ON TRANSFORMATIONS BY DYADIC MARTINGALE STRUCTURE PRESERVING FUNCTIONS

Ilona Simon (Pécs, Hungary)

Dedicated to the 70th birthday of Professor Karl-Heinz Indlekofer

Communicated by Ferenc Schipp

(Received November 14, 2012; accepted December 14, 2012)

Abstract. The concept of dyadic martingal structure preserving functions is defined. We show that composition with such functions preserves the classes of UDMD systems, that of \mathcal{A}_n -measurable functions, the dyadic function spaces $L^p(\mathbb{I})$, $H^p(\mathbb{I})$, and the Lipschitz classes Lip (α, \mathbb{I}) .

1. Introduction

Numerous results were published in the last century about the effect of the composition with a Blaschke function on the convergence of the power series of regular functions in a boundary point of the disc \mathbb{D} . First, Turán [11] showed, that to any $\zeta \in \mathbb{C}$ $(0 < |\zeta| < 1)$ there is a complex function $f_1(z) = \sum_{n=1}^{\infty} a_n z^n$, regular in $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, with convergent power-series for z = 1, but the power series of $f_2(z) := f_1(B_{\zeta}(z)) = \sum_{n=1}^{\infty} b_n z^n$ diverges at the corresponding point $z = B_{\zeta}^{-1}(1)$. $B_{\zeta}(z)$ denotes the Blaschke

Key words and phrases: p-adic theory, local fields, L^p -spaces, H^p -theory, product systems, martingales.

2010 Mathematics Subject Classification: 11F85, 43A15, 43A17, 60G48. Research supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051. https://doi.org/10.71352/ac.39.381 function with parameter $\zeta \in \mathbb{C}$: $B_{\zeta}(z) = \frac{z-\zeta}{1-\overline{\zeta}z}$ $(z \in \overline{\mathbb{D}})$. After several results due to Clunie, Schwarz, Halász, Alpár and others, Indlekofer [3] constructed a function f, which is continuous on $\overline{\mathbb{D}}$, its power-series converges for z = 1, but the power series of $f^*(z) := f(B_{\zeta}(z)) = \sum_{n=1}^{\infty} b_n z^n$ diverges at the corresponding point $z = B_{\zeta}^{-1}(1)$, moreover $\omega(f, h) = O\left(\left(\log \frac{2\pi}{h}\right)^{-1}\right)$ as $h \searrow 0$ holds for the modulus of continuity. He solved hereby the primal conjecture of Turán.

In this paper we consider questions related to the effect of the transformation by composition with a Blaschke function and in general of a dyadic martingal structure preserving function (DMSP-function) on the class of UDMDsystems and on dyadic function classes $L^p(\mathbb{I})$ ($0), <math>H^p(\mathbb{I})$ ($0), <math>Lip(\alpha, \mathbb{I})$ ($\alpha > 0$).

Denote by $\mathbb{A} := \{0, 1\}$ the set of bits and by

$$\mathbb{B} := \{ a = (a_j, j \in \mathbb{Z}) \mid a_j \in \mathbb{A} \text{ and } \lim_{j \to -\infty} a_j = 0 \}$$

the set of bytes. The order of a byte $x \in \mathbb{B}$ is defined in the following way: For $x \neq \theta := (0, 0, ...)$ let $\pi(x) = n$ if and only if $x_n = 1$ and $x_j = 0$ for all j < n. Set $\pi(\theta) := +\infty$. The norm of a byte x is defined by $||x|| := 2^{-\pi(x)}$ for $x \in \mathbb{B} \setminus \{\theta\}$, and $||\theta|| := 0$. By an interval in \mathbb{B} of rank $n \in \mathbb{Z}$ and center $a \in \mathbb{B}$ we mean the set of the form $I_n(a) = \{x \in \mathbb{B} : x_j = a_j \text{ for } j < n\}$. Set $\mathbb{I}_n := I_n(\theta) = \{x \in \mathbb{B} : ||x|| \leq 2^{-n}\}$ for any $n \in \mathbb{Z}$. The unit ball is $\mathbb{I} := \mathbb{I}_0$. Furthermore $\mathbb{S} := \{x \in \mathbb{B} : ||x|| = 1\} = \{x \in \mathbb{B} : \pi(x) = 0\} = \{x \in \mathbb{I} : x_0 = 1\}$ is the unit sphere.

Consider the Rademacher system $(r_n, n \in \mathbb{N})$, where $r_n(x) := (-1)^{x_n}$ $(x \in \mathbb{I})$, and the Walsh-Paley functions:

$$w_k(x) = \prod_{n=0}^{\infty} r_n(x)^{k_n} = (-1)^{\sum_{j=0}^{+\infty} k_j x_j} \ (x \in \mathbb{I}),$$

with dyadic expansion $k = \sum_{j=0}^{\infty} k_j 2^j \in \mathbb{N}$ $(k_j \in \mathbb{A})$. Set $\varepsilon(t) := \exp(2\pi i t)$ $(t \in \mathbb{R})$. We shall use the product system $(v_m, m \in \mathbb{N})$ generated by the functions

$$v_{2^n}(x) := \varepsilon \left(\frac{x_n}{2} + \frac{x_{n-1}}{2^2} + \dots + \frac{x_0}{2^{n+1}} \right) \qquad (x \in \mathbb{I}, n \in \mathbb{N}).$$

Then $v_m(x) = \prod_{j=0}^{\infty} (v_{2^j}(x))^{m_j}$ $(m \in \mathbb{N})$. We will use the notation \circ for composition of functions.

A *metric* is defined on \mathbb{B} as follows:

$$\rho(x,y) := \begin{cases} 0, & \text{if } x = y \\ 2^{-n}, & \text{if } x \neq y, \ n := \min\{k \in \mathbb{Z} : x_k \neq y_k\}. \end{cases}$$

A measure can be defined on \mathbb{B} in the following way:

(1)
$$\mu(I_n(a)) := 2^{-n} \quad (a \in \mathbb{B}, \ n \in \mathbb{Z}).$$

Extend μ to the ring \mathcal{R} of sets formed by finite unions of intervals so that μ is finitely additive. Then, μ is countably additive on \mathcal{R} . By the Caratheodory extension theorem follows, that there is a measure (denoted also by μ) defined on the σ -ring of Borel sets \mathcal{B}_{μ} which satisfies (1).

The concept of *UDMD systems* is due to Schipp [5]. Denote by \mathcal{A} the σ algebra generated by the intervals $I_n(a)$ $(a \in \mathbb{I}, n \in \mathbb{N})$. \mathbb{I}, \mathcal{A} , and the restriction of the measure μ on \mathbb{I} form a probability measure space $(\mathbb{I}, \mathcal{A}, \mu)$. Let \mathcal{A}_n be the sub- σ -algebra of \mathcal{A} generated by the intervals $I_n(a)$ $(a \in \mathbb{I})$. Let $L(\mathcal{A}_n)$ denote the set of \mathcal{A}_n -measurable functions on \mathbb{I} . The *conditional expectation* of an $f \in L^1(\mathbb{I})$ with respect to \mathcal{A}_n is of the form

$$(\mathcal{E}_n f)(x) := \frac{1}{\mu(I_n(x))} \int_{I_n(x)} f d\mu \quad (x \in \mathbb{I}).$$

A sequence of functions $(f_n, n \in \mathbb{N})$ is called a *dyadic martingale* if each f_n is \mathcal{A}_n -measurable and $\mathcal{E}_n f_{n+1} = f_n$ $(n \in \mathbb{N})$. The sequence of martingale differences of $(f_n, n \in \mathbb{N})$ is the sequence $\phi_n := f_{n+1} - f_n$ $(n \in \mathbb{N})$.

The martingale difference sequence $(\phi_n, n \in \mathbb{N})$ is called a *unitary dyadic* martingale difference sequence or a UDMD sequence, if $|\phi_n(x)| = 1$ $(n \in \mathbb{N})$. According to Schipp [5], $(\phi_n, n \in \mathbb{N})$ is a UDMD sequence if and only if

(2)
$$\phi_n = r_n g_n, \ g_n \in L(\mathcal{A}_n), \ |g_n| = 1 \ (n \in \mathbb{N}).$$

The dyadic maximal operator and for $0 the <math>H_p$ norm is defined by

$$\mathcal{E}^*(f) := \sup_{n \in \mathbb{N}} |\mathcal{E}_n f| \quad (f \in L^1(\mathbb{I}))$$
$$\|f\|_{H^p} := \|\mathcal{E}^* f\|_p \quad (f \in L^1(\mathbb{I})).$$

2. The effect of transformations by a DMSP-function

Definition 1. We call a function $B : \mathbb{I} \to \mathbb{I}$ a dyadic martingale structure preserving function or shortly a *DMSP-function* if it is generated by a system of bijections $(\psi_n, n \in \mathbb{N}), \ \psi_n : \mathbb{A} \to \mathbb{A}$, and an arbitrary system $(\varphi_n, n \in \mathbb{N}^*), \ \varphi_n : \mathbb{A}^n \to \mathbb{A}$ in the following way:

(3)
$$(B(x))_0 := \psi_0(x_0), (B(x))_n := \psi_n(x_n) + \varphi_n(x_0, x_1, \dots, x_{n-1}) \quad (\text{mod } 2) \quad (n \in \mathbb{N}^*).$$

Proposition. For each generating systems $(\psi_n, n \in \mathbb{N})$ and $(\varphi_n, n \in \mathbb{N}^*)$, *B* is a bijection on \mathbb{I} and its inverse function, B^{-1} is also a DMSP-function.

The question, which function systems can be transformed by composition with a DMSP-function into a UDMD system, has a simple answer: exactly the UDMD systems.

Lemma 1. Let $B : \mathbb{I} \to \mathbb{I}$ be a DMSP-function. Then, for each $n \in \mathbb{N}$ we have

- a) $r_n \circ B = r_n \cdot h_n$ with some $h_n \in L(\mathcal{A}_n), |h_n| = 1$,
- (4) b) $L(\mathcal{A}_n)$ is invariant with respect to the composition with a DMSP function.

Proof. a) By the definition of y = B(x) we have

(5)
$$r_n(B(x)) = (-1)^{y_n} = (-1)^{\psi_n(x_n)} (-1)^{\varphi_n(x_0, \dots, x_{n-1})} = r_n(x)(-1)^{\psi_n(0)} (-1)^{\varphi_n(x_0, \dots, x_{n-1})} = r_n(x)h_n(x)$$

Obviously, $h_n(x) := (-1)^{\psi_n(0)} (-1)^{\varphi_n(x_0, \cdots, x_{n-1})} \in L(\mathcal{A}_n)$ and $|h_n| = 1$.

b) The statement is a simple consequence of the definitions.

Theorem 1. Let $B : \mathbb{I} \to \mathbb{I}$ be a DMSP-function. The function system $(f_n, n \in \mathbb{N})$ is a UDMD system on \mathbb{I} , if and only if $(f_n \circ B, n \in \mathbb{N})$ is a UDMD system on \mathbb{I} .

Proof. Let *B* be a DMSP-function. If $(f_n, n \in \mathbb{N})$ is a UDMD system, then by (2) there are functions $g_n \in L(\mathcal{A}_n)$ with $|g_n| = 1$ such that $f_n(x) = r_n(x)g_n(x)$ $(x \in \mathbb{I})$. It follows $r_n(B(x)) = r_n(x)h_n(x)$ for some $h_n \in L(\mathcal{A}_n)$, $|h_n| = 1$. Since $g_n \in L(\mathcal{A}_n)$ we have by Lemma 1, that $g_n \circ B \in L(\mathcal{A}_n)$. Consequently,

$$h_n (g_n \circ B) \in L(\mathcal{A}_n), \quad |h_n (g_n \circ B)| = 1, \text{ and}$$
$$f_n(B(x)) = r_n(B(x))g_n(B(x)) = r_n(x) \underbrace{h_n(x)g_n(B(x))}_{\in L(\mathcal{A}_n)} \qquad (x \in \mathbb{I}).$$

Thus $(f_n \circ B, n \in \mathbb{N})$ fulfills the requirements of a UDMD system formulated in (2).

Since the inverse of a DMSP-function is also a DMSP-function, it follows that if for any given system $(f_n, n \in \mathbb{N})$ the system $(g_n := f_n \circ B, n \in \mathbb{N})$ is a UDMD system, then the original one $(f_n = g_n \circ B^{-1}, n \in \mathbb{N})$ is also a UDMD system.

Remarks

1. As the Walsh-Paley functions $w_n (n \in \mathbb{N})$ and the functions $v_n (n \in \mathbb{N})$ are UDMD-product systems on \mathbb{I} , their composition with a DMSP-function result a UDMD-product system. For a precise statement see Remark 3.

2. Gát [1], [2] constructed a generalisation of the UDMD-systems, the so called Vilenkin-like systems on a more general space G_m . Extending the definition of the DMSP-functions to G_m , similar statement holds which is a consequence of Lemma 1, b) and Remark 3.

3. Schipp [7], [8] defined a general concept of systems, the adapted conditionally orthonormal systems or AC-ONS with respect to a regular sequence of weights. An AC-ONS on \mathbb{I} is transformed by composition with a DMSP-function into an AC-ONS, which is a consequence of Lemma 1, b) and (11).

4. As UDMD-systems are taken into UDMD-systems by a DMSP-transformation, it follows by [4] that a.e. convergence and (C, 1)-summation of functions $f \in L^1(\mathbb{I})$ are also preserved by this kind of transformation.

We will show that the function classes $L^p(\mathbb{I})$ $(0 and <math>H^p(\mathbb{I})$ (0 are invariant under the composition with a DMSP-function.

Lemma 2. Let $B : \mathbb{I} \to \mathbb{I}$ be a DMSP-function and $n \in \mathbb{N}$. Then

(6)
$$B(I_n(x)) = I_n(B(x)) \qquad (x \in \mathbb{I}).$$

Proof. If $t \in I_n(x)$, then $t_0 = x_0$, $t_1 = x_1, \ldots, t_{n-1} = x_{n-1}$. For k < n we have $\psi_k(t_k) + \varphi_k(t_0, t_1, \ldots, t_{k-1}) = \psi_k(x_k) + \varphi_k(x_0, x_1, \ldots, x_{k-1})$, that is, $(B(t))_k = (B(x))_k \ (k < n)$. Thus $B(t) \in I_n(B(x)) \ (t \in I_n(x))$, so

(7)
$$B(I_n(x)) \subseteq I_n(B(x)) \quad (x \in \mathbb{I}).$$

In particular (7) holds for the DMSP-function B^{-1} and x = B(y). Thus by

$$B^{-1}(I_n(B(y))) \subseteq I_n(y) \qquad (y \in \mathbb{I})$$

follows $I_n(B(y)) \subseteq B(I_n(y))$ $(y \in \mathbb{I})$, which completes the proof together with (7).

From (6) follows that $\mu(B(I_n(x))) = \mu(I_n(B(x))) = 2^{-n} = \mu(I_n(x))$, so $\mu(B(E)) = \mu(E)$ holds for each $E \in \mathcal{A}_n$. Thus

(8)
$$\mu(B(E)) = \mu(E) \qquad (E \in \mathcal{A}).$$

Consequently, $B : \mathbb{I} \to \mathbb{I}$ is measure preserving, i.e.

(9)
$$\int_{\mathbb{I}} f \circ B d\mu = \int_{\mathbb{I}} f d\mu \qquad (f \in L^{1}(\mathbb{I})).$$

Theorem 2. Composition with a DMSP-function preserves $L^p(\mathbb{I})$ $(0 and the dyadic Hardy space <math>H^p(\mathbb{I})$ (0 . Moreover,

(10)
$$||f \circ B||_p = ||f||_p \ (0$$

Proof. For $0 and <math>f \in L^p(\mathbb{I})$, we have by (9) that $||f \circ B||_p = ||f||_p < \infty$. Hence $f \circ B \in L^p(\mathbb{I})$.

If $f \in L^{\infty}(\mathbb{I})$, then for $M := ||f||_{\infty} \in \mathbb{R}$, we have $|f(x)| \leq M$ for a.e. $x \in \mathbb{I}$. By (8) follows that

$$\mu(\{x \in \mathbb{I} : |(f \circ B)(x)| > M \}) = \mu(\{B(x) \in \mathbb{I} : |f(B(x))| > M \}) = \\ = \mu(\{y \in \mathbb{I} : |f(y)| > M \}) = 0.$$

Hence $f \circ B \in L^{\infty}(\mathbb{I})$ and $||f \circ B||_{\infty} \leq ||f||_{\infty}$. As this holds also for DMSP function B^{-1} instead of B and $f \circ B$ instead of f, the first equality in (10) follows.

For $f \in H^p(\mathbb{I})$ $(0 we have by definition that <math>\|\mathcal{E}^* f\|_p < \infty$. By (6) follows that $1_{I_n(x)}(t) = 1_{I_n(B(x))}(B(t))$ $(t \in \mathbb{I})$. Hence by (9) we obtain

(11)

$$\mathcal{E}_{n} (f \circ B) (x) = \frac{1}{\mu(I_{n}(x))} \int_{I_{n}(x)} f(B(t)) d\mu(t) = \\ = 2^{n} \int_{\mathbb{I}} f(B(t)) \cdot 1_{I_{n}(x)}(t) d\mu(t) = \\ = 2^{n} \int_{\mathbb{I}} f(B(t)) \cdot 1_{I_{n}(B(x))} (B(t)) d\mu(t) = \\ = \frac{1}{\mu(I_{n}(B(x)))} \int_{I_{n}(B(x))} f(t) d\mu(t) \\ = \mathcal{E}_{n} (f) (B(x)).$$

Thus

$$\mathcal{E}^*(f \circ B) := \sup_{n \in \mathbb{N}} |\mathcal{E}_n (f \circ B)| = \sup_{n \in \mathbb{N}} |(\mathcal{E}_n f) \circ B| = (\mathcal{E}^* f) \circ B.$$

Then by the first equality in (10) we have

$$\|\mathcal{E}^*(f \circ B)\|_p = \|(\mathcal{E}^*f) \circ B\|_p = \|\mathcal{E}^*f\|_p < \infty.$$

Consequently, $f \circ B \in H^p(\mathbb{I})$ and $||f \circ B||_{H^p} = ||f||_{H^p}$ (0 .

Remark. From (10) and (11) follows that

$$||f \circ B||_{BMO} = \sup_{n \in \mathbb{N}} || (\mathcal{E}_n |f - \mathcal{E}_n f|^2)^{\frac{1}{2}} \circ B||_{\infty} = ||f||_{BMO}.$$

Thus the space of bounded dyadic mean oscillation BMO and the space of vanishing dyadic mean oscillation VMO are also preserved under composition with a DMSP-function. For more on these spaces see Schipp [5].

Recall, that for $\alpha > 0$ the function class Lip (α, \mathbb{B}) denotes the collection of functions $f : \mathbb{I} \to \mathbb{R}$ which satisfy

$$|f(y) - f(x)| \le c \ \rho(x, y)^{\alpha} \quad (x, y \in \mathbb{B})$$

for some constant $c \in \mathbb{R}$ which depends only on f.

Theorem 3. Composition with a DMSP-function preserves $\text{Lip}(\alpha, \mathbb{I})$ $(\alpha > 0).$

Proof. For $x, y \in \mathbb{I}$, $x \neq y$ consider $m := \min\{n : x_n \neq y_n\}$. Then $\rho(x, y) = 2^{-m}$ and m is the largest number in \mathbb{N} for which $x \in I_m(y)$. It follows from (6), that $B(x) \in I_m(B(y))$ and m is the largest integer with this property. Thus

$$\rho(B(x), B(y)) = 2^{-m} = \rho(x, y) \quad (x, y \in \mathbb{I}).$$

For $f \in \text{Lip}(\alpha, \mathbb{I})$ we have

$$|f(B(y)) - f(B(x))| \le c \ \rho (B(x), B(y))^{\alpha} = c \ \rho (x, y)^{\alpha}$$

for some $c \in \mathbb{R}$. That is, $f \circ B \in Lip(\alpha, \mathbb{I})$.

3. Examples of DMSP-functions

Consider the 2-series (or logical) field $(\mathbb{B}, \stackrel{\circ}{+}, \circ)$ and the 2-adic (or arithmetical) field $(\mathbb{B}, \stackrel{\bullet}{+}, \bullet)$.

The 2-series (or logical) sum $a \stackrel{\circ}{+} b$ and product $a \circ b$ of elements $a, b \in \mathbb{B}$ is defined by

$$a \stackrel{\circ}{+} b := (a_n + b_n \pmod{2}, \ n \in \mathbb{Z})$$
$$a \circ b := (c_n, n \in \mathbb{Z}), \text{ where } c_n := \sum_{k \in \mathbb{Z}} a_k b_{n-k} \pmod{2} \quad (n \in \mathbb{Z}).$$

The 2-adic (or arithmetical) sum a + b of elements $a = (a_n, n \in \mathbb{Z})$, $b = (b_n, n \in \mathbb{Z}) \in \mathbb{B}$ is defined by $a + b := (s_n, n \in \mathbb{Z})$ where the bits $q_n, s_n \in \mathbb{A}$ $(n \in \mathbb{Z})$ are obtained recursively as follows:

$$q_n = s_n = 0$$
 for $n < m := \min\{\pi(a), \pi(b)\},\$
and $a_n + b_n + q_{n-1} = 2q_n + s_n$ for $n \ge m$

The 2-adic (or arithmetical) product of $a, b \in \mathbb{B}$ is $a \bullet b := (p_n, n \in \mathbb{Z})$, where the sequences $q_n \in \mathbb{N}$ and $p_n \in \mathbb{A}$ $(n \in \mathbb{Z})$ are defined recursively by

$$q_n = p_n = 0$$
 $(n < m := \pi(a) + \pi(b))$
and $\sum_{j=-\infty}^{\infty} a_j b_{n-j} + q_{n-1} = 2q_n + p_n$ $(n \ge m)$

The reflection x^- of a byte $x = (x_j, j \in \mathbb{Z})$ is defined by

$$(x^{-})_j := \begin{cases} x_j, & \text{for } j \leq \pi(x) \\ 1 - x_j, & \text{for } j > \pi(x). \end{cases}$$

 $e := (\delta_{n0}, n \in \mathbb{Z})$, where δ_{nk} is the Kronecker-symbol. We will use the following notation: $a \stackrel{\bullet}{-} b := a \stackrel{\bullet}{+} b^-$.

1) The following functions are trivial DMSP-functions on $(\mathbb{B}, \stackrel{\circ}{+}, \circ)$ and $(\mathbb{B}, \stackrel{\circ}{+}, \bullet)$:

$$\begin{split} B(x) &:= x \stackrel{\circ}{+} a, \qquad B(x) := x \stackrel{\bullet}{+} a \qquad (a \in \mathbb{I}), \\ B(x) &:= x \circ a, \qquad B(x) := x \bullet a \qquad (a \in \mathbb{S}), \\ B(x) &:= x, \qquad B(x) := x^{-1} \qquad (x \in \mathbb{I}). \end{split}$$

The last one follows from the recursive expansion of x^{-1} in [6] pp. 41–42.

2) If $c_n \in \mathbb{I}$ satisfies $\pi(c_n) = n$ $(n \in \mathbb{N}^*)$, then the function

(12)
$$B(x) := \prod_{j=1}^{\infty} (e+c_j)^{x_j} = \prod_{j=1}^{\infty} (e+x_j c_j)^{x_j}$$

can be obtained by a simple recursion Therefore, it is a DMSP-function from \mathbb{I}_1 to S. See Schipp [6], pp 51-53. Its importance lies in the consequence, that the multiplicative digits of a given byte $y \in \mathbb{S}$ with respect to a sequence $(b_n = e + c_n, n \in \mathbb{N}^*), \ \pi(c_n) = n$ can be obtained from its additive digits.

3) The dyadic Blaschke functions, introduced by the author in [10] are also DMSP-functions:

For $a \in \mathbb{I}_1$ the logical Blaschke function on $(\mathbb{I}, \overset{\circ}{+}, \circ)$ is defined by

$$B_a(x) := (x \stackrel{\circ}{+} a) \circ (e \stackrel{\circ}{+} a \circ x)^{-1} = \frac{x \stackrel{\circ}{+} a}{e \stackrel{\circ}{+} a \circ x} \qquad (x \in \mathbb{I}).$$

With $y = B_a(x)$ we have $y = x \stackrel{\circ}{+} a \stackrel{\circ}{+} y \circ a \circ x$. So,

$$\begin{cases} y_n = 0, \text{ for } n < 0, \\ y_n = x_n + a_n + (y \circ a \circ x)_n \pmod{2}, \text{ for } n \ge 0. \end{cases}$$

Since the *n*-th digit of $y \circ a \circ x$ depends only on *a* and x_k -s with k < n, we have that the logical Blaschke function is a DMSP-function.

For $a \in \mathbb{I}_1$ the arithmetical Blaschke function on $(\mathbb{I}, +, \bullet)$ is defined by

$$B_a(x) := (x - a) \bullet (e - a \bullet x)^{-1} = \frac{x - a}{e - a \bullet x} \qquad (x \in \mathbb{I})$$

The same recursion method holds for the arithmetical Blaschke function, too. See Simon [10] or [9]. So, it is also a DMSP-function.

Remark. As the additive and multiplicative characters of I on both fields can be obtained recursively, their compositions with a DMSP-function result in a UDMD-product system.

For $n \in \mathbb{N}^*$ let $j := \max\{k \in \mathbb{N} : n \ge 2^k\}$. Then,

$$w_n \circ B = w_n \cdot g_j$$
 with some $g_j \in L(\mathcal{A}_j), |g_j| = 1,$
 $v_n \circ B = v_n \cdot g_j$ with some $g_j \in L(\mathcal{A}_j), |g_j| = 1.$

The statements hold obviously for n = j = 0, too.

Proof. We have $n = \sum_{i=0}^{j} n_i 2^i$. By (5) follows

$$w_n(B(x)) = \prod_{i=0}^{j} r_i^{n_i}(B(x)) = \prod_{i=0}^{j} r_i^{n_i}(x) h_i^{n_i}(x) =$$

= $w_n(x)g_j(x)$ $(n \in \mathbb{N}^*),$

where $h_i \in L(A_i)$ and $|h_i| = 1$ $(i \in \{0, 1, ..., j\})$. Thus $g_j := \prod_{i=0}^j h_i^{n_i} \in L(A_j)$ and $|g_j| = 1$.

The statement for $(v_n, n \in \mathbb{N})$ follows analogously.

References

- Gát, G., Orthonormal systems on Vilenkin groups, Acta Math. Hungar., 58(1-2) (1991), 193–198.
- [2] Gát, G., Convergence and summation with respect to Vilenkin-like systems, Recent Developments in: Abstract Harmonic Analysis with Applications in Signal Processing, Nauka, Belgrade and Elektronski fakultet, Nis, 1996, pp. 137–146.
- [3] Indlekofer, K.-H., Bemerkungen über äquivalante Potenzreihen von Funktionen mit gewissem Stetigkeitsmodul, Monatsh. Math., 76 (1972), 124–129.
- [4] Schipp, F., Universal contractive projections and a.e. convergence, in: Probability Theory and Applications, Essays to the Memory of József Mogyoródi, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992, pp. 47–75.
- [5] Schipp, F., W.R. Wade, P. Simon and J. Pál, Walsh Series, An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Ltd., Bristol and New York, (1990).
- [6] Schipp, F. and W.R. Wade, Transforms on Normed Fields, Pécs (1995), available also at http://numanal.inf.elte.hu/~schipp/Publications/Tr_NFields.pdf
- [7] Schipp, F., On L_p-norm convergence of series with respect to product systems, Analysis Math., 2 (1976), 49–64.
- [8] Schipp, F., On orthonormal product systems, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 20 (2004), 185-206.
- [9] Simon, I., The characters of the Blaschke-group of the arithmetic field, Studia Univ. "Babes-Bolyai", Mathematica, 54(3) (2009), 149–160.
- [10] Simon, I., Discrete Laguerre functions on the dyadic fields, PUMA, 17 (2006), 459–468.
- [11] Turán, P., A remark concerning the behavior of power series on the periphery of its convergence circle, *Publ. Inst. Math. (Beograd)*, 12 (1958), 19–26.

I. Simon

Institute of Mathematics and Informatics University of Pécs H-7624 Pécs, Ifjúság u. 6. Hungary simoni@gamma.ttk.pte.hu