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Abstract. Let S be a subset of rational numbers. For x > 1 we introduce
the set Sz, Sz C S, which consists of numbers m/n € S,(m,n) = 1,
n < x. For J = (A3 A2), J C (0;+400), we denote |J| = A2 — Ai,
JU = (A3 M +ulJ]), and Fp(u) = #(SNJY)/#(SeNJ), where 0 < u < 1.
The discrepancy sup,, |Fx(u) —u| is evaluated for some subsets S, specified

by arithmetical conditions.

1. Introduction

Let F, be the set of positive rational numbers represented by fractions
-, where m,n are coprime natural numbers. The coprimality of m,n will be
denoted by m L n. Let us fix a number z > 1 and introduce the set

fwz{mzmln,néx}.
n

For an interval J C (0; +00) we set F) = F,NJ. If J = (0; 1], then the elements
of F; arranged in ascending order form the classical Farey sequence of positive

rationals.
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It is well-known, that elements of ]-}(70;1] are asymptotically uniformly dis-

tributed in (0;1], i.e. #.}-;O;u]/#]_—éo;l} —wufor 0 < u<1lasax — oo The
proof is to be found in [9] (Chapter 4, Problem 189) and [6] (Chapter 2). Let
us consider the discrepancy
(03]
DEFEOY) = sp [T
o<ust | 40

H. Niederreiter proved in [8] that

. 1
(1.1) D(FOM)y < =, 2 o0,
x
and F. Dress in [3] refined this to the final result: for all natural numbers z
1
D(Fy = =
(FOU) = =

The purpose of this paper is to provide some examples of subsets of F,,
specified by arithmetical conditions and asymptotically uniformly distributed
in given intervals.

Let § C F, be some set of rational numbers. We introduce the notations:
S, =F, NS, S/ =F/ns.

For an interval J = (A1;A2), J C (0;+00), we denote |J| = Ay — Ay, J* =
= (A1; A1 +u|J]) and define the discrepancy by

#87"
1.2 D(S?) = s L
(1.2) (Sy) S | s U‘

The intervals J may depend on z, i.e. we suggest that J = J,. If D(S;) — 0,
as © — 00, the elements of S, are asymptotically uniformly distributed in the
intervals J. Our approach to proving uniformity is straightforward: we establish
the asymptotics

#S! =G(2,8) - |J|- (1 + O(e(z,J)), x — 400,
and using this derive the upper bound for (1.2).

2. Rationals with the congruence constraints

The subsequences of Farey fractions with the conditions on denominators
were studied by many authors (see [4], [5], [2]). Let b, B be some natural
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numbers and

S:{%G}'Jr:nzb(modB)}.

The discrepancies of subsequences of S in short intervals were investigated
by Ledoan in [7]. It follows from his work, that

. 1
D(S;O*l]) = = T — 00,

cf. (1.1).

We consider the rationals with the nominators and denominators in some
arithmetical progressions. With the natural numbers a,b, A, B,a 1. A,b 1L B
let us define

(2.1) S:{%6]—"+:mza(modA),nEb(modB)}

and consider the discrepancies (1.2).

Theorem 2.1. For the sets in (2.1) and arbitrary intervals J we have

log 1

D(S] :
(5:) < x || - log x

Corollary 2.1. If |J|-logx — oo as © — oo, then elements of S, are
asymptotically uniformly distributed in J.

We precede the proof of the Theorem with two lemmas.
Lemma 2.1. For and arbitrary function f : F, — R and an interval
J C (0;400) denote
S(HFD =D fo).
reF;

Then

(2:2) SULF) =3 M ()T (),

n<x

where M (u) is the summatory function of the Mdobius function p(n), and

ORI DI

Ain<m<Aan
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Note, that in the definition of T'(n) the coprimality of m and n is not
required. The proof of (2.2) is straightforward: start with the equality

SUFD = 3 H(E) Y w@

n<e d|(m,n)
An<m<Agn

and proceed by interchanging the order of summation, see also this Lemma
n [12].
We shall now derive the asymptotics for #S..

Lemma 2.2. Let S be the set defined in (2.1) and J = (A1;\2),J C
(0;+00). Then

(2.3) #5] = ;-ﬂ-xQ{per[B (1_;)1+o(31;“+;£) o .llogx)}

holds as x — oo with the constants in O-sign not depending on a,b, A, B, J.

Proof. Let f be the indicator function of the set S. With the notations of
Lemma 2.1 we have S(f, F/) = #S;/,

A <m<>\gﬁ}.

T(n) = Z #{m :dm, ZL a (mod A), % pi pi

d|n
n/d=b (mod B)

m,n
dd’

We denote the summand in T'(n) by T'(n,d), i.e

T(n)= >  T(nd).
n/dzbd‘(:'nod B)

Using this in (2.2) we get

S(f, F)) = ZM()ZTnd 3 M(dn)T*

nx d|n d,n
dn<ax
n=b (mod B)

where
=#{m: \n <m < An,m=a (mod A),m L n}.

Let us compute 7T}, :

Tr= > Y pe)=>_u6 D L

Apn<m<IAgn 5‘(7” n) 5"” Apn<dm<Agn
m=a (mod A) dm=a (mod A)
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Note that the sum corresponding to 6, (6, A) > 1, is empty. If § L A, we replace
the condition dm = a (mod A) by m = as (mod A), where a; is some natural
number. Hence,

Tp=> p©) > 1=Zu(5){(A2—A1)~51A+9n,5}.

5in An/s<m<Agn/s 5n
SLA m=as (mod A) sLA

Using this in the expression of S(f, F;) we have

Ao — A1
A

(2.4) S(f,Fl) = -S4+ O(E),

where

_ z 1£(9)
g = dzn: M(dn)n - 5’
dn<x SLA

n=b (mod B)

S S e Pt

d,n S|n
dn<xz SLA
n=b (mod B)

Let 7(n) stand for the number of different divisors of n. Then

E < Z 7(n) Z ‘M(%)‘«m Z T(n),

n
<= d<z/n _ n<e
n=b (mod B) n=b (mod B)

here we used the bound

5= [a(2)] <

m<v

which follows from the estimate M(u) < wexp{—cyIogu},u > 2, (see also
[12]). Using the Shiu’s result for the sums of non-negative multiplicative func-
tion on arithmetic progression for the multiplicative function f(n) = 7(n)/n
(see ([10], Theorem 1) we get

1 x?
p(B) logz
We proceed with the evaluation of the sum S. With the notation

g(n,A) = Z @

5ln
LA

(2.5) E<
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we have

S = Z M(%)g(n, A) = Z ng(n, A) Z M(%)

d,n n<ax d<z/n
dn<x n=b (mod B) Sz/
n=b (mod B)

Note that for all u > 1

> () = S]] -1

m<u o<u

Hence,

S = Z ng(n, A) = Z @ Z om

n<ax s<x m<x/s
n=b (mod B) SLA §m=b (mod B)
1 22 x
= (o m = M(S{ff—l—O(f)}.
> op©) D > (o) 55 57 3
s<a m<a/s s<a
5§1LAB m=bg (mod B) S1LAB

Here as in the computation of T)F we replaced the condition ém = b (mod B)
by m = bs (mod B).
It follows now by the standard arguments that

1.2
(2.6) S:%~§H(1f%)

p|AB

1
+ O(zlogx).

Finally from (2.4), (2.5) and (2.6) we get

] (e )

Proof of the Theorem. The statement of the Theorem is trivial if the
quantity |J| - logz is bounded. Let |J|-logz — oo as x — oco. We use the
asymptotics (2.3) in the form

#8] =C(A,B) - |J| -x2{1 +o(1°§x 7 _ﬁogx)}.

Then
gz W11 +0(%5 + o)}
S ANTRCT g

x
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and because of |J%| = u|J| we get

Ju
i‘?g}] B U+O(loix * |J] -1logx)}’

which yields the statement of the Theorem. |

3. Divisibility, multiples, additive functions

Let B and b; (i > 1) be some natural numbers, such that
> <
7 b .
In [1] the authors consider the set of rational numbers
m )
S:{— E]—]r:nzb(modB),ani,z}l}
n

and prove that
. 1
DSV = = 2 — co.
x
The results on the asymptotical uniformity of the sets of rationals, satisfying

some divisibility constraints can be derived from the following Lemma, see [12].

Lemma 3.1. Let Qg, Q1, Q2 be some coprime natural numbers and
m
(3.1) S = 8(Qo: Q1. Q2) = { ™ :m L QoQun L QuQ -
Then uniformly over Qo, Q1,Q2 and intervals J C (0; +00)
#S] = C(Qo,Q1,Q2) - |J| - 2*{1+ O(R(z,Qo, Q1,Q2) },

where
c@ane) = 11 (-359) I (- 539)
" PlQo P p|Q1Q2 p
R(l',QOlean) = 3w(Q0Q1Q2)<10$+|J|1.z),

and w(n) denotes the number of distinct prime divisors of n.
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The bound for discrepancy D(S.) follows as in the proof of previous The-
orem.

Theorem 3.1. For the sets in (3.1) and the intervals J C (0; +00) we have

logx 1
g+

J
D(S)) < . T

The asymptotics of the Lemma can be used for proving uniformity results
for the sets specified by various arithmetical conditions. We give two examples.

For a subset of natural numbers A let M(A) denote the set of multiples of
a € A, i.e. the set of natural numbers divisible by at least one a € A.

For two sets A, B C N, such that there exist at least one pair of numbers
a€ Abe B,a 1l b, we set

(3.2) 3:{%ef+:meM(A),neM(B)}.

The density questions for the sets (3.2) are considered in [11]. The case of
finite sets A, B is easy. Using the combinatorial including-excluding principles
we can prove, that the Theorem 3.1 is true for the sets defined in (3.2).

Let now f : F, — G be some additive arithmetical function taking the
values in an Abelian group G, i.e. for all my/ni,mo/ny € F ,miny L maony

satisfying e - -
G ) =G+ (G

Let for some value g € G

(3.3) 8:{%6]:+:f(%>:g}.

In the simplest case, when the set of powers of primes {p® : a € Z, f(p®) # 0}
is finite, we derive that the Theorem 3.1 is true for the set (3.3), supposed that
it is not empty.

The author is grateful to the referee for careful reading of the paper.
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