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Abstract. Let Pγ(N, z) =
∑

0≤n<N
zn.γ(n) be a C2-valued polynomial

where γ(·) belongs to a family of sequences in C2 derived from linear au-
tomata that recognize classical Prouhet-Thue-Morse sequence and Rudin-
Shapiro sequence in {−1,+1}. Upper bound on the complex unit disk of
the quadratic norms of Pγ(N, z) and analogous polynomials, obtained by
summing on the intervals [b, b +N), are estimated. Examples of applica-
tions and some generalizations are considered.

1. Introduction

The famous Prouhet-Thue-Morse (in short PTM) and Rudin-Shapiro (in
short RS) sequences, respectively denoted here by (μn)n≥0 and (ρn)n≥0, are
classically defined as follows. If the number s1(n) of “1” in the binary expan-
sion of n is even, then μn = 1 otherwise μn = −1. If the number s11(n) of
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occurrences of the word “11” in the binary expansion of n is even, then ρn = 1
otherwise ρn = −1. Those sequences are automatic. To explain this fact and
the way we intend to mix PTM sequence with RS sequence we recall some
basic vocabulary and notation. For more details and general investigations
on automatic sequences we refer to the monograph of J.-P. Allouche and J.
Shallit [6].

Let n be a positive integer and denote by ñ the binary word etn(n) · · · e0(n)
corresponding to the binary expansion n =

∑tn
i=0 ei(n)2

i with etn(n) = 1 and
ei(n) ∈ {0, 1} for all indices i, 0 ≤ i < tn and ej(n) = 0 for j > tn. In addition,
set 0̃ = 0 and N0 := N ∪ {0} where N is the set of positive natural numbers.
Let B := {0, 1} and let B∗ be the set of all binary words endowed with the
concatenation law (v1 . . . vk) · (w1 . . . w�) = v1 . . . vkw1 . . . w�; the empty word
is denoted by ∧. The weight of a nonempty binary word w = wk . . . w0 is the
integer ẇ = wk2

k + · · · + w12 + w0 and by definition ∧̇ = 0. A deterministic
complete 2-automaton is a quadruplet A := (E,Φ, I0, τ) where E is a finite
set called set of states, Φ := {φ0, φ1} where the maps φj : E → E are called
instructions, I0 is an element of E called initial state and τ is the output map
defined on E and taking its values in a finite set of symbols S. A sequence u
in the set S is said to be 2-automatic (or simply, automatic) and recognized by
A if u(n) := τ ◦ fA(ñ) where fA : B∗ → E is the internal map defined by

(1.1) fA(wk · · ·w0) := φw0 ◦ · · · ◦ φwk
(I0) ,

and fA(∧)(J) := J for all states J . With this definition, the automaton reads
any binary word from left to right. If the output map τ is omitted, the triplet
A′ := (E,Φ, I0) is called semi-automaton. For any automatic sequence many
semi-automata A′ can be used to recognize the sequence and it is always pos-
sible to choose one which is left-regular, that means φ0(I0) = I0, and linear
i.e., there is a vector space V , called support of the semi-automaton, such
that E ⊂ V , the instruction maps are restrictions of endomorphisms of V and
moreover, if S is a subset of the scalar field of V , the output function is the
restriction of a linear form.

In Section 2, two left-regular and linear semi-automata

A(i) := (E, {A(i)
0 , A

(i)
1 }, I0) (i equals 0 or 1),

with support C2, are built such that A(0) recognizes μ and A(1) recognizes ρ. A
mixing of μ and ρ is obtained as follows. Let λ : N0 → B and v0 ∈ C2, then the
λ-mixing sequence of μ and ρ with base point v0 is the sequence γ : N0 → C2

defined by

(1.2) γ(0) := A
(λ(0))
0 v0 and γ(n) := A

(λ(0))
e0(n)

. . . A
(λ(tn))
etn (n) v0 (n > 0) .
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Notice that if the sequence λ is ultimately periodic, then γ is still automatic.
In Section 3, the vector valued polynomial

(1.3) Pγ(N, z) :=
∑

0≤n<N

zn.γ(n) (z ∈ C)

is studied. Notice that Pγ(N, z) belongs to C2 and by convention z0 = 1, hence
Pγ(1, z) = γ(0) and also Pγ(0, z) = 0. The complex plane C2 is equipped with
the standard hermitian product and its associated quadratic norm is noted ||·||2.
A summation formula involving the binary expansion of N is established. In
Section 4, lower and upper bounds for sup|z|≤1 ||Pγ(N, z)||2 are given. Finally,
in the last section, additional results are derived from our method. This paper
is a partial extension of a previous work of the first author [1]. Tools we use
are in germ contained in [2, 4, 7, 8].

2. Automata recognizing PTM sequence and RS sequence

The classical automaton that recognizes the PTM sequence μ has the fol-
lowing linear version with support R (or C):

(2.1) A =
({+1,−1}, {A0 : x 	→ x, A1 : x 	→ −x},+1, τ : x 	→ x

)
.

Automata that recognize the RS sequence ρ are more complicated. A linear
version A(1) is depicted Figure 1, the output function being the first coordinate
projection p0 :

[
x0

x1

] 	→ x0. In order to use simultaneously automata computing
both sequences μ and ρ, we introduce the linear automaton

A(0) = (E, {A(0)
0 , A

(0)
1 }, [+1

+1

]
, p0)

with support C2, where E = {[+1
+1

]
,
[
+1
−1

]
,
[
−1
+1

]
,
[
−1
−1

]} (the space of states of

A(1)), A
(0)
0 = I2 (identity matrix of rank 2) and A

(0)
1 = −I2. Notice that both

vectors
[
+1
+1

]
and

[
+1
−1

]
can be used as initial state to recognize μ.

From now on the sequence γ is given by (1.2) with the above automata A(0)

and A(1). The set of possible values of γ are mainly related to v0 and by
homogeneity it is enough to consider these values up to the multiplication by
a non zero complex number, more precisely:

Theorem 2.1. The sequence γ takes a finite number of vector values. There is
only one for v0 =

[
0
0

]
(namely the null vector) and there all are in E if v0 ∈ E.

There are 10 possible values if v0 =
[
x
1

]
or v0 =

[
1
x

]
with x ∈ C \ {0} and only

7 possible values if x = 0.
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[
+1
+1

]
initial state

A
(1)
0 :=

[1 0
1 0

]
A

(1)
1 :=

[0 1
0 − 1

]

[
+1
−1

] [
−1
+1

] [
−1
−1

]
1

0

1

1

0

1

0 0

Figure 1. The classical linear Rudin-Shapiro automaton A(1). Arrows

labeled by 0 (resp. 1) correspond to the instruction matrix A
(1)
0 (resp.

A
(1)
1 )

Proof. The cases v0 =
[
0
0

]
and v0 ∈ E are clear and if λ(n) = 0 for all n ≥ 0,

then γ takes only 2 values. Assume that v0 =
[
1
x

]
. By applying the instruction

matrices, one sees that the set of possible values of γ is exactly
(2.2)

Ex :=

{[
1
x

]
,

[−1
−x

]
,

[
1
1

]
,

[−1
−1

]
,

[−1
1

]
,

[
1
−1

]
,

[
x
−x

]
,

[−x
x

]
,

[−x
−x

]
,

[
x
x

]}
The case v0 =

[
x
1

]
is analogous. �

3. Summation formulae

We expand Pγ(N, z) according to the binary expansion N =
tN∑

m=0
em(N)2m,

with N ≥ 1 and etN (N) �= 0. In the sequel, t is currently written for tN . For
all integers k ≥ 0 the shifted sequence λk(·) is defined by λk(n) := λ(n + k)
and γk will be the sequence defined by (1.2) but with λk in place of λ. Define

also the matrices A(i)(z) := A
(i)
0 + z.A

(i)
1 .

3.1. The regular case. We assume here that γ is regular that is to say

A
(λ(0))
0 v0 = v0, hence γ(0) = v0 and for any binary word wk . . . w0, γ(ẇ) =

= A
(λ(0))
w0 . . . A

(λ(k))
wk

v0. Moreover

zj.A
(λ(0))
j (z2n.γ1(n)) = z2n+j.A

(λ(0))
j A

(λ(1))
en(n) . . . A

(λ(tn))
etn (n) v0 =

= z2n+j.A
(λ(0))
j A

(λ(1))
en(n) . . . A

(λ(tN ))
etN (n) v0 =

= z2n+j.γ(2n+ j)
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for all j ∈ B. After summation

Aλ(0)(z)
( ∑
0≤n<N

z2n.γ1(n)
)

=
∑

0≤n<N

(
z2n.γ(2n) + z2n+1.γ(2n+ 1)

)
=

=
∑

0≤ν<2N

zν.γ(ν) ,

hence, one gets

(3.1) Pγ(2N, z) = A(λ(0))(z)Pγ1(N, z2) .

Set Π(0, z) = I2 and for integer m ≥ 1:

(3.2) Π(m, z) := A(λ(0))(z)A(λ(1))(z2) . . . A(λ(m−1))(z2
m−1

) .

By expanding the product and using the regularity of γ, one obtains directly
Π(m, z)v0 = Pγ(2

m, z), a formula which is also a consequence of (3.1). For m
such that 0 ≤ m ≤ t = tN set sm :=

∑
m≤r≤t er(N)2r and st+1 = 0. Then, if

0 ≤ n < 2m and em(N) = 1, the definition of γ(·) leads to

γ(sm+1 + 0.2m + n) = A
(λ(0))
e0(n)

. . . A
(λ(m−1))
em−1(n)

A
(λ(m))
0 A

(λ(m+1))
em+1(N) . . . A

(λ(t))
et(N)v0 =

= A
(λ(0))
e0(n)

. . . A
(λ(m−1))
em−1(n)

A
(λ(m))
0 γm+1

(⌊
N

2m+1

⌋)
.

Consequently,
(3.3)∑
sm+1≤s<sm

zs.γ(s) = zsm+1 .Π(m, z)A
(λ(m))
0 γm+1

(⌊ N

2m+1

⌋)
(em(N) = 1)

and

(3.4) Pγ(N, z) =

tN∑
m=0

em(N)zsm+1 .Π(m, z)A
(λ(m))
0 γm+1

(⌊ N

2m+1

⌋)
.

3.2. The non-regular case. Suppose that γ is not necessarily regular. In
that case, Formula (3.4) is generally wrong. But (3.3) remains unchanged as
long as m �= t since in that case, either em(N) = 0 and the sum on the left

side is null anyway or em(N) = 1, but γm+1

(⌊
N

qm+1

⌋)
= A

(λ(m+1))
em+1(N) . . . A

(λ(t))
et(N)v0

with et(N) = 1, so that the fact that γ is not regular has no effect. For m = t
(= tN ), the sum in (3.3) equals Pγ(2

t, z). But, in all generality, for � ≥ 1,

Pγ(2
�, z) = z2

�−1

.Π(�− 1, z)A
(λ(�−1))
1 v0 + Pγ(2

�−1, z) =

=
(
z2

�−1

.Π(�− 1, z)A
(λ(�−1))
1 + · · ·+ z.Π(0, z)A

λ(0))
1 +A

λ(0))
0

)
v0 .
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Collecting all these calculations leads to

Pγ(N, z) =

tN−1∑
m=0

em(N)zsm+1 .Π(m, z)A
(λ(m))
0 γm+1

(⌊ N

2m+1

⌋)
+

+

tN−1∑
�=0

z2
�

.Π(�, z)A
(λ(�))
1 v0 +A

(λ(0))
0 v0 .(3.5)

4. Lower and upper bounds

In what follows the quadratic norm ||M || of a matrix application M : C2 →
→ C2 is defined by ||M || = sup||X||2≤1 ||M(X)||2. It is well known that ||M ||
is equal to the square root of the largest modulus of the eigenvalues of M∗M ,
where M∗ is the adjoint of M with respect to the standard hermitian product.

Easy calculations show ||A(0)
0 || = ||A(0)

0 || = 1, ||A(1)
0 || = ||A(1)

0 || = √
2 and

||A(0)(z)|| = |1− z|, ||A(1)(z)|| = √2. The following lemma will be useful. It is
proved with more general assumptions in [4, Lemma 2.2].

Lemma 4.1. For all β ∈]0, 1] and all integers N ≥ 1,

k∑
m=0

em(N)2βm ≤ 1

2β − 1
Nβ .

4.1. Lower bound for ||Pγ(N, z)||2. The following theorem is classical.

Theorem 4.1. Let x ∈ C \ {0} and v0 ∈ Ex then, for all integers N ≥ 1,

(4.1) sup
|z|≤1

||Pγ(N, z)||2 ≥ cx
√
N

with cx := mine∈Ex
||e||2.

The proof is based on the standard computation∫ 1

0

∫ 1

0

||Pγ(N, te2iπθ)||2
2
dt dθ =

∑
0≤n<N

||v(n)||2
2
.

By definition of Ex and independently of λ, γ(N) ⊂ Ex, hence

sup
|z|≤1

||Pv(N, z)||22 ≥ c2xN

proving (4.1).
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Remark 4.1. The constant cx is equal to min{√2,√2|x|,
√
1 + |x|2}. But, if

v0 ∈ E1 then γ(E1) ⊂ E1, hence sup|z|≤1 ||Pv(N, z)||2 ≥
√
2N.

4.2. Upper bound for ||Pγ(N, z)||2, regular case. In this part we assume
that v0 = [+1

+1

]
or v0 = [−1

−1

]
and to emphasize this fact, the sequence γ defined

in (1.2) will be denoted by η.

Theorem 4.2. For all N :

(4.2) sup
|z|≤1

||Pη(N, z)||2 ≤
√
2

tN∑
m=0

em(N)2m− 1
2 (λ(0)+···+η(m−1)) .

Proof. By construction, the sequence η is regular and takes its values in E1.
Therefore (4.2) is a straightforward consequence of (3.4) and the inequality

(4.3) ||Π(m, z)||2 ≤ 2m− 1
2 (λ(0)+···+λ(m−1))

is valid for all complex numbers z such that |z| ≤ 1. �

4.3. General case. It is interesting to consider the general situation where
v0 belongs to C2 \{[00]} with a summation running from b to N + b in order to
obtain a reasonable bound uniformly in b. Going back to the notation γ, the
homogeneity allows to reduce the study for v0 in Ex with 0 < |x| ≤ 1. Notice
that now maxe∈Ex

||e||2 =
√
2.

Theorem 4.3. For all positive integers N ,

sup
b≥0

sup
|z|≤1

∥∥ ∑
b≤n<N+b

zn.γ(n)
∥∥
2
≤ 2

√
2

∑
0≤m≤tN

2m− 1
2 (λ(0)+···+λ(m−1)) .

Proof. For non-negative integers r, s and a, set

S(r, s, a, z) :=
∑

r2s≤n<r2s+a

zn.γ(n) .(4.4)

We distinguish several cases.

Case 1: r = 0. By definition S(0, s, a, z) = Pγ(a, z) (independent of s) and
using (3.5)

||S(0, s, a, z)||2 ≤
√
2
( ta−1∑
m=0

em(a)||Π(m, z)||2 +
ta−1∑
�=0

||Π(�, z)||2 + 1
) ≤

≤
√
2
(
1 +

ka−1∑
m=0

(em(a) + 1)2σ(m)
)

(4.5)
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with σ(m) = m− 1
2 (λ(0) + · · ·+ λ(m− 1)) if m ≥ 1 and σ(0) = 0.

Case 2: r �= 0 and a = 2s. The sum (4.4) can be written successively

S(r, s, 2s, z) =
∑

r2s≤n<(r+1)2s

zn.γ(n) =

= zr2
s

.
∑

0≤�<2s

z�.γ(r2s + �) =

= zr2
s

.Π(s, z)A
(λ(s))
e0(r)

. . . A
(λ(s+tr))
etr (r)

v0

and (4.3) leads to

||S(r, s, 2s, z)||2 ≤
√
2 2σ(s) .(4.6)

Case 3: a �= 0, r �= 0, r odd and s > ta. Set sm :=
∑

m≤j≤ta
ej(a)2

j and
cut the sum S(r, s, a, z) into a sum of partial summations:

S(r, s, a, z) := zr2
s

.
∑

0≤m≤ta

∑
sm+1≤�<sm

z�.γ(r2s + �) .

For m running from 0 to ta,∑
sm+1≤�<sm

z�.γ(r2s + �) = zsm+1 .
∑

0≤ν<em(a)2m

zν.γ(r2s + sm+1 + ν) =

=
(
em(a)zsm+1 .

∑
0≤ν<em(a)2m

zν.A(ν,m)
)
A

(λ(m))
0 B(a, r, s,m)v0

with

B(a, r, s,m) := A
(λ(m+1))
em+1(a)

. . . A
(λ(ta))
eta (a) A

(λ(ta+1))
eta+1(r2s)

. . . A
(λ(s+tr))
es+tr (r2

s)

if m < ka,

B(r, s, ta) := A
(λ(ta+1))
eta+1(r2s)

. . . A
(λ(s+tr))
es+tr (r2

s)

and A(ν,m) := A
(λ(0))
e0(ν)

. . . A
(λ(m−1))
em−1(ν)

. Now S(r, s, a, z) can be written in the

form
zr2

s

.
∑

0≤m≤ta
em(a).Π(m, z)A

(λ(m))
0 B(r, s,m)v0

so that, using (4.3),

||S(r, s, a, z)||2 ≤
√
2

∑
0≤m≤ta

em(a)2σ(m) .(4.7)

Finally, consider the sum S(r, s,−a, z) := ∑
r2s−a≤n<r2s z

n.γ(n). One has

S(r, s,−a, z) =
∑

0≤m≤ta

∑
r2s−sm≤n<r2s−sm+1

zn.γ(n).(4.8)
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Notice that r2s − sm = r−1
2 2s+1 + 2s−1 + · · · + 2ta+1 +

+(1 − eta(a))2
ta + · · · + (1 − em+1(a))2

m+1 + (2 − em(a))2m if m < ta and
r2s − sm = r2s − 2ta = r−1

2 2s+1 + 2s−1 + · · · + 2ta+1 + 2ta for m = ta. If
em(a) = 0, the partial sum in (4.8) corresponding to m is empty, its value is
the null vector. If em(a) = 1, then sn = sn+1 + 2m and the previous binary
expansions justify the equalities∑
r2s−sm≤n<r2s−sm+1

zn.γ(n) = em(a)zr2
s−sm .

∑
0≤�<2m

z�.γ(r2s − sm + �) =

= em(a)zr2
s−sm .Π(m, z)A

(λ(m))
0 B′(r, s,m)v0

with B′(r, s,m) := A
(λ(m+1))
em+1(r2s−sm) . . . A

(λ(s+t′r))

es+t′r
(r2s−sm) where t′r = tr if r ≥ 3 and

t′r = −1 if r = 1. This equality is still valid when em(a) = 0. Summarizing,

S(r, s,−a, z) =
∑

0≤m≤ta

em(a)zr2
s−sm .Π(m, z)A

(λ(m))
0 B′(r, t,m)v0

and consequently

(4.9) ||S(r, s,−a, z)||2 ≤
√
2

∑
0≤m≤ta

em(a)2σ(m) .

4.4. Final step. We are ready to bound the norm of the sum of vectors
zn.γ(n) on the interval [b, b + N) with N ≥ 3. If b �= 0, take the largest
integer s ≥ 1 such that there exists an integer r ≥ 1 verifying r2s ∈ [b, b+N).
Necessarily r is odd. The couple (r, s) obtained in this way is unique, otherwise
(r+1)2s or (r−1)2s belongs to [b, b+N [ and the choice of s will be not optimal.
In particular N ≤ 2s. Introduce the integers a = N + b− r2s and a′ = r2s− b.
Notice that a �= 0. We cut the summation on [b, b + N) into summations on
[b, r2s) and [r2s, b+N).

If r = 0, an upper bound of ||S(0, s, a, z)||2 comes from Case 1.

If a = 2s, then N = 2s and b = r2s (a′ = 0), and calculation of an upper
bound of ||S(r, s, a, z)||2 relies on Case 2.

If a = N , then b = r2s and a ≤ 2s but the case a = 2s has been already
considered. For a < 2s (hence s > ta) an upper bound of ||S(r, s, a, z)||2 is
given by the first part of Case 3.

It remains to work on S(r, s,−a′, z). The above analysis allows to eliminate
a′ = 0 and a′ = 2t and the case 0 < a′ < 2t is related to the second part of
Case 3 where a′ replaces a.

Let us group all the bounds obtained above. Case 1 gives from (4.5) the
upper bound ∥∥ ∑

0≤n≤N

zn.γ(n)
∥∥
2
≤
√
2

tN∑
m=0

2σ(m) .
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Case 2 furnishes the inequality (4.6) which is better that the one considered
in Case 1. Case 3 requires to make run a in the open interval (0, N). Finally,
inequalities (4.7) and (4.9) conduct easily to the following upper bound of
||∑b≤n<b+N zn.γ(n)||2 :

max
1≤a<N

√
2
( ∑
0≤m≤ta

em(a)2σ(m) +
∑

0≤m≤tN−a

em(N − a)2σ(m)
)

which is less than 2
√
2
∑tN

m=0 2
σ(m). This value works well for N = 1 and

N = 2. Summarizing, one gets the uniform upper bound exhibited in the
theorem. �

Corollary 4.1. Assume that λ−1(1) is infinite, then

lim
N

sup
b≥0

(
sup
|z|≤1

∥∥ 1

N

∑
b≤n≤b+N

zn.γ(n)
∥∥
2

)
= 0.

Proof. Let K ≥ 1. There exists sK such that
∑

0≤m<sK
λ(m) = K. Hence,

for all integers N ≥ 1 with tN + 1 > sK :

∥∥ ∑
b≤n<N+b

zn.γ(n)
∥∥
2
≤ 2

√
2
( sK−1∑

m=0

2m + 2−
1
2K

tN∑
m=sK

2m
)

≤ 2
√
2
(
2sK +

2N

2K/2

)
.

Since the choice of K is arbitrary, this equality proves the corollary. In fact for
any ε > 0, we can choose a suitable K such that the above bound is less than
εN for all integers N large enough. �

Corollary 4.2. Suppose there exist a real number α ∈ (0, 1] and an integer M
such that

card(λ−1(1) ∩ [0, N)) ≥ αN

for all integers N ≥ M . Then there exists an explicit constant C(α,M) (de-
pending on α and M) such

sup
b≥0

sup
|z|≤1

∥∥ ∑
b≤n<b+N

zn.γ(n)
∥∥
2
≤ C(α,M)N1−α

2 .

Proof. Assume N ≥M . Theorem 4.3 implies

∥∥ ∑
b≤n<N+b

zn.γ(n)
∥∥
2
≤ 2

√
2
(M−1∑
m=0

2m +

tN∑
m=0

2m(1− 1
2α)

)
.
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Now by applying Lemma 4.1, the inequality

sup
|z|≤1

||Pη(N, z)||2 ≤ 2
√
2
(
2M +

1

21−
1
2α − 1

N1− 1
2α
)

holds and Corollary 4.2 follows easily. �

5. Applications

5.1. Well-distribution. Let ψ(·) be a sequence like γ(·) defined by (1.2) but
with initial value v0 in E1. Then, ψ(·) takes its values in the multiplicative
Abelian group G = {+1,−1} × {+1,−1}. The non-trivial characters of G are
the first coordinatemap p0(·), the second coordinatemap p1(·) and the product
χ(·) = p0(·)p1(·).
Theorem 5.1. Assume that λ−1(1) is infinite. The corresponding above se-
quence ψ(·) is well-distributed in the group G.

Proof. Theorem 4.3 implies

lim
N

sup
b≥0

∣∣ 1
N

∑
b≤n<b+N

pi(ψ(n))
∣∣ = 0

for i = 0, 1. Now, let k be the smallest integer � such that λ(�) = 1, then

χ ◦ ψ(n) = (−1)ek(n) if n ≥ 2k due to χ(A
(0)
i e) = χ(e) and χ(A

(1)
i e) = (−1)i

for all e ∈ E1 and i = 0, 1. It follows

lim
N

sup
b≥0

∣∣ 1
N

∑
b≤n<b+N

χ(ψ(n))
∣∣ = 0 .

The well distribution of n 	→ ψ(n) in the groupG derives from a Weyl’s criterion
concerning well distribution in compact metrizable Abelian groups. �

5.2. Generalizations. Mixing automata can be realized in a more general
context but always with linear automata having the same space of states and the
same number of instructions. Lower and upper bounds obtained in our partic-
ular but significative case can be generalized as well by using similar methods.
For example, in the non mixing case (see [1]), let A = (E, (Aj)0≤j<q , I0) be
a left-regular complete and linear semi-automaton in base q, with support a
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real or complex vector space, generated by E and equipped with a norm || · ||.
Define

θA := sup
|z|≤1

|||A0 + z.A1 + · · ·+ zq−1.Aq−1|||

where ||| · ||| is the supremum norm for endomorphisms of V . Then,

Theorem 5.2. Let γ be a sequence defined as in (1.2) with λ(·) constant equal
to 0, A(0) = A and let Pγ(N, z) as in (1.3). If A is contractive, i.e. θA < q
then there exists a constant C such that

sup
|z|≤1

||Pγ(N, z)|| ≤ CN logq θA .

Another generalization can be done in the spirit of [5]. It consists in replac-
ing the sum (1.3) by

Pγ(N, f) :=
∑

0≤n<N

f(n).γ(n) ,

where f is any unimodular 2-multiplicative sequence. Notice that n 	→ zn is
2-multiplicative and this property is used in the key product formula (3.2).

We end with an explicit example issued from [7]. The sequence g0 : n 	→
	→ (−1)s1(n)+s1(3n) is obviously 2-automatic. A linear automaton can be con-
structed from the sequence g : N0 → R3 given by its coordinates gi(n) =
= (−1)s1(n)+s1(3n+i). The space of states is g(N0) and the instruction matrices
give

A(z) =

⎡
⎢⎢⎣
1 z 0
−1 0 −z
0 1 z

⎤
⎥⎥⎦ .

One gets θA = 2 for the quadratic norm, that is not so surprising to compare
with the case of PTM sequence which is also not contractive. The supremum
giving θA is reached with z = ±1. But A(1) has eigenvalues 1 and (1± i

√
7)/2

(of modulus
√
2). Then, a standard computation involving Lemma 4.1 with

z = 1 gives ||Pγ(N, 1)||2 ∈ O(
√
N). Further investigations in these directions

are studied in [3].
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Mathématiques d’Orsay 88-02, Orsay (1988), 1–35.

[8] Liardet, P., Automata and generalized Rudin-Shapiro sequences, Ar-
beitsbericht, Math. Inst. Univ. Salzburg, 3-4 1990, 21–52.

Isabelle Abou
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