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Abstract. In an unpublished 2005 paper T. Rivoal proved the formula

4

π
=

∏

k≥2

(

1 +
1

k + 1

)2ρ(k)�log2(k)−1�

where �x� denotes the (lower) integer part of the real number x, and ρ(k)
is the 4-periodic sequence defined by ρ(0) = 1, ρ(1) = −1, ρ(2) = ρ(3) = 0.
We show how a lemma in a 1988 paper of J. Shallit and the author allows
us to prove that formula, as well as a family of similar formulas involving
occurrences of blocks of digits in the base-B expansion of the integer k,
where B is an integer ≥ 2.

1. Introduction

The author shares probably with many number theorists a kind of fasci-
nation for infinite products or series that look simple, but have explicit and
somehow unexpected values, such as

∑
n≥1

1

n2
=

π2

6
and

∏
n≥1

(
1 − 1

4n2

)
=

2

π
·
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In an unpublished paper [12], T. Rivoal proved the formula

4

π
=

∏
k≥2

(
1 +

1

k + 1

)2ρ(k)	log2(k)−1


where �x� denotes the (lower) integer part of the real number x, and where ρ(k)
is the 4-periodic sequence defined by ρ(0) = 1, ρ(1) = −1, ρ(2) = ρ(3) = 0. Of
course this can also be written

4

π
=

∏
k≥4

(
1 +

1

k + 1

)2ρ(k)	log2(k)−1

.

Grouping terms, this infinite product can also be written

4

π
=

∏
k≥1

∏
0≤r≤3

(
1 +

1

4k + r + 1

)2ρ(4k+r)	log2(4k+r)−1


i.e.,

4

π
=

∏
k≥1

∏
0≤r≤1

(
1 +

1

4k + r + 1

)2ρ(4k+r)	log2(k)+1

=

=
∏
k≥1

(
(4k + 2)(4k + 2)

(4k + 1)(4k + 3)

)2	log2(k)+1

.

Now, for k ≥ 1, the quantity �log2(k)+1� is the number of digits in the base-2
expansion of k. Hence, letting N0,2(k) (resp. N1,2(k)) denote the number of
occurrences of 0’s (resp. 1’s) in the binary expansion of the integer n, we have
�log2(k) + 1� = N0,2(k) +N1,2(k). Hence Rivoal’s relation reads

(1)
∏
k≥1

(
(4k + 2)(4k + 2)

(4k + 1)(4k + 3)

)2(N0,2(k)+N1,2(k))

=
4

π
·

2. The main result for base 2

The purpose of this section is to establish a general relation of which Equa-
tion (1) is a particular case. We begin with some definitions. In what follows
B ≥ 2 is an integer which will be a numeration base for the integers. The
set, or alphabet, DB is defined by DB := {0, 1, · · · , B − 1}. If w is a word
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over DB (i.e., a finite sequence of elements of DB), we let L(w) denote its
length: if w = d1d2 · · · dk, then L(w) = k (the usual notation is |w|, but | |
denotes the absolute value in a few places in this paper). Also wj stands for
the concatenation of j copies of the word w.

If w is a word over DB , we let Nw,B(n) denote the number of possibly
overlapping occurrences of w in the B-ary expansion of the integer n > 0 if
w begins in a 1 or is of the form w = 0j for some j ≥ 1, and the number of
possibly overlapping occurrences of w in the B-ary expansion of the integer
n > 0 preceded by an arbitrarily large number of 0’s if w begins in a 0, but is
not of the form w = 0j for some j ≥ 1. Finally we define Nw,B(0) = 0 for any
w (which means that 0 is represented by the empty word in base B).

If w and B are as above, we let vB(w) denote the “value” of w when w is
interpreted as the base B-expansion (possibly with leading 0’s) of an integer.

Example 1. To make the above definitions clear we give the following ex-
amples: N11,2(15) = 3, N001,2(4) = 1 (write 4 in base 2 as 0 · · · 0100), while
N0,4(4) = 2. Also v2(0010) = 2.

Now we state a general lemma from [3]. A proof is given in [3] (also see
[4], where this lemma is used for proving families of relations involving the
quantities Nw,B(k)).

Lemma 2 ([3]). Fix an integer B ≥ 2, and let w be a non-empty word over
{0, 1, · · · , B − 1}. If f : N → C is a function such that

∑
n≥1 |f(n)| log n < ∞,

then

∑
n≥1

Nw,B(n)

⎛⎝f(n) −
∑

0≤k≤B−1

f(Bn+ k)

⎞⎠ =
∑

f(BL(w)n+ vB(w)),

where the last summation is over n ≥ 1 if w = 0j for some j ≥ 1, and over
n ≥ 0 otherwise.

Remark 3. Note that the relation in Lemma 2 above does not involve the
value f(0).

The next classical lemma will prove useful (see, e.g., [17, Section 12-13]).

Lemma 4. Let d be a positive integer. Let (ai)1≤i≤d and (bj)1≤j≤d be complex
numbers such that no ai and no bj belongs to {0,−1,−2, . . .}. If a1+a2+ · · ·+
ad = b1 + b2 + · · · + bd, then∏

n≥0

(n+ a1) · · · (n+ ad)

(n+ b1) · · · (n+ bd)
=

Γ(b1) · · ·Γ(bd)
Γ(a1) · · ·Γ(ad)

.
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Theorem 5. Let w be a word over the alphabet {0, 1}, and Nw,2 as defined
previously. Then

• if w = 0j for some j ≥ 1,∏
n≥1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2Nw,2(n)

=
2j+2Γ

(
1
2j

)
Γ
(

1
2j+1

)2 ;

• if w is not of the form 0j for some j ≥ 1,

∏
n≥1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2Nw,2(n)

=
Γ
(

v2(w)
2L(w)

)
Γ
(

v2(w)+1
2L(w)

)
Γ
(

2v2(w)+1
2L(w)+1

)2 ·

Proof. Define f by f(0) = 0 and for all n ≥ 1

f(n) := log

(
(2n+ 1)2

2n(2n+ 2)

)
.

Then, applying Lemma 2 with B = 2 and w a word over {0, 1}, yields∑
n≥1

Nw,2(n) (f(n) − f(2n) − f(2n+ 1)) =
∑

f(2L(w)n+ v2(w))

where the last summation is over n ≥ 1 if w = 0j for some j ≥ 1, and over
n ≥ 0 otherwise. Since

f(n)−f(2n)−f(2n+1) = log

(
(4n+ 2)4

(4n+ 1)2(4n+ 3)2

)
= 2 log

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)
,

we get ∑
n≥1

2Nw,2(n) log

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)
=

=
∑

log

(
(2L(w)+1n+ 2v2(w) + 1)(2L(w)+1n+ 2v2(w) + 1)

(2L(w)+1n+ 2v2(w))(2L(w)+1n+ 2v2(w) + 2)

)
where again the last summation is over n ≥ 1 if w = 0j for some j ≥ 1, and
over n ≥ 0 otherwise. Exponentiating yields∏

n≥1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2Nw,2(n)

=

=
∏(

(2L(w)+1n+ 2v2(w) + 1)(2L(w)+1n+ 2v2(w) + 1)

(2L(w)+1n+ 2v2(w))(2L(w)+1n+ 2v2(w) + 2)

)
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where the last product is over n ≥ 1 if w = 0j for some j ≥ 1, and over n ≥ 0
otherwise. Using Lemma 4 (recall that the range of summation for the sum
on the right of the formula in that lemma is not the same for w = 0j and for
w �= 0j), we then get the statement of the theorem. �

Corollary 6. Equation (1) holds.

Proof. Applying Theorem 5 first with w = 0, then with w = 1, we obtain
(note that v2(0) = 0, v2(1) = 1, and remember that Γ(1 + x) = xΓ(x))

∏
n≥1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2N0,2(n)

=
8Γ

(
1
2

)
Γ
(
1
4

)2
and ∏

n≥1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2N1,2(n)

=
Γ
(
1
2

)
Γ
(
3
4

)2 ·
Thus ∏

n≥1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2(N0,2(n)+N1,2(n))

=
8Γ

(
1
2

)2
Γ
(
1
4

)2
Γ
(
3
4

)2 ·
But, using Euler’s reflection formula Γ(z)Γ(1 − z) = π/ sin(πz) (see, e.g., [17,
Section 12-14]), we get the classical relations Γ(1/2) =

√
π and Γ(1/4)Γ(3/4) =

= π
√
2, which finally yield

∏
n≥1

(
(4n+ 2)(4n+ 2)

(4n+ 1)(4n+ 3)

)2(N0,2(n)+N1,2(n))

=
4

π
,

i.e., Equation (1). �

Remark 7. We note that the proof of Theorem 5 gives a companion formula
to Equation (1), namely

(2)
∏
k≥1

(
(4k + 2)(4k + 2)

(4k + 1)(4k + 3)

)2(N0,2(k)−N1,2(k))

=
8Γ

(
3
4

)2
Γ
(
1
4

)2 =
16π2

Γ
(
1
4

)4 ,
but that we were unable to compute the infinite “alternate” product (see Sec-
tion 4.1 for a motivation)

∏
k≥1

(
(4k + 2)(4k + 2)

(4k + 1)(4k + 3)

)2(−1)k(N0,2(k)+N1,2(k))

·
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3. A few words about generalizations to base B

It is actually possible to obtain formulas similar to Rivoal’s for bases B,
where B > 2. For example Theorem 5 can be generalized as follows.

Theorem 8. Let w be a word over the alphabet {0, 1, . . . , B−1}. Let (ai)1≤i≤d

and (bj)1≤j≤d be nonnegative real numbers. If a1+a2+· · ·+ad = b1+b2+· · ·+bd,
then

• if w = 0j for some j ≥ 1,

∏
n≥1

⎛⎝ ∏
1≤i≤d

⎛⎝(
Bn+ ai
Bn+ bi

) ∏
0≤k≤B−1

(
B2n+Bk + bi
B2n+Bk + ai

)⎞⎠⎞⎠Nw,B(n)

=

=
∏

1≤i≤d

Γ
(
1 + bi

Bj+1

)
Γ
(
1 + ai

Bj+1

) ;

• if w is not of the form 0j for some j ≥ 1,

∏
n≥1

⎛⎝ ∏
1≤i≤d

⎛⎝(
Bn+ ai
Bn+ bi

) ∏
0≤k≤B−1

(
B2n+Bk + bi
B2n+Bk + ai

)⎞⎠⎞⎠Nw,B(n)

=

=
∏

1≤i≤d

Γ
(

vB(w)
BL(w) +

bi
BL(w)+1

)
Γ
(

vB(w)
BL(w) +

ai

BL(w)+1

) ·

Proof. Apply Lemma 2 with f defined by f(0) = 0 and for all n ≥ 1

f(n) := log
∏

1≤i≤d

Bn+ ai
Bn+ bi

· �

Remark 9. Theorem 8 contains Theorem 5 (take B = 2, a1 = a2 = 1, b1 = 0,
and b2 = 2).
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4. Conclusion

4.1. The “alternate” Euler constant

When he obtained Equation (1), or more precisely the formula

4

π
=

∏
k≥2

(
1 +

1

k + 1

)2ρ(k)	log2(k)−1


Rivoal was inspired by Catalan’s and Vacca’s identities for the Euler-Mascheroni
constant γ

γ =

∫ 1

0

∑
n≥1 x

2n

x(1 + x)
dx and γ =

∑
k≥1

(−1)k
�log2(k)�

k

(Catalan’s identity dates back to 1875, see [5], while Vacca’s identity was proved
in 1925, see [16]; for a history of the second formula, see [14]). An analogy
between γ and log 4

π occurs when writing the above relations as

γ =
∑
k≥1

(−1)k
�log2(k)�

k
and log

4

π
=

∑
k≥1

(2ρ(k)�log2(k)−1�) log
(
1 +

1

k + 1

)
·

Another similarity is given by the formulas

γ =
∑
j≥2

(−1)j

j
ζ(j) and log

4

π
=

∑
j≥2

(−1)j

j
η(j)

where η(j) := (1 − 21−j)ζ(j) (we use the same notation as, e.g., in [8] where
several formulas of the same kind can be found; also see [6] and [13]): these
formulas can be obtained by taking z = 1 and z = 1/2 in the relation

log Γ(1 + z) = − log(1 + z) + z(1 − γ) +
∑
n≥2

(−1)n(ζ(n) − 1)

2nn

valid for |z| < 2, see [1, 6.1.33, p. 256], which gives respectively

γ =
∑
j≥2

(−1)j

j
ζ(j) and γ = log

4

π
+ 2

∑
j≥2

(−1)jζ(j)

2jj
·

A more striking analogy between the constants γ and log 4
π was noted by Son-

dow in [13] where it is proved that

γ =
∑
n≥1

(
1

n
− log

n+ 1

n

)
=

∫ ∫
[0,1]2

1 − x

(1 − xy)(− log xy)
dxdy
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and

log
4

π
=

∑
n≥1

(−1)n−1

(
1

n
− log

n+ 1

n

)
=

∫ ∫
[0,1]2

1 − x

(1 + xy)(− log xy)
dxdy

leading Sondow to call “alternating Euler constant” the quantity log 4
π . In the

same spirit Sondow compares in [14] the following two expressions

γ =
1

2
+

∑
n≥1, even

N1,2(n) +N0,2(n) − 1

n(n+ 1)(n+ 2)

and

log
4

π
=

1

4
+

∑
n≥1, even

N1,2(n) − N0,2(n)

n(n+ 1)(n+ 2)

where the first expression is due to Addison [2] and the second is a modification
of a formula in [4].

One way of “explaining” the links between γ and log 4/π is the introduction
of the “generalized-Euler-constant function” by Sondow and Hadjicostas in [15],
or of a similar function introduced by Pilehrood and Pilehrood in [10]: the
function γ(z) of [15] and the function f1(z) in [10] are defined by

γ(z) =
∑
n≥1

zn−1

(
1

n
− log

n+ 1

n

)
and f1(z) =

∑
n≥1

zn
(
1

n
− log

n+ 1

n

)
(so that f1(z) = zγ(z)). Namely one has

γ = γ(1) and log

(
4

π

)
= γ(−1)

(for more on γ(z) see [11]).

4.2. Catalan-type formulas

In his paper [12] Rivoal gives a Catalan-like formula for 4/π in relation with
Equality 1, namely

∑
k≥2

(2ρ(k)�log2(k)−1�) log
(
1 +

1

k + 1

)
= log

4

π
=

1∫
0

x − 1

log x

∑
n≥2 x

2n

x(1 + x)(1 + x2)
dx.

Comparing with Catalan’s identity

γ =

1∫
0

∑
n≥1 x

2n

x(1 + x)
dx,
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Rivoal suggested (private communication) that similar relations may exist for
logarithms of the infinite products we studied here. However we do not have
general results in that direction.

4.3. Two more remarks

We would like to make two more remarks about Lemma 2.

• Which functions can be obtained on the left side of the equality given
in that lemma? In other words given a map g from the integers to the real
numbers, we want to know when it is possible to find a map f such that

g(n) = f(n) −
∑

0≤j≤B−1

f(Bn+ j).

A particular case is addressed in [3], the case where f is a constant multiple of
g. In other words what are the eigenvectors of the operator f :→ Tf , where
Tf(n) =

∑
0≤j≤B−1 f(Bn + j), and f is supposed to behave “regularly”?

This looks like a functional equation with means:
∑

0≤j≤B−1 f(Bn + j) is B
times the arithmetic mean of the values of f on [Bn,Bn + B − 1]. Looking
in the literature for papers with keywords “mean” and “functional equation”,
we found several papers, in particular by Daróczy and coauthors, e.g., [7], but
were not able to find references really related to our question.

• Another question about Lemma 2 is whether the quantities Nw,B(n) can
be replaced by more general sequences. We think that it is possible to introduce
generalizations of B-additive sequences for which a similar lemma holds. We
hope to address that question in the near future, possibly including distribution
results (see, e.g., the survey of Kátai [9]).

Acknowledgements. We would like to thank T. Rivoal and J. Shallit for
their comments on a first version of this paper.

References

[1] Abramowitz, M., I. Stegun, eds., Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables, National Bureau
of Standards, Applied Mathematics Series 55 (1964).



78 J.-P. Allouche

[2] Addison, A.W., A series representation for Euler’s constant, Amer.
Math. Monthly, 74 (1967), 823–824.

[3] Allouche, J.-P., and J. Shallit, Sums of digits and the Hurwitz zeta
function, in: Analytic number theory (Tokyo, 1988), Lecture Notes in
Math. 1434, Springer, Berlin, 1990, pp. 19–30.

[4] Allouche, J.-P., J. Shallit and J. Sondow, Summation of series de-
fined by counting blocks of digits, J. Number Theory, 123 (2007), 133–143.

[5] Catalan, E., Sur la constante d’Euler et la fonction de Binet, J. Liouville
[J. Math. Pures Appl.], (3) I (1875), 209–241.

[6] Choi, J. and H. M. Srivastava, Sums associated with the Zeta function,
J. Math. Anal. Appl., 206 (1997), 103–120.
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