mod pn−r� − 1)

relatively y1 ∈ G∗pn−r , x0 ∈ Gpr� , x1 ∈ Gpn−r� .

The description of the solutions of the system (12) may be obtained from
Corollary.

We are now in a position to investigate the sum S�(f, χ, p
n).

3. Estimation of the twisted exponential sum S�(f, χ, p
m)

In order to investigate a twisted exponential sum we give the following
preliminary lemma

Lemma 2. Let p ≡ 3 (mod 4) be a prime, n ≥ 3 be a positive integer. There
exists the polynomial f(u) with coefficients from G

(13) f(u) = u+ a2u
2 + · · · + aN−1p

N−1,

such that for any character χ of the group Un ⊂ G∗pn , Un := {1+pu|u ∈ Gpn−1}
we have

(14) χ(1 + pu) = epn−1(Λf(u)),

where Λ ∈ Gpn−1 depends only on χ, and the coefficients a� satisfy by the
inequalities

νp(ak) ≥ k − νp(k) − 1, k = 2, 3, . . . .

Proof. Well-known that the multiplicative group G∗p is a cyclic group. We

may select a generator g of G∗p in such way that gp
2−1 = 1 + pu1, (u1, p) = 1.
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Then using the continuation of p-adic valuation from Q, to Q(i) and stating
one-one correspondence between

(1+pu1)
k := 1+kpu1+p2u2

1

k(k − 1)

2
+· · ·+pn+n0un+n0

1

k(k − 1) · · · (k − n0 − 1)

n0!

and
1 + puk, for any k ∈ Gpn−1 ,

where n0 =
[

n
p−1

]
+ 1,

we conclude that the multiplicative group Un and the additive group Gpn−1 are
isomorphic (for a detail, see [7], pp. 375-376).

Since uk ≡ u1k+ pu2
1
k(k−1)

2 + · · · (mod pn−1) we deduce that the transfor-
mation Gpn−1 → C defined by

(15) 1 + pu → epn−1(
(Λu)), Λ ∈ Gpn−1

defines a character of the group Un. �

From the definition of S�(f, χ, p
m) it follows that we can concede f(x) �≡ 0

(mod p), i.e. we will consider only such (x, y) ∈ C(�, f, pm) for which (y, p) =
= (f(x), p) = 1.

Let x0 run over all such elements from Gp for which

(16) S(f, χ, pn) =
∑
x0

∑
y(0)

χ(y(0))epn(αx0 + βy(0))
∑
t

epn−1(
(B(t))),

where

(17)

B(t) = (α+ λΦ1 + βy(0)Φ1)t+ p(λΦ2 + λg2Φ
2
1 + βy(0)Φ2)t

2+

+ p2(λΦ3 + 2λΦ1Φ2 + λg3Φ
3
1 + βy(0)Φ3)t

3 + · · · =
= B0 +B1t+B2t

2 + · · · .

The coefficients Bj of the polynomial B(t) are Gaussian integers. Moreover,
denoting Bj = pμjBj , (Bj , p) = 1, we have: 2 ≤ μ3 ≤ μ4 ≤ · · · .

For an estimate of S(f, χ, pn) we can use the following well-known lemma.

Lemma 3. Let p be the Gaussian prime ”odd” number, m be a positive integer,
α1. . . . , αk ∈ G, (αj , p) = 1, j = 2, 3, . . .; ν3, . . . , νk ≥ 2. Then∣∣∣∣∣ ∑

x∈Gpm

exp
(
2πi


(
α1x+α2px

2+α2p
ν3x3+···+αkp

νkxk

pm

))∣∣∣∣∣ =
=

{
0 if α1 �≡ 0 (mod p),

N(p)
m+1

2 if α1 ≡ 0 (mod p).
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In particular, we have

Theorem 1. Let α, β, γ ∈ Gpn and let us assume that for all pairs (x0, y(0)),
x0 ∈ C0, y(0) = D(x0) we have 2(λ+βy(0))Φ2(x0) �≡ λΦ2

1(x0) (mod p). Then

S(f, χ, pn) =

{
N(pn)

1
2 if α+ (λ+ βy(0))Φ1(x0) ≡ 0 (mod p),

0 otherwise.

Consider the congruence

(18) y4 ≡ a+ bx3 (mod pn), (b, p) = 1, p > 2,

Let k(x0) be the number of solutions of the congruence

y4 ≡ a+ bx3
0 (mod pn), (a+ bx3

0, p) = 1.

We have
Φ(x0) = 1,

Φ1(x0) = 3 · 4−1bx2
0(a+ bx3

0)
−1,

Φ2(x0) = 3(32)−1bx2
0(a+ bx3

0)
−1(8(a+ bx3

0) + bx2
0).

From (17) it can be seen that the congruences B1 ≡ 0, B2 ≡ 0 (mod p) are
leading to the congruence λΦ3

1(x0) ≡ 2αΦ2(x0). If the last congruence disturbs
for all x0 ∈ C0 and y(0) ∈ D(x0), we obtain by Lemma 3

|S(f, χ, pn)| ≤
∑

x0∈C0

|D(x0)| · pn =
∑

x0∈C0

|D(x0)| · N(pn)
1
2 .

So we must consider four cases:

a) (x0, p) = (a+ bx3
0, p) = 1

b) (x0, p) = 1, a+ bx3
0 ≡ 0 (mod p)

c) x0 ≡ 0 (mod p), a+ bx3
0 �≡ 0 (mod p)

d) x0 ≡ 0 (mod p)m a+ bx3
0 ≡ 0 (mod p)

For a principal character χ and the case a) we have |C0| ≤ 3, |D(x0)| ≤ 4 (if
x0 ∈ C0) (here, |V | means the cardinality of V ). Hence,∣∣∣∣∣∣∣∣

∑
x0∈C0

(a+bx3
0,p)

∑
y(0)∈D(x0)

∑
t

χ(y(0)ϕ(t))epn(α(x0 + pt) + βy(0)ϕ(t))

∣∣∣∣∣∣∣∣ ≤ 12pn.
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Similar estimate can be done in the case c).

The contribution in the estimate of S(f, χ, pn) for the cases b) and d) are
the same.

Hence, we proved the theorem

Theorem 2. Let p ≡ 3 (mod 4) be a prime number. Then∣∣∣∣∣∣∣∣∣
∑

x,y∈G2
pn

y4≡a+bx3 (mod pn)

χ0(y)epn(αx+ βy)

∣∣∣∣∣∣∣∣∣ � N(pn)
1
2

with an absolute constant in symbol ”�”.

The description of solutions of the congruence

y� ≡ f(x) (mod pn)

can be applied for investigation of the distribution of solutions in G2 of the
congruences of type considered above.

Authors are grateful to referee for a careful reading of our paper and his
suggestions which improved its quality.
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