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Abstract. Two Beurling generalized number systems are given such that
the primes of both systems up to any assigned large number are exactly
all the rational primes not exceeding the number and both consist of only
rational numbers of the form n+/2n. The counting functions of g-integers
of both satisfy N(x) = x+ x1/2O(exp{c(log x)2/3}). The first realizes the
RH and the second realizes exactly the classical zero-free region of the
Riemann zeta function and the de la Vallée Poussin error term.

1. Introduction

Let P = {pi} be an unbounded sequence of real numbers satisfying 1 < p1 ≤
≤ p2 ≤ · · · . We call P a sequence of Beurling generalized primes (henceforth,
g-primes) and the free multiplicative semigroup N generated by P a system
of Beurling generalized integers (g-integers). Note that it is not assumed that
either P or N lies in the positive integers (whole numbers) N nor that the
unique factorization is in force in N .
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Better PNT error terms than (1.2) for whole numbers are known these days,
with any exponent less than 3/5 in place of 1/2. All these improvements are
made in using the well-spacing of whole numbers, i.e., the additive structure of
positive integers.

Beurling’s result can be viewed as an abstraction of an earlier proof by
E. Landau [4] of the prime ideal theorem for algebraic number fields; but with
the error term as (1.2). Landau’s argument analyzes the analytic connection
between the counting functions of integral ideals and prime ideals according to
the norms of ideals. The norm function on algebraic number fields is multi-
plicative but not additive. From this view-point, it has long been conjectured
[1] that (1.2) may be optimal for g-numbers.

In previous works [3] and [6], examples are given in which the classical
zero-free region (1.1) and the PNT error term (1.2) are exactly realized for
Beurling g-number systems. Also, in the latter, examples are given in which
the Riemann Hypothesis are realized for Beurling g-number systems.

It is then of interest to view how close these examples could be to the
natural numbers N. We shall show that, on the basis of g-primes PR and PB

given in [6], g-primes with the same properties and more features imitating the
primes in N (see (i) and (ii) below) can be constructed further.

Theorem 1. Given any whole number nR, there is g-primes PR such that

(i) PR consists of numbers in the sequence

(1.5)


vk = n+



2n
for k = 2n + , n = 0, 1, 2, · · · , 0 ≤  < 2n



and PR ∩ [1, nR] consists exactly of primes in N not exceeding nR;

(ii) the counting function NR(x) of the resulting g-integers satisfies

NR(x) = x+O(x1/2 exp{c(log x)2/3});

(iii) the associated zeta function ζR(s) is analytic for σ > 1/2 except a
simple pole at s = 1 with residue 1;

(iv) the function ζR(s) has no zeros on the half plane σ > 1/2 (the Riemann
Hypothesis);

(v) the g-prime counting function πR(x) satisfies

πR(x) = li(x) +O(x1/2).
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Let

π(x) = πP(x) := #{P ∩ [1, x]} and N(x) = NP(x) := #{N ∩ [1, x]}

be the counting functions of g-primes in P and g-integers in N , respectively.
The general question is how hypotheses on one of N(x) and π(x) imply con-
clusions on the another. Also, let

ζ(s) = ζP(s) :=

∞

1−

x−s dN(x) = exp




∞

1

log (1− x−s)−1 dπ(x)


 ,

σ := s > 1

be the zeta function associated with the g-integer system N , which is the
analytic term combining N(x) and π(x).

A simple example of g-primes is the sequence P of all odd primes in N. Here
N is just the sequence of odd whole numbers. Hence NP = (1/2)x+O(1) and
πP(x) is the counting function of odd primes. The omission of the only even
prime 2 cuts the density of whole numbers in half.

In case N = N, we have the classical counting functions of rational primes
and whole numbers and the Riemann zeta function. In 1899 de la Vallée Poussin
[5] proved that

(1.1) ζ(s) = 0 for σ > 1− c/ log (|t|+ 4)

with some constant c > 0, where s = σ + it. From this so-called “classical”
zero-free region, he could deduce the prime number theorem (PNT) with an
error term as

(1.2) π(x) = li(x) +O(x exp{−c(log x)1/2}),

where c is also a positive constant (but need not be the same c in (1.1)). Later
it was proved that if

ζ(s) = 0, for σ > 1/2 (the Riemann Hypothesis)

then
π(x) = li(x) +O(x1/2 log x).

The determination of the truth of RH is one of most important problems in
today’s mathematics.

In general case, in 1937, Beurling [2] showed that if

(1.3) N(x) = Ax+O(x log−γ x)

with constants A > 0 and γ > 3/2 then

(1.4) π(x) ∼ x/ log x,

i.e., the analogue of the PNT holds for this g-number system.
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The desired estimates of (ii)1 and (iii)1 can be shown by using the inclusion-
exclusion principle since only a finite number of g-primes are involved.

If κ1 = 1 then the construction is done. Otherwise, if κ1 > 1, we may move
a finite number of g-primes exceeding nR from P1 so that the counting function
N2(x) of the g-integers of the resulting system satisfies

N2(x) = κ2x+O(x1/2 exp{c(log x)2/3})

with κ2 < 1 since 
pj∈P1

pj>nR

(1− p−1
j ) = 0.

Hence we may further assume that

|N2(x)− κ2x| ≤ C2x
1/2 exp{c(log x)2/3}

with

1− A−1 < κ2 < 1,

where A is an integer satisfying A > nR. Otherwise,

0 < κ2 ≤ 1− (nR + 1)−1.

Then there is a number m ∈ N satisfying m ≥ nR + 1 such that

1− 1

m+ 1
< κ2

m
n=nR+1

(1− n−1)−1 ≤ 1.

Then new g-primes nR+1, · · · ,m are added to P2. If the right-hand side is an
equality then the construction is done. Otherwise,

1− 1

m+ 1
< κ3 := κ2

m
n=nR+1

(1− n−1)−1 < 1

and the counting function N3(x) of the new system P3 satisfies

|N3(x)− κ3x| ≤ C3x
1/2 exp{c(log x)2/3}

with C3 = C2

m
n=nR+1(1− n−1/2)−1.

To complete the construction, we appeal to the following lemma and leave
its proof to the next section.
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Theorem 2. Given any whole number nB, there is g-primes PB such that
the functions NB(x), πB(x) and ζB(s) have the properties (i)–(iii) of Theorem 1
and

(iv) the function ζB(s) has infinitely many zeros on the curve σ = 1 −
−1/ log |t|, |t| ≥ e2 and no zeros to its right;

(v) the Chebyshev function ψB(x) satisfies

lim sup
x→∞

ψB(x)− x

x exp{−2
√
log x}

= 2

lim inf
x→∞

ψB(x)− x

x exp{−2
√
log x}

= −2.

Remark. The g-primes PR and PB consist of rational numbers of the
form n+/2n. We are unable to construct PR or PB consisting of only positive
integers.

2. Normalization of g-primes

We shall give only the proof of Theorem 1 because Theorem 2 can be proved
in the same way. Without loss of generality, we may assume that nR > 4.

The proof is a construction procedure consisting of a series of successively
adding chosen g-primes to a system and deleting other chosen g-primes from a
system. Hence, during the procedure, P, ζ, π and N with subscripts 1, 2, 3, . . .
will denote a series of particular g-prime systems, the associated zeta functions,
the counting functions of g-primes, and the counting functions of the g-integers,
respectively.

We first insert all rational primes up to nR that are not already in PR given
in [6] and delete all g-primes up to nR that are not rational primes. In this
way the new system P1 satisfies properties (i), (iv), (v) of Theorem 1 and

(ii)1 the counting function N1(x) of the resulting g-integers satisfies

N1(x) = κ1x+O(x1/2 exp{c(log x)2/3})

with κ1 > 0;

(iii)1 the associated zeta function ζ1(s) is analytic for σ > 1/2 except a
simple pole at s = 1 with residue κ1.
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since g-integers in NR not exceeding x have no g-prime divisors exceeding wn1
.

On the other hand, choosing n1 sufficiently large so that


n>n1
w−1

n ≤ x−1/2,
we have 

n>n1

(1− w−1
n ) ≥ exp


−2


n>n1

w−1
n


≥ exp{−x−1}

and hence

x


1−


n>n1

(1− w−1
n )


≤ x(1− exp{−x−1}) ≤ 1.

Thus, we arrive at

NR(x) ≥ κ3

n1
n=1

(1− w−1
n )−1x − C3

n1
n=1

(1− w−1/2
n )−1x1/2 exp{c(log x)2/3} =

= x − x


1−


n>n1

(1− w−1
n )


−

− C3

n1
n=1

(1− w−1/2
n )−1x1/2 exp{c(log x)2/3} ≥

≥ x − C3

∞
n=1

(1− w−1/2
n )−1x1/2 exp{c(log x)2/3}.

Therefore the system PR has all expected properties and the construction is
finished.

3. Proof of Lemma 1

Let a function f be defined by

f(α) =

n≥1

(1− α−n)−1, 1 < α < ∞.

Then f(α) is continuous and strictly decreasing,

lim
α→1+

f(α) =∞, and lim
α→∞

f(α) = 1.

Hence f(α) = 1/κ has a unique solution α. Note that α > A > nR since


n

(1− α−n)−1 =
1

κ
<


1− 1

A

−1

.
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Lemma 1. Given κ satisfying

1− A−1 < κ < 1

with an integer A > nR, there is a finite or infinite sequence {wn} of wn ∈ N
such that

wn > nR,

n

(1− w−1
n ) = κ,


n

w−1/2
n < ∞,


wn≤x

1 = O(log x).

Thus we set κ = κ3 and apply Lemma 1. Without loss of generality, we
may assume that the sequence {wn} is increasing, i.e., wn ≤ wn+1. Note that
(1 − w−s

n )−1 is analytic for σ > 1/2 and has no zeros there. We enlarge P3

to contain {wn}. Then the resulting g-prime system PR consists of numbers in
{vk} of (1.5) (but may not be a subsequence of {vk}) and PR ∩ [1, nR] consists
exactly of primes in N not exceeding nR since all new added wn > nR. Also,
the associated zeta function is given by

ζR(s) = ζ3(s)

n

(1− w−s
n )−1,

which is analytic for σ > 1/2 except a simple pole at s = 1 with residue

κ3


n

(1− w−1
n )−1 = 1

and has no zeros on σ > 1/2. Moreover, the counting function πR(x) of g-
primes in PR satisfies

πR(x) = π3(x) +


wn≤x

1 = li(x) +O(x1/2).

Finally, the counting function NR(x) of g-integers satisfies

(2.1) |NR(x)− x| ≤ Cx1/2 exp{c(log x)2/3}.

with
C = C3


n

(1− w−1/2
n )−1.

Actually, if {wn} is a finite sequence then (2.1) is plainly true. Otherwise,
{wn} is infinite and hence wn → ∞. For any given x ≥ 1, on the one hand, if
wn1 > x then,

NR(x) ≤ κ3

n1
n=1

(1− w−1
n )−1x+ C3

n1
n=1

(1− w−1/2
n )−1x1/2 exp{c(log x)2/3} ≤

≤ x+ C3

∞
n=1

(1− w−1/2
n )−1x1/2 exp{c(log x)2/3}
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.
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We now recursively define a sequence, finite or infinite, of triples

{(κm, Am, Sm)}

as follows. First, let

κ1 := κ, A1 := A, and S1 := {bn}.

Then define A2 := A2
1/2 or (A1 − 1)2/2 according to A1 is even or odd so that

A2 is even. Note that A2 satisfies

1− 1

A2
< κ1


w∈S1

(1− w−1)−1 ≤ 1.

In general, if (κm, Am, Sm) and Am+1 have been defined and if

1− 1

Am+1
< κm


w∈Sm

(1− w−1)−1 = 1

then (km, Am, Sm) is the last triple of the sequence. In this case, we set {wn} =
= ∪m

j=1Sj and the lemma is proved. Otherwise,

1− 1

Am+1
< κm


w∈Sm

(1− w−1)−1 < 1

then a repeat of the same argument given above with

κ = κm+1 := κm


w∈Sm

(1− w−1)−1

and A = Am+1 yields a subset Sm+1 of N such that

1− 2

A2
m+1

< κm+1


w∈Sm+1

(1− w−1)−1 ≤ 1.

Hence (κm+1, Am+1, Sm+1) and Am+2 := A2
m+1/2 are defined. This procedure

yields a finite or infinite sequence {(κm, Am, Sm)}.
Finally let {wn} := ∪mSm. Note that

A2 > A1 > nR > 4, and A3 = A2
2/2 > A

3/2
2

and by induction

Am ≥ A
(3/2)m−2

2 , m ≥ 2.
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If α ∈ N, put wn = αn and the lemma is proved. Otherwise, α /∈ N and we set

an := αn ≤ αn ≤ αn =: bn.

Note that an
1 ≤ an ≤ bn ≤ bn1 and a1 ≥ A. Hence


n


1− 1

an

−1

> f(α) =
1

κ
>


n


1− 1

bn

−1

.

It follows that


n


1− 1

an


1− 1

bn

−1

< κ

n


1− 1

bn

−1

< 1.

Then it can be shown that

(3.1)

n


1− 1

an


1− 1

bn

−1

> 1− 2

A2
.

Actually, the left-hand side of (3.1) equals

exp





∞
n=1

an − bn
anbn

+

∞
n=1


k≥2

1

k

ak
n − bkn
ak
nbkn



 .

Note that an − bn ≥ −1. The second sum in the exponent is at least


n


k≥2

1

k

(−1)(ak−1
n + ak−2

n bn + · · ·+ anbk−2
n + bk−1

n )

ak
nbkn

>

> −

n


k≥2

1

ak
nbn

= −

n

1

anbn

1

an − 1
.

Hence we see that


n


1− 1

an


1− 1

bn

−1

≥ exp

−

n

1

anbn
−

n

1

anbn

1

an − 1


≥

≥ exp

− a1

a1 − 1


n

1

a2
n


≥

≥ exp

− a1

a1 − 1


n

1

a2n
1


=

= exp

− a1

(a1 − 1)(a2
1 − 1)


≥ exp


− 2

A2


>

> 1− 2

A2
.
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Therefore
lim

m→∞
κm


w∈Sm

(1− w−1)−1 = 1,

i.e.,

κ


w∈S1

(1− w−1)−1


w∈S2

(1− w−1)−1 · · · = 1

Moreover, from the definition of Sm, we have


w∈S1

w−1/2 +

w∈S2

w−1/2 + · · · ≤

≤ 2(A
−1/2
1 +A

−1/2
2 +A

−1/2
3 + · · · )

 A
−1/2
1 +A

−1/2
2 + (A

−1/2
2 )3/2 + (A

−1/2
2 )(3/2)

2

+ · · · ≤

≤ A
−1/2
1 +A

−1/2
2 /(1− A

−1/4
2 )

and 
w∈S1

w≤x

1 +

w∈S2

w≤x

1 +

w∈S3

w≤x

1 + · · · ≤

≤ log x

log A1
+

log x

log A2
+

log x

(3/2) log A2
+

log x

(3/2)2 log A2
+ · · · =

=
log x

log A1
+
3 log x

log A2
.

This completes the proof of Lemma 1. 
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