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Five years ago in Annales Volume 28 (2008) Professor Járai Antal wrote
the Laudation to Professor Imre Kátai. Kátai retired in 2008 and works as
professor emeritus of the Eötvös Loránd University (ELTE). The titles

Honorary doctor and professor of Eötvös Loránd University,

and

Honorary doctor and professor of the University of Vilnius

were awarded to him.

In the last five years he has been participating in different projects, e.g.
TÁMOP, DFG, TÉT, visited several universities and wrote several papers
mainly with coauthors.

We enlarge the categories to classify his new results as follows:

1. Construction of normal numbers

Given an integer q ≥ 2, we say that an irrational number η is a q-normal
number, or simply a normal number, if the q-ary expansion of η is such that any
preassigned sequence, of length k ≥ 1, taken within this expansion, occurs with
the expected limiting frequency, namely 1/qk. The problem of determining if a
given number is normal is unresolved. For instance, fundamental constants such
as π, e,

√
2, log 2 as well as the famous Apéry constant ζ(3), have not yet been

proven to be normal numbers, although numerical evidence tends to indicate
that they are. This is even more astounding if we recall that in 1909, Borel
[E. Borel, Les probabilités dénombrables et leurs applications arithmétiques,
Rend. Circ. Mat. Palermo 27 (1909), 247–271] has shown that almost all
numbers are normal in every base.
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In their 1995 paper, J.M. De Koninck and I. Kátai [230] introduced the
notion of a disjoint classification of primes, that is a collection of q+1 disjoint
sets of primes R, ℘0, ℘1, . . . , ℘q−1, whose union is ℘, the set of all primes, where
R is a finite set (perhaps empty) and where the other q sets are of positive

densities δ0, δ1, . . . , δq−1 (with clearly
∑q−1

i=0 δi = 1); setting Aq = {0, 1, . . . , q−
−1}, letting an expression of the form i1 . . . ik, where each ij ∈ Aq, be a word of
length k, writing A∗q as the set of all words regardless of their length, and using
the function H : N → A∗q defined by H(n) = H(pa1

1 · · · par
r ) = �1 . . . �r, where

each �j is such that pj ∈ ℘�j , they investigated the size of the set of positive
integers n ≤ x for which H(n) = α for a given word α ∈ Ak

q . By this approach,
in [354], they could show the following result:

Let q ≥ 2 be an integer and let R, ℘0, ℘1, . . . , ℘q−1 be a disjoint classification
of primes. Assume that, for a certain constant c1 ≥ 5,

(1) π([u, u+ v] ∩ ℘i) =
1

q
π([u, u+ v]) +O

(
u

logc1 u

)
uniformly for 2 ≤ v ≤ u, i = 0, 1, . . . , q − 1, as u → ∞. Furthermore, let
H : ℘ → A∗q be defined by

(2) H(p) =

{
Λ if p ∈ R,
� if p ∈ ℘� for some � ∈ Aq

(here Λ stands for the empty word) and further let T : N → A∗q be defined by
T (1) = Λ and for n ≥ 2 by

(3) T (n) = T (pa1
1 · · · par

r ) = H(p1) . . . H(pr).

Then, the number 0.T (1)T (2)T (3)T (4) . . . is a q-normal number.

In a subsequent paper [380], they weakened condition (1) to allow for the
construction of even larger families of normal numbers. For instance, they
showed the following result:

Assume that R, ℘0, . . . , ℘q−1 are disjoint sets of primes, whose union is ℘,
and assume that there exists a positive number δ < 1 and a real number c1 ≥ 5
such that

π([u, u+ v] ∩ ℘i) = δπ([u, u+ v]) +O

(
u

logc1 u

)
holds uniformly for 2 ≤ v ≤ u, i = 0, 1, . . . , q − 1, and similarly

π([u, u+ v] ∩ R) = (1− qδ)π([u, u+ v]) +O

(
u

logc1 u

)
.
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Let H and T be defined as in (2) and (3). Then, the numbers 0.T (1)T (2)T (3) . . .
and 0.T (1)T (2)T (4)T (6)T (10) . . . T (p − 1) . . . (where p runs through the se-
quence of primes) are q-normal numbers.

This type of result motivated Igor Shparlinski to ask if the number

0.P (2)P (3)P (4) . . . ,

where P (n) stands for the largest prime factor of n, is a normal number in base
10. He further asked if the number 0.P (2+ 1)P (3+ 1)P (5+ 1)P (7+ 1)P (11+
+1) . . . P (p+ 1) . . . is also a normal number in base 10.

De Koninck and Kátai [350] answered in the affirmative to both these ques-
tions and proved even more. To understand their breakthrough, we must first
introduce some notation. Let q ≥ 2 be a fixed integer and let Aq be as above.
Given a positive integer n, write its q-ary expansion as

n = ε0(n) + ε1(n)q + · · · + εt(n)q
t,

where εi(n) ∈ Aq for 0 ≤ i ≤ t and εt(n) �= 0. To this representation, associate
the word

n = ε0(n)ε1(n) . . . εt(n) ∈ At+1
q .

Let F ∈ Z[x] be a polynomial with positive leading coefficient and of positive
degree r. Then the numbers

0.F (P (2))F (P (3))F (P (4)) . . .

and
0.F (P (2 + 1))F (P (3 + 1)) . . . F (P (p+ 1)) . . .

are normal numbers in base q.

In [363], they used polynomials to further construct various families of nor-
mal numbers. Let Q1, Q2, . . . , Qh ∈ Z[x] be distinct irreducible primitive monic
polynomials each of degree no larger than 3. For each ν = 0, 1, 2, . . . , q − 1,

let c
(ν)
1 , c

(ν)
2 , . . . , c

(ν)
h be distinct integers, Fν(x) =

∏h
j=1 Qj(x + c

(ν)
j ), with

Fν(0) �= 0 for each ν. Moreover, assume that the integers c
(ν)
i are chosen in

such a way that Fν(x) are squarefree polynomials and gcd(Fν(x), Fμ(x)) = 1
when ν �= μ. Let ℘0 be the finite set of prime numbers p for which there exist
μ �= ν and m ∈ N such that p|gcd(Fν(m), Fμ(m)). Now let

U(n) = F0(n)F1(n) · · ·FD−1(n) = ϑ pa1
1 pa2

2 · · · par
r ,

where ϑ ∈ N (℘0) and p1 < p2 < · · · < pr are primes not belonging to N (℘0),
while the ai’s are positive integers. Then, let hn be defined on the prime
divisors pa of U(n) by

hn(p
a) = hn(p) =

{
Λ if p|ϑ,
� if p|F�(n), p �∈ ℘0
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and further define αn := hn(p
a1
1 )hn(p

a2
2 ) . . . hn(p

ar
r ), where on the right hand

side we omit Λ, the empty word, when hn(p
ai
i ) = Λ for some i. They considered

the real number η whose q-ary expansion is given by η = 0.α1α2α3 . . . and
showed that η is a q-normal number. Moreover, assuming that deg(Qj) ≤ 2
for j = 1, 2, . . . , h, they proved that the number 0.α2α3α5 . . . αp . . . (where the
subscripts run over primes p) is a normal number.

Recently, in the paper [376] dedicated to Karl-Heinz Indlekofer on the oc-
casion of his 70th anniversary, they used the large prime divisors of integers
to construct other families of normal numbers. Indeed, let η(x) be a slowly

varying function, that is a function satisfying lim
x→∞

η(cx)

η(x)
= 1 for any fixed con-

stant c > 0, and assume also that η(x) does not tend to infinity too fast in

the sense that it satisfies the additional condition
log η(x)

log x
→ 0 as x → ∞.

Then, let Q(n) be the smallest prime divisor of n which is larger than η(n),
while setting Q(n) = 1 if P (n) > η(n). Then, they showed that the real number
0.Q(1)Q(2)Q(3) . . . is a q-normal number. With various similar constructions,
they created large families of normal numbers in any given base q ≥ 2. For
instance, consider the product function F (n) = n(n+1) · · · (n+q−1). Observe
that if for some positive integer n, we have p = Q(F (n)) > q, then p|n+ � only
for one � ∈ {0, 1, . . . , q − 1}, implying that � is uniquely determined for all
positive integers n such that Q(F (n)) > q. Thus we may define the function

τ(n) =

{
� if p = Q(F (n)) > q and p|n+ �,
Λ otherwise.

Using this notation, they proved that the number 0.τ(q+1)τ(q+2)τ(q+3) . . .
is a q-normal number.

Recently, in [383], De Koninck and Kátai used a totally different approach
to create normal numbers. Their idea is based on the behaviour of the size
of the gap between the prime factors of integers. It goes as follows. Let
q ≥ 2 be a fixed integer. Given a positive integer n = pe11 · · · pek+1

k+1 with primes
p1 < · · · < pk+1 and positive exponents e1, . . . , ek+1, consider the numbers
c1(n), . . . , ck(n) defined by

cj(n) :=

⌊
q log pj
log pj+1

⌋
∈ Aq (j = 1, . . . , k)

and introduce the arithmetic function

H(n) =

{
c1(n) . . . ck(n) if ω(n) ≥ 2,
Λ if ω(n) ≤ 1,

where ω(n) stands for the number of distinct prime factors of the integer n ≥ 2,
with ω(1) = 0. They showed that the number 0.H(1)H(2)H(3) . . . is a q-normal
number.
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Reduced residue classes can also yield a way of producing normal numbers.
Indeed, letting ϕ stand for the Euler function, set Bϕ(q) = {�1, . . . , �ϕ(q)} as
the set of reduced residues modulo q. Let εn be a real function which tends
monotonically to 0 as n → ∞ but in such a way that (log log n)εn → ∞ as
n → ∞. Letting p(n) stand for the smallest prime factor of n, consider the set

N (εn) := {n ∈ N : p(n) > nεn} = {n1, n2, . . .}.

De Koninck and Kátai proved in [384] that the infinite word resq(n1)resq(n2) . . . ,
where resq(n) = � if n ≡ � (mod q), contains every finite word whose digits be-
long to Bϕ(q) infinitely often.

Is it possible to generate normal numbers using the k-th largest prime factor
of an integer? It is! Indeed, given an integer k ≥ 1, for each integer n ≥ 2,
let Pk(n) stand for the k-th largest prime factor of n if ω(n) ≥ k, while setting
Pk(n) = 1 if ω(n) ≤ k − 1. Thus, if n = pα1

1 pα2
2 · · · pαs

s stands for the prime
factorization of n, where p1 < p2 < · · · < ps, then

P1(n) = P (n) = ps, P2(n) = ps−1, P3(n) = ps−2, . . .

Let F ∈ Z[x] be a polynomial of positive degree satisfying F (x) > 0 for
x > 0. Also, let T ∈ Z[x] be such that T (x) → ∞ as x → ∞ and assume that
�0 = degT . Fix an integer k ≥ �0. Then, De Koninck and Kátai showed in
[385] that the numbers

0.F (Pk(T (2)))F (Pk(T (3))) . . . F (Pk(T (n))) . . .

and (assuming that k ≥ �0 + 1)

0.F (Pk(T (2 + 1)))F (Pk(T (3 + 1))) . . . F (Pk(T (p+ 1))) . . .

are q-normal numbers.

2. Exponential sums and uniform distribution mod 1

It is known, since Vinogradov, that, given any irrational number α, the
sequence αpn, n = 1, 2, . . ., where pn stands for the n-th prime, is uniformly
distributed in [0, 1]. In 2005, Banks, Harman and Shparlinski proved that for
every irrational number α, the sequence αP (n), n = 1, 2, . . ., where P (n) stands
for the largest prime factor of n, is uniformly distributed mod 1. They did so by
establishing that limx→∞ 1

x

∑
n≤x e(αP (n)) = 0, where e(z) := exp{2πiz}. In

[347], De Koninck and Kátai generalized this result by proving that, given any
complex valued multiplicative function f such that |f(n)| = 1 for all positive
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integers n, then limx→∞ 1
x

∑
n≤x f(n)e(αP (n)) = 0. They also showed that

this general result further holds if one replaces e(αP (n)) by T (P (n)), where T
is any function defined on primes satisfying |T (p)| = 1 for all primes p and such
that

∑
p≤x T (p) = o(π(x)), where π(x) stands for the number of primes ≤ x.

They also proved that if f is a complex-valued multiplicative function satisfying

|f(n)| = 1 for all positive integers n and if the series
∑
p

1 − 

(
f(p)p−it

)
p

converges for some t ∈ R, then, given any irrational number α,

lim
x→∞

1

x

∑
n≤x

f(n) e(αP (n − 1)) = 0.

Now, let Q(n) = αkn
k + αk−1n

k−1 + · · · + α1n be a polynomial with real
coefficients and such that at least one of the coefficients αk, . . . , α1 is an irra-
tional number. Let f be a complex-valued multiplicative function such that
|f(n)| ≤ 1 for all positive integers n. Let F1(x), . . . , Fs(x) be polynomials with
integer coefficients which take only positive values at positive arguments. For
j = 1, . . . , s, let ρj(d) stand for the number of solutions of Fj(n) ≡ 0 (mod d).
Moreover, let ρ(d1, . . . , ds) be the number of solutions of the congruence sys-
tem Fj(n) ≡ 0 (mod dj), j = 1, . . . , s. Further let g1, . . . , gs be complex valued
multiplicative functions each satisfying the following four conditions:

(i) |gj(n)| = 1 for all n ∈ N;

(ii) gj is strongly multiplicative;

(iii) lim
p→∞ gj(p) = 1;

(iv)
∑
p


(1 − gj(p))ρj(p)

p
< ∞.

Consider the arithmetic function �(n) := g1(F1(n)) · · · gs(Fs(n)) and define

Sf (x) :=
∑
n≤x

f(n)�(n)e(Q(n)). In [362], De Koninck and Kátai showed that

sup
f∈M1

|Sf (x)|
x

→ 0 as x → ∞

and ∣∣∣∣∣∣ 1

li(x)

∑
q≤x

�(q)e(Q(q))

∣∣∣∣∣∣ → 0 as x → ∞.

De Koninck and Kátai then further studied exponential sums using their
notion of disjoint classification of primes, in the following manner. Let β be an
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arbitrary irrational number. Assume that

℘ = ℘0 ∪ ℘1 . . . ∪ ℘q−1 ∪ R,

where ℘0, ℘1, . . . , ℘q−1,R are disjoint subsets of primes, with R containing at
most finitely many elements (and in fact maybe none). Let π([a, b]) be the
number of primes belonging to the interval [a, b]. Let π(I|℘i) = #{p ∈ ℘i ∩ I}.
In what follows assume that

π([u, u+ v]|℘i) = δiπ([u, u+ v]) +O

(
u

(log u)c1

)
holds uniformly for 2 ≤ v ≤ u, i = 0, . . . , q − 1, where c1 is a positive constant
and δ0, . . . , δq−1 are positive constants such that

∑q−1
i=0 δi = 1. Given an integer

t ≥ 1, an expression of the form i1i2 . . . it, where each ij is one of the numbers
0, 1, . . . , q−1, is called a word of length t. Let At be the set of all words of length

t. Define A0 to be the set containing the empty word Λ and set A∗ :=
∞⋃
i=0

Ai.

Define the arithmetic functions H, u and v as follows. First let H(1) = Λ and
then, for an arbitrary prime number p and positive integer a, define

H(pa) =

{
Λ if p ∈ R,
j if p ∈ ℘j .

Then, for integers n = bpa1
1 · · · par

r , where all the prime factors of b belong to
R and where p1 < · · · < pr are primes and each ai ∈ N, let

H(n) := H(pa1
1 ) . . . H(par

r ),

u(n) := H(pa1
1 ) +H(pa2

2 )q + · · · +H(par
r )qr−1,

v(n) := H(par
r ) +H(p

ar−1

r−1 )q + · · · +H(pa1
1 )qr−1.

With this setup, in [379], De Koninck and Kátai showed various results con-
cerning exponential sums and in particular that if

S1(x) =
∑
n≤x

e(u(n)β) and S2(x) =
∑
n≤x

e(v(n)β),

then, for j = 1, 2,

lim
x→∞

Sj(x)

x
= 0.

In a paper dedicated to Jean-Paul Allouche on the occasion of his 60th

birthday, De Koninck and Kátai [386] proved that, if Pk(n) stands for the k-th
largest prime factor of n ≥ 2 and if α is an irrational number, while f is a
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multiplicative function such that |f(n)| = 1 for all positive integers n, then∑
n≤x f(n) exp{2πiαPk(n)} = o(x) as x → ∞.

In [388], they obtained various results involving exponential sums and shifted
primes. In particular they proved the following result:

Let f be a complex-valued multiplicative function with |f(n)| = 1 for
n = 1, 2, 3, . . ., and let T be a function defined on prime numbers and sat-

isfying |T (p)| = 1 for each prime p and such that lim
x→∞

1

π(x)

∑
p≤x

p≡� (mod d)

T (p) = 0

for every fixed integers d > 0 and � �= 0 satisfying (�, d) = 1. Then, assuming

that the series
∑
p

1 − 
(f(p)p−iτ )

p
is convergent, we have that

lim
x→∞

1

π(x)

∑
p≤x

f(p+ 1)T (p) = 0.

3. Arithmetic functions defined on special sets

Let f : N → Z \ {0} be a multiplicative function such that f(pa) depends
only on a for all prime powers pa. Let Q1, Q2, . . . , Qh be distinct irreducible
primitive monic polynomials each of degree no larger than 3. For each ν =

= 1, 2, . . . , t, let c
(ν)
1 , c

(ν)
2 , . . . , c

(ν)
h be distinct integers, Fν(x) =

∏h
j=1 Qj(x +

+c
(ν)
j ) (ν = 1, 2, . . . , t), with Fν(0) �= 0 for each ν. Let us assume that

(Fν(x), Fμ(x)) = 1 if ν �= μ. In the paper [358] dedicated to János Galam-
bos on his 70th birthday, De Koninck, Doyon and Kátai showed that there
exists a non negative constant d0 such that

lim
x→∞

1

x
#{n ≤ x : f(F�(n)) divides f(F�+1(n)) for � = 1, 2, . . . , t − 1} = d0.

Interesting arithmetic functions to which one can apply this result are τ(n)
(the number of divisors of n), τk(n) (the number of ways one can write n as the
product of k positive integers taking into account the order in which they are
written), β(n) (the product of the exponents in the prime factorization of n)
and a(n) (the number of finite non isomorphic abelian groups with n elements).

In the paper [368] dedicated to Dr. Bui Minh Phong on his 60th anniversary,
De Koninck and Kátai established short interval estimates for a given strongly
additive function satisfying certain conditions and restricted to the set of shifted
primes and they also considered similar sums, but running on sets of integers
m+1, where each integer m has a fixed number of prime factors. For instance,
they proved the following:
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Let ε > 0 be a fixed small number. Let Ix,y = [x, x+ y], where x
7
12+ε ≤ y ≤

≤ x, and let π(Ix,y) :=
∑

p∈Ix,y

1. If g is a a strongly multiplicative function such

that |g(p)| ≤ 1 and g(p) → 1 as p → ∞ and if the infinite sum
∑
p

1 − g(p)

p

converges, then,

max
x7/12+ε≤y≤x

∣∣∣∣∣∣ 1

π(Ix,y)

∑
p∈Ix,y

g(p+ 1) − M(g)

∣∣∣∣∣∣ → 0 as x → ∞,

where M(g) :=
∏
p

(
1 +

g(p) − 1

p − 1

)
.

Another important typical result proved in this paper can be stated as
follows:

Let f be a strongly additive function such that f(p) �= 0 for all primes p

and such that f(p) → 0 as p → ∞. Let A(x) =
∑
p≤x

f(p)

p − 1
and assume that

∑
p

f2(p)

p
< ∞. Moreover, let

ϕ(τ) :=
∏
p

(
1 +

eiτf(p) − 1

p − 1

)
e−iτf(p)/(p−1)

and let F (u) be the distribution function whose characteristic function is ϕ(τ).
Let also

F
(k)
Ix,y

(u) :=
1

Πk(Ix,y)
#{m ∈ Ix,y ∩ ℘k : f(m+ 1) − A(x) < u},

where ℘k = {n ∈ N : ω(n) = k} and Πk(Ix,y) = #{n ∈ Ix,y : ω(n) = k}. Then,

lim
x→∞ sup

k≤kx

max
x7/12+ε≤y≤x

max
u∈R

∣∣∣F (k)
Ix,y

(u) − F (u)
∣∣∣ = 0.

In [378], De Koninck and Kátai studied the distribution of the values of
certain additive functions restricted to those integers with a fixed number of
prime divisors. Indeed, given an additive function f for which there exists a
real number C > 0 such that |f(pa)| < C for all prime powers pa, let

Ax =
∑
p≤x

f(p)

p
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and let f∗ be the additive function (which depends on x) defined on prime

powers by f∗(pa) = f(pa) − a

x2
Ax, where x2 = log log x. Further let

Bx =

√√√√∑
p≤x

(f∗(p))2

p

and assume that Bx → ∞. Then, for each integer k ≥ 1, let

ξk,x :=
k

x2
, ℘k := {n ∈ N : ω(n) = k}, πk(x) := #{n ≤ x : n ∈ ℘k}.

Finally, let δ < 1
2 be a fixed positive number. Then, they proved that

lim
x→∞ max

k
ξk,x∈[δ,2−δ]

max
y∈R

∣∣∣∣∣ 1

πk(x)
#

{
n ≤ x : n ∈ ℘k,

f∗(n)
Bx

√
ξk,x

< y

}
− Φ(y)

∣∣∣∣∣ = 0,

where Φ(y) :=
1√
2π

∫ y

−∞
e−u2/2 du.

In the paper [381] dedicated to Professor Jonas Kubilius on the occasion
of his 90th anniversary, De Koninck and Kátai studied the normality of the
distribution of consecutive digits in the q-ary expansion of integers belonging
to particular subsequences of the positive integers.

In [382], they studied the distribution of arithmetic functions restricted to
particular subsets of integers. Let Q1, . . . , Qt ∈ R[x] be polynomials with no
constant term for which each linear combination m1Q1(x)+· · ·+mtQt(x), with
m1, . . . ,mt ∈ Z and not all 0, always has an irrational coefficient. Let I1, . . . , It
be sets included in the interval [0, 1), each of which being a union of finitely
many subintervals of [0, 1). Furthermore, let T be the set of those positive
integers n for which {Q1(n)} ∈ I1, . . . , {Qt(n)} ∈ It holds simultaneously,
where {y} stands for the fractional part of y. Let t1, t2, . . . be a sequence of
complex numbers uniformly summable and set T (x) =

∑
n≤x tn and T (x|T ) =

=
∑

n≤x
n∈T

tn. They proved that, as x → ∞, T (x)/x ∼ T (x|T )/(λ(I1) · · ·λ(It)x),
where λ(I) stands for the Lebesgue measure of the set I.

Finally, in [387], they studied the distribution modulo 1 of sequences in-
volving the largest prime factor function P (n). More precisely, they proved the
following result:

Let g : [1,∞) → R be a differentiable function and let f : [0,∞) → R be
defined by f(u) = g(log u). Assume that the function vg′(v) is increasing and
tends to infinity. For x ≥ 2, let R(x) := π(x) − li(x) be the error term in the
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Prime Number Theorem and further assume that, for any given real number
d > 0,

lim
y→∞

∫ y1+d

y

|R(u)|
u

|f ′(u)| du = 0.

Then the sequence (f(P (n)))n≥1 is uniformly distributed modulo 1.

They also showed that, given an arbitrary real number τ �= 0 and an ar-
bitrary integer k ≥ 1, the sequence (τ logPk(n))n≥2 is uniformly distributed
modulo 1.

4. The Theorem of H. Daboussi

According to a 1974 result of Daboussi and Delange, if we denote by M1 the
set of all complex-valued multiplicative functions whose modulus is bounded

by 1, then for every irrational number α, lim
x→∞

1

x

∑
n≤x

f(n)e(nα) = 0, uniformly

for f ∈ M1. Their proof is based on the large sieve inequality. In [330], Kátai
used a Turán-Kubilius type inequality to prove a more general result, namely
the following:

Let t be an arbitrary real-valued arithmetic function and assume that for

every positive constant K, there exist primes p1, . . . , pR such that

R∑
j=1

1

pj
> K

and such that

lim
N→∞

1

N

N∑
n=1

e(t(pin) − t(pjn)) = 0

for any distinct numbers i, j ∈ {1, . . . , R}. Then there exists a sequence of
positive real numbers (ρN ) tending to 0 as N → ∞ and such that

sup
f∈M1

∣∣∣∣∣∣ 1N
∑
n≤N

f(n)e(t(n))

∣∣∣∣∣∣ ≤ ρN .

Let G∗ be the multiplicative group of Gaussian integers, W be the union of
finitely many convex domains in C, and set

E = {z ∈ C : 0 ≤ 
(z) < 1, 0 ≤ �(z) < 1}.

In [344], continuing the work done in a 2003 paper by Bassily and Kátai, De
Koninck and Kátai explored the asymptotic distribution mod E of functions
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defined on G∗. For instance, they showed that, if P (z) is a polynomial of degree
k ≥ 1 with leading coefficient a, if F : G∗ → C is an arbitrary additive function
and if we consider the distribution function

Vx(u, v) :=
1

N(x)
#{α ∈ xW ∩G∗ : 
(P (α)+F (α)) < u, �(P (α)+F (α)) < v},

where u+ iv ∈ E and N(x) := #{α ∈ xW ∩ G∗}, then

Vx(u, v) = uv + o(1) as x → ∞

uniformly for 0 ≤ u, v ≤ 1 provided that the numbers 1,
(a),�(a) are ratio-
nally independent.

In [348], Kátai considered an analogue of Daboussi’s theorem on some semi-
groups of integers generated by particular sets of primes. More precisely, let
1, β1, . . . , βt be real numbers which are rationally independent; let I1, I2, . . . ,
It ⊂ [0, 1) be sets, each of which is a finite union of intervals; let ℘∗ be the set of
prime numbers p for which {βjp} ∈ Ij for j = 1, . . . , t (here {y} stands for the
fractional part of y); finally, let B∗ be the semigroup generated by ℘∗. Then, in
this context, Kátai proved that if α is an irrational number satisfying certain
conditions, then, given an arbitrary additive function F , the values F (n)+αn,
as n runs through B∗, are uniformly distributed.

In [353], Bassily and Kátai further expanded Daboussi’s theorem over Gaus-
sian integers. But first observe that in a 2003 paper, Bassily, De Koninck
and Kátai had established that, if W stands for the union of finitely many
convex bounded domains in C and if A stands for the set of those additive
characters χ such that χ(1) = e2πiA and χ(i) = e2πiB , where at least one of
A and B is irrational, and if χ ∈ A, then for every multiplicative function

g : Z[i] \ {0} → C such that |g(α)| ≤ 1, lim
x→∞

1

|xW |
∑

β∈xW
g(β)χ(β) = 0, where

the convergence is uniform in g. Recently, in a joint paper, Bassily and Kátai
[353] proved analogous results for the summation domain β ∈ xW ∩ J , where
B = {β ∈ Z[i] \ {0} : {γjβ} ∈ S, j = 1, . . . , k}, where γj are complex numbers
satisfying certain conditions (here the fractional part of a complex number z is
{z} = {
(z)} + i{�(z)}) and S is the union of domains whose boundaries are
given by rectifiable continuous curves.

5. Distribution of q-additive functions

Recall the notion of q-additive and q-multiplicative functions. Let q ≥ 2 be
an integer and let Aq = {0, 1, . . . , q − 1}. Given a nonnegative integer n, write
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its q-ary expansion as n = ε0(n) + ε1(n)q + · · ·+ εt(n), where each εi(n) ∈ Aq

and εt(n) �= 0. A function f defined on the nonnegative integers is called a q-
additive (resp. multiplicative) function if it satisfies f(0) = 0 (resp. f(0) = 1)
and f(n) =

∑∞
i=0 f(εj(n)q

j) (resp. f(n) =
∏∞

i=0 f(εj(n)q
j)) for all integers

n ≥ 0.

In [323], Kátai and Subbarao obtained results on the distribution of q-
additive functions on some subsets of integers. Given a q-additive function f ,
consider the corresponding function

F (y) = lim
N→∞

1

qN
#{n < qN : f(n) < y}.

It is a consequence of the 3-series theorem of Kolmogorov that for any q-
additive function f , the corresponding function F exists and it is a distribution

function if and only if the series

∞∑
j=0

q−1∑
b=1

f(bqj) and

∞∑
j=0

q−1∑
b=1

f2(bqj) are both

convergent. In [323] investigate the distribution of q-additive functions over
the set of integers having a fixed number of prime factors.

In a joint paper with N. L. Bassily [333], the following analogue of the
theorem of H. Daboussi is proved:

Let q ≥ 2, q ∈ N, t : N0 → R. Suppose that for all ν ∈ N and 0 ≤ a1,
a2 < qν , a1 �= a2, the sequence

ηa1,a2(b) := t(α1 + bqν) − t(α2 + bqν)

satisfies the relation

1

x

∑
b<x

e(ηa1,a2(b)) → 0 (x → ∞).

Then

sup
g∈Mq

| 1
x

∑
n≤x

g(n)e(t(n))| → 0 (x → ∞),

where Mq is the set of q-multiplicative function g such that |g(n)| ≤ 1 (n ∈ N).

In [360], Kátai continued his work done with M.V. Subbarao on the distri-
bution of the values of q-additive functions. Again, using the representation
n = ε0(n) + ε1(n)q + · · · + εt(n)q

t, let α(n) := ε0(n) + · · · + εt(n) and, for
each h ∈ Aq, set βh(n) := #{j ≥ 0 : εj(n) = h}. Kátai then exam-
ines the asymptotic mean values of a complex-valued q-multiplicative func-
tion g satisfying |g(n)| = 1 for all integers n ≥ 0 and the distribution of the
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values of a real-valued q-additive function on subsets SN (r) := {0 ≤ n <
< qN : β0(n) = r0, . . . , βq−1(n) = rq−1}, where r = (r0, . . . , rq−1) ∈ Nq

0, or
{0 ≤ n < qN : α(n) = k}, as N → ∞.

In papers [369] and [370] written jointly with L. Germán, Kátai studied the
distribution of q-additive functions on multiplicative semigroups. More pre-
cisely, in [369], they investigated the existence of limit distribution of q-additive
functions over the set of integers characterized by the sum of its digits, while in
[370], they examined polynomial sequences of semigroups whose subsets contain
integers with a given number of prime divisors.

6. On random arithmetical functions. Renewal theorems

In a series of joint papers ([341], [359] and [374]) written with K.-H. In-
dlekofer and O. I. Klesov, Kátai studied random arithmetic functions.

More precisely, let ξp (p ∈ P = set of primes) be independent random
variables distributed uniformly on AQ = {ξ|ξQ = 1}. Let f be a completely
multiplicative function defined on P by f(p) = ξp. They investigated the
density of those n for which f(n+ j) = κj (j = 0, . . . , t), κj ∈ AQ.

In [374], they examine the mean values of random multiplicative functions
over polynomial values and the mean values of random multiplicative functions
defined on the set of gaussian integers.

In [359], they obtain some renewal theorems with weighted renewal func-
tions.

7. Arithmetical functions satisfying some relations

Kátai conjectured that if f0, f1, . . . , fk are real-valued completely additive
functions and

f0(n) + f1(n+ 1) + · · · + fk(n+ k) ≡ 0 (mod 1)

for all n ∈ N, then

f0(n) ≡ f1(n) ≡ · · · ≡ fk(n) ≡ 0 (mod 1)

are satisfied for all n ∈ N. This conjecture has been proved for k = 2, 3 by
I. Kátai [142, 150]. Recently, in a joint paper [361] with K. Chakraborty and
B. M. Phong, the case k = 4 is proved by assuming the fulfilment of relation

f0(n) + f1(n+ 1) + · · · + f4(n+ 4) ≡ 0 (mod 1)

for every n ∈ Z.
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In another joint paper [372] with K. Chakraborty and B. M. Phong, the
following result is proved:

Assume that G is an Abelian group with identity element 0 and f0, f1, f2
are G-valued completely additive functions. We have

(a) If f0(n) + f1(2n+ 1) + f2(n+ 2) = 0 (∀n ∈ N), then

f0(n) = f1(2n+ 1) = f2(n) = 0 (∀n ∈ N).

(b) If f0(n) + f1(2n − 1) + f2(n+ 2) = 0 (∀n ∈ N), then

f0(n) = f1(2n − 1) = f2(n) = 0 (∀n ∈ N).

In a joint paper of K. Chakraborty and B. M. Phong [373] the values of
arithmetic functions in short intervals are investigated. The following result is
proved:

For positive integer d and c > 0, let Jc(n) = [n, n + c
√
n] and Kd = {n ∈

∈ N | (n, d) = 1}. Let 1 < N1 < N2 < · · · be an infinite sequence of integers
and assume that �1, �2, . . . are integers coprime to d. Assume that f and g are
completely additive functions defined on Kd such that f(n) = g(n) if n ≡ �j
(mod d), n ∈ Jc(Nj) (j = 1, 2, . . .). If c > 2d, then f(n) = g(n) identically on
Kd.

Dear Kátai Imre, we wish you a happy 75-th birthday and we also wish you
and your family very good health and spirits.






