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Abstract. Let S be a subset of rational numbers. For x  1 we introduce
the set Sx, Sx ⊂ S, which consists of numbers m/n ∈ S, (m,n) = 1,
n  x. For J = (λ1;λ2), J ⊂ (0;+∞), we denote |J | = λ2 − λ1,
Ju = (λ1;λ1+u|J |), and Fx(u) = #(Sx∩Ju)/#(Sx∩J), where 0  u  1.
The discrepancy supu |Fx(u)−u| is evaluated for some subsets S, specified
by arithmetical conditions.

1. Introduction

Let F+ be the set of positive rational numbers represented by fractions
m
n , where m,n are coprime natural numbers. The coprimality of m,n will be
denoted by m ⊥ n. Let us fix a number x  1 and introduce the set

Fx =
m

n
: m ⊥ n, n  x


.

For an interval J ⊂ (0;+∞) we set FJ
x = Fx∩J. If J = (0; 1], then the elements

of FJ
x arranged in ascending order form the classical Farey sequence of positive

rationals.
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numbers and

S =
m

n
∈ F+ : n ≡ b (mod B)


.

The discrepancies of subsequences of S in short intervals were investigated
by Ledoan in [7]. It follows from his work, that

D(S(0;1]
x )  1

x
, x → ∞,

cf. (1.1).

We consider the rationals with the nominators and denominators in some
arithmetical progressions. With the natural numbers a, b, A,B, a ⊥ A, b ⊥ B
let us define

(2.1) S =
m

n
∈ F+ : m ≡ a (mod A), n ≡ b (mod B)



and consider the discrepancies (1.2).

Theorem 2.1. For the sets in (2.1) and arbitrary intervals J we have

D(SJ
x )  log x

x
+

1

|J | · log x
.

Corollary 2.1. If |J | · log x → ∞ as x → ∞, then elements of Sx are
asymptotically uniformly distributed in J.

We precede the proof of the Theorem with two lemmas.

Lemma 2.1. For and arbitrary function f : F+ → R and an interval
J ⊂ (0;+∞) denote

S(f,FJ
x ) =


r∈FJ

x

f(r).

Then

(2.2) S(f,FJ
x ) =


nx

M
x
n


T (n),

where M(u) is the summatory function of the Möbius function µ(n), and

T (n) =


λ1n<m<λ2n

f
�m
n


.
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It is well-known, that elements of F (0;1]
x are asymptotically uniformly dis-

tributed in (0; 1], i.e. #F (0;u]
x /#F (0;1]

x → u for 0  u  1 as x → ∞. The
proof is to be found in [9] (Chapter 4, Problem 189) and [6] (Chapter 2). Let
us consider the discrepancy

D(F (0;1]
x ) = sup

0u1

#F (0;u]
x

#F (0;1]
x

− u
.

H. Niederreiter proved in [8] that

(1.1) D(F (0;1]
x )  1

x
, x → ∞,

and F. Dress in [3] refined this to the final result: for all natural numbers x

D(F (0;1]
x ) =

1

x
.

The purpose of this paper is to provide some examples of subsets of Fx,
specified by arithmetical conditions and asymptotically uniformly distributed
in given intervals.

Let S ⊂ F+ be some set of rational numbers. We introduce the notations:

Sx = Fx ∩ S, SJ
x = FJ

x ∩ S.

For an interval J = (λ1;λ2), J ⊂ (0;+∞), we denote |J | = λ2 − λ1, J
u =

= (λ1;λ1 + u|J |) and define the discrepancy by

(1.2) D(SJ
x ) = sup

0u1

#SJu

x

#SJ
x

− u
.

The intervals J may depend on x, i.e. we suggest that J = Jx. If D(SJ
x ) → 0,

as x → ∞, the elements of Sx are asymptotically uniformly distributed in the
intervals J. Our approach to proving uniformity is straightforward: we establish
the asymptotics

#SJ
x = G(x,S) · |J | · (1 + O((x, J)), x → +∞,

and using this derive the upper bound for (1.2).

2. Rationals with the congruence constraints

The subsequences of Farey fractions with the conditions on denominators
were studied by many authors (see [4], [5], [2]). Let b, B be some natural
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
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Note that the sum corresponding to δ, (δ, A) > 1, is empty. If δ ⊥ A, we replace
the condition δm ≡ a (mod A) by m ≡ aδ (mod A), where aδ is some natural
number. Hence,

T ∗
n =


δ|n
δ⊥A

µ(δ)


λ1n/δ<m<λ2n/δ

m≡aδ (mod A)

1 =

δ|n
δ⊥A

µ(δ)

(λ2 − λ1) ·

n

δA
+ θn,δ


.

Using this in the expression of S(f,FJ
x ) we have

(2.4) S(f,FJ
x ) =

λ2 − λ1

A
· S + O(E),

where

S =

d,n

dnx
n≡b (mod B)

M
 x

dn


n

δ|n
δ⊥A

µ(δ)

δ
,

E =

d,n

dnx
n≡b (mod B)

M
 x

dn



δ|n
δ⊥A

|µ(δ)|.

Let τ(n) stand for the number of different divisors of n. Then

E 

nx

n≡b (mod B)

τ(n)


dx/n

M
 x

dn

  x

nx

n≡b (mod B)

τ(n)

n
,

here we used the bound 
mv

M
 v

m

  v,

which follows from the estimate M(u)  u exp{−c
√

log u}, u  2, (see also
[12]). Using the Shiu’s result for the sums of non-negative multiplicative func-
tion on arithmetic progression for the multiplicative function f(n) = τ(n)/n
(see ([10], Theorem 1) we get

(2.5) E  1

ϕ(B)
· x2

log x
.

We proceed with the evaluation of the sum S. With the notation

g(n,A) =

δ|n
δ⊥A

µ(δ)

δ
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Note, that in the definition of T (n) the coprimality of m and n is not
required. The proof of (2.2) is straightforward: start with the equality

S(f,FJ
x ) =


nx

λ1n<m<λ2n

f
�m
n

 
d|(m,n)

µ(d)

and proceed by interchanging the order of summation, see also this Lemma
in [12].

We shall now derive the asymptotics for #SJ
x .

Lemma 2.2. Let S be the set defined in (2.1) and J = (λ1;λ2), J ⊂
(0;+∞). Then

(2.3) #SJ
x =

3

π2
· |J |
AB

·x2
 

p|AB


1− 1

p2

−1

+O
B log x

x
+

AB

ϕ(B)
· 1

|J | · log x



holds as x → ∞ with the constants in O-sign not depending on a, b, A,B, J.

Proof. Let f be the indicator function of the set S. With the notations of
Lemma 2.1 we have S(f,FJ

x ) = #SJ
x ,

T (n) =

d|n

n/d≡b (mod B)

#

m : d|m,

m

d
≡ a (mod A),

m

d
⊥ n

d
, λ1

n

d
<

m

d
< λ2

n

d


.

We denote the summand in T (n) by T (n, d), i.e.

T (n) =

d|n

n/d≡b (mod B)

T (n, d).

Using this in (2.2) we get

S(f,FJ
x ) =


nx

M
x
n


d|n

T (n, d) =

d,n

dnx
n≡b (mod B)

M
 x

dn


T ∗
n ,

where
T ∗
n = #{m : λ1n < m < λ2n,m ≡ a (mod A),m ⊥ n}.

Let us compute T ∗
n :

T ∗
n =


λ1n<m<λ2n

m≡a (mod A)


δ|(m,n)

µ(δ) =

δ|n

µ(δ)


λ1n<δm<λ2n

δm≡a (mod A)

1.



409

On the uniformity of some sequences 409
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
.
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δ
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and because of |Ju| = u|J | we get

#SJu

x

#SJ
x

= u + O
 log x

x
+

1

|J | · log x


,

which yields the statement of the Theorem. 

3. Divisibility, multiples, additive functions

Let B and bi (i  1) be some natural numbers, such that


i

1

bi
< ∞.

In [1] the authors consider the set of rational numbers

S =
m

n
∈ F+ : n ≡ b (mod B), n ⊥ bi, i  1



and prove that

D(S(0;1]
x )  1

x
, x → ∞.

The results on the asymptotical uniformity of the sets of rationals, satisfying
some divisibility constraints can be derived from the following Lemma, see [12].

Lemma 3.1. Let Q0, Q1, Q2 be some coprime natural numbers and

(3.1) S = S(Q0, Q1, Q2) =
m

n
: m ⊥ Q0Q1, n ⊥ Q0Q2


.

Then uniformly over Q0, Q1, Q2 and intervals J ⊂ (0;+∞)

#SJ
x = C(Q0, Q1, Q2) · |J | · x2


1 + O(R(x,Q0, Q1, Q2)


,

where

C(Q0, Q1, Q2) =
3

π2


p|Q0


1 − 2

p + 1

 
p|Q1Q2


1 − 1

p + 1


,

R(x,Q0, Q1, Q2) = 3ω(Q0Q1Q2)
 log x

x
+

1

|J | · x


,

and ω(n) denotes the number of distinct prime divisors of n.
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we have

S =

d,n

dnx
n≡b (mod B)

M
x
n


g(n,A) =


nx

n≡b (mod B)

ng(n,A)


dx/n

M
 x

dn


.

Note that for all u  1


mu

M
 u

m


=


δu

µ(δ)
u
δ


= 1.

Hence,

S =

nx

n≡b (mod B)

ng(n,A) =

δx
δ⊥A

µ(δ)

δ


mx/δ

δm≡b (mod B)

δm

=

δx

δ⊥AB

µ(δ)


mx/δ
m≡bδ (mod B)

m =

δx

δ⊥AB

µ(δ)
 1

2B

x2

δ2
+ O

x
δ


.

Here as in the computation of T ∗
n we replaced the condition δm ≡ b (mod B)

by m ≡ bδ (mod B).

It follows now by the standard arguments that

(2.6) S =
3

π2
· x

2

B


p|AB


1 − 1

p2

−1

+ O(x log x).

Finally from (2.4), (2.5) and (2.6) we get

S(f,FJ
x ) =

3

π2
· |J |
AB

·x2
 

p|AB


1− 1

p2

−1

+O
B log x

x
+

AB

ϕ(B)
· 1

|J | · log x


.



Proof of the Theorem. The statement of the Theorem is trivial if the
quantity |J | · log x is bounded. Let |J | · log x → ∞ as x → ∞. We use the
asymptotics (2.3) in the form

#SJ
x = C(A,B) · |J | · x2


1 + O

 log x

x
+

1

|J | · log x


.

Then

#SJu

x

#SJ
x

=
|Ju| ·


1 + O


log x
x + 1

|Ju|·log x



|J | ·

1 + O


log x
x + 1

|J|·log x

 ,
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The bound for discrepancy D(SJ
x ) follows as in the proof of previous The-

orem.

Theorem 3.1. For the sets in (3.1) and the intervals J ⊂ (0;+∞) we have

D(SJ
x )  log x

x
+

1

|J | · x
.

The asymptotics of the Lemma can be used for proving uniformity results
for the sets specified by various arithmetical conditions. We give two examples.

For a subset of natural numbers A let M(A) denote the set of multiples of
a ∈ A, i.e. the set of natural numbers divisible by at least one a ∈ A.

For two sets A,B ⊂ N, such that there exist at least one pair of numbers
a ∈ A, b ∈ B, a ⊥ b, we set

(3.2) S =
m

n
∈ F+ : m ∈ M(A), n ∈ M(B)


.

The density questions for the sets (3.2) are considered in [11]. The case of
finite sets A,B is easy. Using the combinatorial including-excluding principles
we can prove, that the Theorem 3.1 is true for the sets defined in (3.2).

Let now f : F+ → G be some additive arithmetical function taking the
values in an Abelian group G, i.e. for all m1/n1,m2/n2 ∈ F+,m1n1 ⊥ m2n2

satisfying

f
m1

n1
· m2

n2


= f

m1

n1


+ f

m2

n2


.

Let for some value g ∈ G

(3.3) S =
m

n
∈ F+ : f

m
n


= g


.

In the simplest case, when the set of powers of primes {pα : α ∈ Z, f(pα) = 0}
is finite, we derive that the Theorem 3.1 is true for the set (3.3), supposed that
it is not empty.

The author is grateful to the referee for careful reading of the paper.
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[1] Alkan E., A. Ledoan, M. Vâjâitu and A. Zaharescu, Discrepancy of
Fractions with Divisibility Constraints, Monatshefte für Mathematik, 201
(1973), 341–345.



413

On the uniformity of some sequences 413

[2] Cobeli, C. and A. Zaharescu, On the Farey fractions with denomi-
nators in arithmetic progression, Integer Seq., 9(3) (2006), 26 pp. (elec-
tronic).
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The work is devoted to the 70th birthday of Professor Indlekofer,

remembering also an evening of four-finger joint play on his pianoforte.
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Abstract. We investigate both theoretically and numerically a simple

model for string instruments like the pianoforte emphasizing the formula-

tion of appropriate discrete conditions in the form of difference equations

at the junction point of string and frame.

1. Introduction

There exists a rather large number of papers on the mathematical modelling
of string instruments, see the diploma thesis [9] and the literature cited therein:
e.g., [1], [2], [5], [8]. These models are, generally, formulated as systems of
partial differential equations (especially hyperbolic equations), an approach we
shall follow below, too. For literature on the numerical solution of hyperbolic
equations see, e.g., [12], [4], [14] and [6].

Key words and phrases: Conservation of energy, modelling the frame-string joint, weighted

difference approximation, numerical experiments.
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