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Abstract. The concept of dyadic martingal structure preserving functions
is defined. We show that composition with such functions preserves the
classes of UDMD systems, that of An-measurable functions, the dyadic
function spaces Lp(I), Hp(I), and the Lipschitz classes Lip (α, I).

1. Introduction

Numerous results were published in the last century about the effect of
the composition with a Blaschke function on the convergence of the power
series of regular functions in a boundary point of the disc D. First, Turán
[11] showed, that to any ζ ∈ C (0 < |ζ| < 1) there is a complex function
f1(z) =

∞
n=1 anz

n, regular in D = {z ∈ C : |z| < 1}, with convergent
power-series for z = 1, but the power series of f2(z) := f1(Bζ(z)) =

∞
n=1 bnz

n

diverges at the corresponding point z = B−1
ζ (1). Bζ(z) denotes the Blaschke
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A measure can be defined on B in the following way:

(1) µ(In(a)) := 2
−n (a ∈ B, n ∈ Z).

Extend µ to the ring R of sets formed by finite unions of intervals so that µ
is finitely additive. Then, µ is countably additive on R. By the Caratheodory
extension theorem follows, that there is a measure (denoted also by µ) defined
on the σ-ring of Borel sets Bµ which satisfies (1).

The concept of UDMD systems is due to Schipp [5]. Denote by A the σ-
algebra generated by the intervals In(a) (a ∈ I, n ∈ N). I, A, and the restriction
of the measure µ on I form a probability measure space (I,A, µ). Let An be
the sub-σ-algebra of A generated by the intervals In(a) (a ∈ I). Let L(An)
denote the set of An-measurable functions on I. The conditional expectation of
an f ∈ L1(I) with respect to An is of the form

(Enf)(x) :=
1

µ(In(x))



In(x)

fdµ (x ∈ I).

A sequence of functions (fn, n ∈ N) is called a dyadic martingale if each
fn is An-measurable and Enfn+1 = fn (n ∈ N). The sequence of martingale
differences of (fn, n ∈ N) is the sequence φn := fn+1 − fn (n ∈ N).
The martingale difference sequence (φn, n ∈ N) is called a unitary dyadic

martingale difference sequence or a UDMD sequence, if |φn(x)| = 1 (n ∈ N).
According to Schipp [5], (φn, n ∈ N) is a UDMD sequence if and only if

(2) φn = rngn, gn ∈ L(An), |gn| = 1 (n ∈ N).

The dyadic maximal operator and for 0 < p < ∞ the Hp norm is defined
by

E∗(f) := sup
n∈N

|Enf | (f ∈ L1(I))

fHp := E∗fp (f ∈ L1(I)).

2. The effect of transformations by a DMSP-function

Definition 1. We call a function B : I → I a dyadic martingale structure
preserving function or shortly a DMSP-function if it is generated by a system
of bijections (ψn, n ∈ N), ψn : A → A, and an arbitrary system (ϕn, n ∈ N∗),
ϕn : An → A in the following way:

(3)
(B(x))0 := ψ0(x0),

(B(x))n := ψn(xn) + ϕn(x0, x1, . . . , xn−1) (mod 2) (n ∈ N∗).
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function with parameter ζ ∈ C: Bζ(z) =
z−ζ

1−ζz
(z ∈ D). After several results

due to Clunie, Schwarz, Halász, Alpár and others, Indlekofer [3] constructed
a function f , which is continuous on D, its power-series converges for z = 1,
but the power series of f∗(z) := f(Bζ(z)) =

∞
n=1 bnz

n diverges at the cor-

responding point z = B−1
ζ (1), moreover ω(f, h) = O

�
log 2π

h

−1

as h  0

holds for the modulus of continuity. He solved hereby the primal conjecture of
Turán.

In this paper we consider questions related to the effect of the transforma-
tion by composition with a Blaschke function and in general of a dyadic mar-
tingal structure preserving function (DMSP-function) on the class of UDMD-
systems and on dyadic function classes Lp(I) (0 < p ≤ ∞), Hp(I) (0 < p <
< ∞), Lip (α, I) (α > 0).

Denote by A := {0, 1} the set of bits and by

B := {a = (aj , j ∈ Z) | aj ∈ A and lim
j→−∞

aj = 0}

the set of bytes. The order of a byte x ∈ B is defined in the following way:
For x = θ := (0, 0, . . .) let π(x) = n if and only if xn = 1 and xj = 0 for all
j < n. Set π(θ) := +∞. The norm of a byte x is defined by x := 2−π(x)

for x ∈ B \ {θ}, and θ := 0. By an interval in B of rank n ∈ Z and center
a ∈ B we mean the set of the form In(a) = {x ∈ B : xj = aj for j < n}. Set
In := In(θ) = {x ∈ B : x  2−n} for any n ∈ Z. The unit ball is I := I0.
Furthermore S := {x ∈ B : x = 1} = {x ∈ B : π(x) = 0} = {x ∈ I : x0 = 1}
is the unit sphere.

Consider the Rademacher system (rn, n ∈ N), where rn(x) := (−1)xn

(x ∈ I), and the Walsh-Paley functions:

wk(x) =

∞
n=0

rn(x)
kn = (−1)

+∞
j=0 kjxj (x ∈ I),

with dyadic expansion k =
∞

j=0 kj2
j ∈ N (kj ∈ A). Set ε(t) := exp(2πit)

(t ∈ R). We shall use the product system (vm,m ∈ N) generated by the
functions

v2n(x) := ε
xn

2
+

xn−1

22
+ · · ·+ x0

2n+1


(x ∈ I, n ∈ N).

Then vm(x) =
∞

j=0(v2j (x))
mj (m ∈ N). We will use the notation ◦ for

composition of functions.

A metric is defined on B as follows:

ρ(x, y) :=


0, if x = y

2−n, if x = y, n := min{k ∈ Z : xk = yk}.
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A measure can be defined on B in the following way:

(1) µ(In(a)) := 2
−n (a ∈ B, n ∈ Z).

Extend µ to the ring R of sets formed by finite unions of intervals so that µ
is finitely additive. Then, µ is countably additive on R. By the Caratheodory
extension theorem follows, that there is a measure (denoted also by µ) defined
on the σ-ring of Borel sets Bµ which satisfies (1).

The concept of UDMD systems is due to Schipp [5]. Denote by A the σ-
algebra generated by the intervals In(a) (a ∈ I, n ∈ N). I, A, and the restriction
of the measure µ on I form a probability measure space (I,A, µ). Let An be
the sub-σ-algebra of A generated by the intervals In(a) (a ∈ I). Let L(An)
denote the set of An-measurable functions on I. The conditional expectation of
an f ∈ L1(I) with respect to An is of the form

(Enf)(x) :=
1

µ(In(x))



In(x)

fdµ (x ∈ I).

A sequence of functions (fn, n ∈ N) is called a dyadic martingale if each
fn is An-measurable and Enfn+1 = fn (n ∈ N). The sequence of martingale
differences of (fn, n ∈ N) is the sequence φn := fn+1 − fn (n ∈ N).
The martingale difference sequence (φn, n ∈ N) is called a unitary dyadic

martingale difference sequence or a UDMD sequence, if |φn(x)| = 1 (n ∈ N).
According to Schipp [5], (φn, n ∈ N) is a UDMD sequence if and only if

(2) φn = rngn, gn ∈ L(An), |gn| = 1 (n ∈ N).

The dyadic maximal operator and for 0 < p < ∞ the Hp norm is defined
by

E∗(f) := sup
n∈N

|Enf | (f ∈ L1(I))

fHp := E∗fp (f ∈ L1(I)).

2. The effect of transformations by a DMSP-function

Definition 1. We call a function B : I → I a dyadic martingale structure
preserving function or shortly a DMSP-function if it is generated by a system
of bijections (ψn, n ∈ N), ψn : A → A, and an arbitrary system (ϕn, n ∈ N∗),
ϕn : An → A in the following way:

(3)
(B(x))0 := ψ0(x0),

(B(x))n := ψn(xn) + ϕn(x0, x1, . . . , xn−1) (mod 2) (n ∈ N∗).



384

On transformations by dyadic martingale 385

Remarks

1. As the Walsh-Paley functions wn(n ∈ N) and the functions vn (n ∈ N)
are UDMD-product systems on I, their composition with a DMSP-function
result a UDMD-product system. For a precise statement see Remark 3.

2. Gát [1], [2] constructed a generalisation of the UDMD-systems, the so
called Vilenkin-like systems on a more general space Gm. Extending the defi-
nition of the DMSP-functions to Gm, similar statement holds which is a con-
sequence of Lemma 1, b) and Remark 3.

3. Schipp [7], [8] defined a general concept of systems, the adapted condi-
tionally orthonormal systems or AC-ONS with respect to a regular sequence
of weights. An AC-ONS on I is transformed by composition with a DMSP-
function into an AC-ONS, which is a consequence of Lemma 1, b) and (11).

4. As UDMD-systems are taken into UDMD-systems by a DMSP-transfor-
mation, it follows by [4] that a.e. convergence and (C, 1)-summation of func-
tions f ∈ L1(I) are also preserved by this kind of transformation.

We will show that the function classes Lp(I) (0 < p ≤ ∞) and Hp(I)
(0 < p < ∞) are invariant under the composition with a DMSP-function.

Lemma 2. Let B : I → I be a DMSP-function and n ∈ N. Then

(6) B(In(x)) = In(B(x)) (x ∈ I).

Proof. If t ∈ In(x), then t0 = x0, t1 = x1, . . . , tn−1 = xn−1. For k < n we
have ψk(tk) + ϕk(t0, t1, . . . , tk−1) = ψk(xk) + ϕk(x0, x1, . . . , xk−1), that is,
(B(t))k = (B(x))k (k < n). Thus B(t) ∈ In(B(x)) (t ∈ In(x)), so

(7) B(In(x)) ⊆ In(B(x)) (x ∈ I).

In particular (7) holds for the DMSP-function B−1 and x = B(y). Thus by

B−1(In(B(y))) ⊆ In(y) (y ∈ I)

follows In(B(y)) ⊆ B(In(y)) (y ∈ I), which completes the proof together with
(7). 

From (6) follows that µ(B(In(x))) = µ(In(B(x))) = 2−n = µ(In(x)), so
µ(B(E)) = µ(E) holds for each E ∈ An. Thus

(8) µ(B(E)) = µ(E) (E ∈ A).

Consequently, B : I → I is measure preserving, i.e.

(9)



I

f ◦Bdµ =



I

fdµ (f ∈ L1(I)).
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Proposition. For each generating systems (ψn, n ∈ N) and (ϕn, n ∈ N∗),
B is a bijection on I and its inverse function, B−1 is also a DMSP-function.

The question, which function systems can be transformed by composition
with a DMSP-function into a UDMD system, has a simple answer: exactly the
UDMD systems.

Lemma 1. Let B : I → I be a DMSP-function. Then, for each n ∈ N we
have

(4)

a) rn ◦B = rn · hn with some hn ∈ L(An), |hn| = 1,

b) L(An) is invariant with respect to the composition with a DMSP

function.

Proof. a) By the definition of y = B(x) we have

rn(B(x)) = (−1)yn = (−1)ψn(xn)(−1)ϕn(x0,··· ,xn−1) =

= rn(x)(−1)ψn(0)(−1)ϕn(x0,··· ,xn−1) = rn(x)hn(x).
(5)

Obviously, hn(x) := (−1)ψn(0)(−1)ϕn(x0,··· ,xn−1) ∈ L(An) and |hn| = 1.
b) The statement is a simple consequence of the definitions. 

Theorem 1. Let B : I → I be a DMSP-function. The function system
(fn, n ∈ N) is a UDMD system on I, if and only if (fn ◦B, n ∈ N) is a UDMD
system on I.

Proof. Let B be a DMSP-function. If (fn, n ∈ N) is a UDMD sys-
tem, then by (2) there are functions gn ∈ L(An) with |gn| = 1 such that
fn(x) = rn(x)gn(x) (x ∈ I). It follows rn(B(x)) = rn(x)hn(x) for some
hn ∈ L(An), |hn| = 1. Since gn ∈ L(An) we have by Lemma 1, that
gn ◦B ∈ L(An). Consequently,

hn (gn ◦B) ∈ L(An), |hn (gn ◦B) | = 1, and

fn(B(x)) = rn(B(x))gn(B(x)) = rn(x)hn(x)gn(B(x))  
∈L(An)

(x ∈ I).

Thus (fn ◦ B, n ∈ N) fulfills the requirements of a UDMD system formulated
in (2).

Since the inverse of a DMSP-function is also a DMSP-function, it follows
that if for any given system (fn, n ∈ N) the system (gn := fn ◦ B, n ∈ N) is a
UDMD system, then the original one (fn = gn ◦ B−1, n ∈ N) is also a UDMD
system. 
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Remark. From (10) and (11) follows that

f ◦BBMO = sup
n∈N


�
En|f − Enf |2

 1
2 ◦B∞ = fBMO.

Thus the space of bounded dyadic mean oscillation BMO and the space of
vanishing dyadic mean oscillation VMO are also preserved under composition
with a DMSP-function. For more on these spaces see Schipp [5].

Recall, that for α > 0 the function class Lip (α,B) denotes the collection of
functions f : I → R which satisfy

|f(y)− f(x)| ≤ c ρ(x, y)α (x, y ∈ B)

for some constant c ∈ R which depends only on f .

Theorem 3. Composition with a DMSP-function preserves Lip (α, I)
(α > 0).

Proof. For x, y ∈ I, x = y consider m := min{n : xn = yn}. Then
ρ(x, y) = 2−m and m is the largest number in N for which x ∈ Im(y). It follows
from (6), that B(x) ∈ Im (B(y)) andm is the largest integer with this property.
Thus

ρ (B(x), B(y)) = 2−m = ρ (x, y) (x, y ∈ I).

For f ∈ Lip (α, I) we have

|f(B(y))− f(B(x))| ≤ c ρ (B(x), B(y))
α
= c ρ (x, y)

α

for some c ∈ R. That is, f ◦B ∈ Lip(α, I). 

3. Examples of DMSP-functions

Consider the 2-series (or logical) field (B,
◦
+, ◦) and the 2-adic (or arithmeti-

cal) field (B,
•
+, •).

The 2-series (or logical) sum a
◦
+ b and product a ◦ b of elements a, b ∈ B is

defined by

a
◦
+ b := (an + bn (mod 2), n ∈ Z)

a ◦ b := (cn, n ∈ Z), where cn :=

k∈Z

akbn−k (mod 2) (n ∈ Z).
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Theorem 2. Composition with a DMSP-function preserves Lp(I) (0 < p ≤
≤ ∞) and the dyadic Hardy space Hp(I) (0 < p < ∞). Moreover,

(10) f ◦Bp = fp (0 < p ≤ ∞), f ◦BHp = fHp (0 < p < ∞).

Proof. For 0 < p < ∞ and f ∈ Lp(I), we have by (9) that f ◦ Bp =
= fp < ∞. Hence f ◦B ∈ Lp(I).
If f ∈ L∞(I), then for M := f∞ ∈ R, we have |f(x)| ≤ M for a.e. x ∈ I.

By (8) follows that

µ({x ∈ I : |(f ◦B)(x)| > M }) = µ({B(x) ∈ I : |f(B(x))| > M }) =
= µ({y ∈ I : |f(y)| > M }) = 0.

Hence f ◦ B ∈ L∞(I) and f ◦ B∞ ≤ f∞. As this holds also for DMSP
function B−1 instead of B and f ◦ B instead of f , the first equality in (10)
follows.

For f ∈ Hp(I) (0 < p < ∞) we have by definition that E∗fp < ∞. By
(6) follows that 1In(x)(t) = 1In(B(x))(B(t)) (t ∈ I). Hence by (9) we obtain

En (f ◦B) (x) = 1

µ(In(x))



In(x)

f(B(t))dµ(t) =

= 2n


I

f(B(t)) · 1In(x)(t)dµ(t) =

= 2n


I

f(B(t)) · 1In(B(x)) (B(t)) dµ(t) =

=
1

µ(In(B(x)))



In(B(x))

f(t)dµ(t)

= En (f) (B(x)).

(11)

Thus

E∗(f ◦B) := sup
n∈N

|En (f ◦B) | = sup
n∈N

| (Enf) ◦B| = (E∗f) ◦B.

Then by the first equality in (10) we have

E∗(f ◦B)p =  (E∗f) ◦Bp = E∗fp < ∞.

Consequently, f ◦B ∈ Hp(I) and f ◦BHp = fHp (0 < p < ∞). 
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3) The dyadic Blaschke functions, introduced by the author in [10] are also
DMSP-functions:

For a ∈ I1 the logical Blaschke function on (I,
◦
+, ◦) is defined by

Ba(x) := (x
◦
+ a) ◦ (e

◦
+ a ◦ x)−1 =

x
◦
+ a

e
◦
+ a ◦ x

(x ∈ I).

With y = Ba(x) we have y = x
◦
+ a

◦
+ y ◦ a ◦ x. So,


yn = 0, for n < 0,

yn = xn + an + (y ◦ a ◦ x)n (mod 2), for n  0.

Since the n-th digit of y ◦a◦x depends only on a and xk-s with k < n, we have
that the logical Blaschke function is a DMSP-function.

For a ∈ I1 the arithmetical Blaschke function on (I,
•
+, •) is defined by

Ba(x) := (x
•
− a) • (e

•
− a • x)−1 =

x
•
− a

e
•
− a • x

(x ∈ I).

The same recursion method holds for the arithmetical Blaschke function, too.
See Simon [10] or [9]. So, it is also a DMSP-function.

Remark. As the additive and multiplicative characters of I on both fields
can be obtained recursively, their compositions with a DMSP-function result
in a UDMD-product system.

For n ∈ N∗ let j := max{k ∈ N : n ≥ 2k}. Then,

wn ◦B = wn · gj with some gj ∈ L(Aj), |gj | = 1,
vn ◦B = vn · gj with some gj ∈ L(Aj), |gj | = 1.

The statements hold obviously for n = j = 0, too.

Proof. We have n =
j

i=0 ni2
i. By (5) follows

wn(B(x)) =

j
i=0

rni
i (B(x)) =

j
i=0

rni
i (x)h

ni
i (x) =

= wn(x)gj(x) (n ∈ N∗),

where hi ∈ L(Ai) and |hi| = 1 (i ∈ {0, 1, . . . , j}). Thus gj :=
j

i=0 h
ni
i ∈ L(Aj)

and |gj | = 1.

The statement for (vn, n ∈ N) follows analogously. 
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The 2-adic (or arithmetical) sum a
•
+ b of elements a = (an, n ∈ Z),

b = (bn, n ∈ Z) ∈ B is defined by a
•
+ b := (sn, n ∈ Z) where the bits

qn, sn ∈ A (n ∈ Z) are obtained recursively as follows:

qn = sn = 0 for n < m := min{π(a), π(b)},
and an + bn + qn−1 = 2qn + sn for n ≥ m.

The 2-adic (or arithmetical) product of a, b ∈ B is a•b := (pn, n ∈ Z), where
the sequences qn ∈ N and pn ∈ A (n ∈ Z) are defined recursively by

qn = pn = 0 (n < m := π(a) + π(b))

and
∞

j=−∞
ajbn−j + qn−1 = 2qn + pn (n ≥ m).

The reflection x− of a byte x = (xj , j ∈ Z) is defined by

(x−)j :=


xj , for j  π(x)

1− xj , for j > π(x).

e := (δn0, n ∈ Z), where δnk is the Kronecker-symbol. We will use the following
notation: a

•
− b := a

•
+ b−.

1) The following functions are trivial DMSP-functions on (B,
◦
+, ◦) and

(B,
•
+, •):

B(x) := x
◦
+ a, B(x) := x

•
+ a (a ∈ I),

B(x) := x ◦ a, B(x) := x • a (a ∈ S),
B(x) := x, B(x) := x−1 (x ∈ I).

The last one follows from the recursive expansion of x−1 in [6] pp. 41–42.

2) If cn ∈ I satisfies π(cn) = n (n ∈ N∗), then the function

(12) B(x) :=

∞
j=1

(e+ cj)
xj =

∞
j=1

(e+ xjcj)

can be obtained by a simple recursion Therefore, it is a DMSP-function from
I1 to S. See Schipp [6], pp 51-53. Its importance lies in the consequence,
that the multiplicative digits of a given byte y ∈ S with respect to a sequence
(bn = e+ cn, n ∈ N∗), π(cn) = n can be obtained from its additive digits.
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3) The dyadic Blaschke functions, introduced by the author in [10] are also
DMSP-functions:

For a ∈ I1 the logical Blaschke function on (I,
◦
+, ◦) is defined by

Ba(x) := (x
◦
+ a) ◦ (e

◦
+ a ◦ x)−1 =

x
◦
+ a

e
◦
+ a ◦ x

(x ∈ I).

With y = Ba(x) we have y = x
◦
+ a

◦
+ y ◦ a ◦ x. So,


yn = 0, for n < 0,

yn = xn + an + (y ◦ a ◦ x)n (mod 2), for n  0.

Since the n-th digit of y ◦a◦x depends only on a and xk-s with k < n, we have
that the logical Blaschke function is a DMSP-function.

For a ∈ I1 the arithmetical Blaschke function on (I,
•
+, •) is defined by

Ba(x) := (x
•
− a) • (e

•
− a • x)−1 =

x
•
− a

e
•
− a • x

(x ∈ I).

The same recursion method holds for the arithmetical Blaschke function, too.
See Simon [10] or [9]. So, it is also a DMSP-function.

Remark. As the additive and multiplicative characters of I on both fields
can be obtained recursively, their compositions with a DMSP-function result
in a UDMD-product system.

For n ∈ N∗ let j := max{k ∈ N : n ≥ 2k}. Then,

wn ◦B = wn · gj with some gj ∈ L(Aj), |gj | = 1,
vn ◦B = vn · gj with some gj ∈ L(Aj), |gj | = 1.

The statements hold obviously for n = j = 0, too.

Proof. We have n =
j

i=0 ni2
i. By (5) follows

wn(B(x)) =

j
i=0

rni
i (B(x)) =

j
i=0

rni
i (x)h

ni
i (x) =

= wn(x)gj(x) (n ∈ N∗),

where hi ∈ L(Ai) and |hi| = 1 (i ∈ {0, 1, . . . , j}). Thus gj :=
j

i=0 h
ni
i ∈ L(Aj)

and |gj | = 1.

The statement for (vn, n ∈ N) follows analogously. 
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Abstract. The so-called θ-summation is well-known in the theory of ap-
proximation. A remarkable result gives a necessary and sufficient condition
for uniformly or L1-norm convergence of θ-means if θ has compact support.
This condition is nothing else but the integrability of the (trigonometric)
Fourier transform of θ. Later this theorem was improved by Feichtinger
and Weisz showing the same result for θ’s belonging to a suitable Wiener
algebra W (C, 1). If θ is compactly supported then θ ∈ W (C, 1) holds ev-
idently but there are functions θ ∈ W (C, 1) with unbounded support. In
this work we extend the statement of Feichtinger and Weisz. To this end
a new space S(C, 1) of functions will be constructed for which we prove
the validity of the integrability condition. A simple consideration leads to
the proper inclusion W (C, 1) ⊂ S(C, 1).

1. Introduction

The so-called θ-summation, as a general method of summation generated
by a single function θ is an intensively investigated area of approximation.
(For this see e.g. [1], [5], [8] and references in [2], [6], [7] as illustration.) In
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