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Abstract. Let b be a positive integer. We prove that every real number

can be written as sum of an integer and at most � b+1

2
� continued fractions

to the nearest integer each of which having partial quotients at least b.

1. Introduction and statement of the main results

In 1947, Hall [7] proved that every real number can be written as a sum of
an integer and two regular continued fractions each of which having partial quo-
tients less than or equal to four. Denoting by F(b) the set of those real numbers
x having a regular continued fraction expansion x = [a0, a1, a2, . . . , an, . . .] with
arbitrary a0 ∈ Z and partial quotients an ≤ b for n ∈ N (with N := {1, 2, . . .}),
where b is a positive integer, Hall’s theorem can be stated as F(4) + F(4) = R;
here the sumset A + B is defined as the set of all pairwise sums a + b with
a ∈ A and b ∈ B (also called Minkowski sum in some literature). There have
been several generalizations of Hall’s remarkable result. For example, Cusick
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We denote by L(b) the set of all real numbers x ∈ [− 1

2
, 1

2
) having a continued

fraction to the nearest integer with all partial quotients an being larger than or
equal to b, where b is a positive integer. Following Cusick [3] it is not difficult
to show that L(b) is a Cantor set and, in particular, of Lebesgue measure zero
(see also Rockett & Szüsz [12], Chapter V). The following theorem extends the
theorem of Cusick & Lee (1.1) to continued fractions to the nearest integer:

Theorem 1.1. Let b be a positive integer. Every real number can be written
as sum of an integer and at most � b+1

2
� continued fractions to the nearest

integer each of which having partial quotients at least b. Moreover, if b ≥ 3,
then

�

b+ 1

2

�

L(b) =
�

−
�

b+ 1

2

�

β,

�

b+ 1

2

�

β

�

,

with β = 1

2
(b −

√
b2 − 4), and the interval on the right hand-side has length

larger than one. The result is best possible in the following sense: if m < � b+1

2
�,

then mL(b) ⊂ [−mβ,mβ] and the interval on the right has length less than one.

This result is well-known in the case b = 2 (and the proof follows already
from Lemma 2.1 below). Notice that β ∼ 1

b
. Thus, comparing with the theorem

of Cusick & Lee (1.1), it follows that for general b only about half of the
continued fractions are needed when those are built with respect to the nearest
integer. This factor one half is a consequence of the fact that continued fractions
to the nearest integer have two signs. Moreover,

4

15
=
1

3 +

1

1 +

1

3
=
1

4 +

−1
4
;

hence, this number is an element of L(4) but not of S(4). This already indi-
cates that continued fractions to the nearest integer ’avoid’ very small partial
quotients. A last remark: whenever � b+1

2
� ≥ 2, that is b ≥ 3, the assertion of

the theorem implies also that there is a representation of any real number as a
difference of an integer and suitable continued fractions to the nearest integer.
For instance,

L(3)− L(3) = [
√
5− 3, 3−

√
5] = [−0.76393 . . . , 0.76393 . . .]

in contrast to the aforementioned results [4, 6, 2] for regular continued fractions
with bounded partial quotients. The reason behind is the symmetry of contin-
ued fractions to the nearest integer with respect to zero (simply by changing
the first sign �1 in the corresponding expansion).

Theorem 1.1 will be proved in Section 3. The case of complex continued
fractions to the nearest Gaussian integer will be discussed in the final section.
However, we start with some preliminaries.
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[4] and Divǐs [6] showed independently that F(3) + F(3) �= R; Hlavka [8] ob-
tained F(3) + F(4) = R as well as F(2) + F(4) �= R; Astels [2] proved among
other things that F(5) ± F(2) = R and, quite surprisingly, F(3) − F(3) = R.
Actually, Astels’ general approach [1] yields a powerful tool for any kind of
related questions with respect to regular continued fractions.

On the contrary, one may ask what one can get by adding continued
fractions where all partial quotients are larger than a given quantity. For
this purpose Cusick [3] defined for b ≥ 2 the set S(b) consisting of all
x = [0, a1, a2, . . . , an, . . .] ≤ b−1 containing no partial quotient less than b and
proved S(2) + S(2) = [0, 1]. ∗ In [5], Cusick & Lee extended this result by
proving

(1.1) bS(b) = [0, 1] for any integer b ≥ 2,

where the left hand-side is defined as the sumset of b copies of S(b). The result
of Cusick & Lee is best possible as the following example illustrates:

( 7

12
, 3

5
) �⊂ 2S(3) ⊂ [0, 2

3
].

Here we are concerned about an analogue of this result for continued fractions
to the nearest integer.

Given a real number x ∈ [− 1

2
, 1
2
), its continued fraction to the nearest

integer is of the form

x =
�1
a1 +

�2
a2 +

. . .
+

�n
an +

. . . ,

resp. x = [0, �1/a1, �2/a2, . . . , �n/an, . . .] for short. The partial quotients an
and signs �n = ±1 are determined by the map

x �→ T (x) =
1

|x| −
�

1

|x| +
1

2

�

for x �= 0

and T (0) = 0 on [− 1

2
, 1

2
) by setting �n = ±1 according to T n−1(x) being

positive or not, and

an :=

�

�n
T n−1(x)

+
1

2

�

,

where T k = T ◦ T k−1 denotes the kth iteration of T and T 0 is the identity.
This continued fraction expansion to the nearest integer was first introduced
by Minnigerode [10]. Notice that

(1.2) an + �n+1 ≥ 2

for n ∈ N. For further details we refer to Perron’s monograph [11].

∗The reader shan’t be confused by our use of rectangular brackets for closed intervals and

continued fractions. It’ll always be clear from the context what is meant.
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Figure 1. Distribution of the partial quotients a1 and a2; the structure is
fractal.

order to obtain precise intervals for the partial quotients we observe that on
the positive real axis

�

1

j + 1

2

,
1

j − 1

2

�

⊂ [− 1

2
, 1

2
),

provided j ≥ 3; the partial quotient 2 is assigned to the interval ( 2
5
, 1
2
), and a

partial quotient 1 is impossible. The case of negative x follows from symmetry
by switching the sign �1. Replacing x in the previous lemma by some iterate
T n−1
α (x), the formulae of the lemma follow. �

The following lemma is about a certain continued fraction to the nearest
integer which is involved in the statement of Theorem 1.1 and in many estimates
needed for its proof.

Lemma 2.2. For 3 ≤ b ∈ N, denote by

β := [0,+1/b,−1/b] := [0,+1/b,−1/b,−1/b, . . .]

the infinite eventually periodic continued fraction to the nearest integer with all
partial quotients an = b and signs �1 = +1 = −�n+1 for n ∈ N. Then,

β = 1

2
(b−

�

b2 − 4) ∼ 1

b
.

For b = 2 the formula yields β = 1, however, the expansion is not the
continued fraction expansion for 1 since Condition (1.2) is not fulfilled; fortu-
nately, this case of the theorem is already proved by the previous lemma. For
b ≥ 3, however, Condition (1.2) is satisfied and β is represented by the above
continued fraction expansion to the nearest integer; in all these cases β is an
irrational number inside [− 1

2
, 1

2
).
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2. Preliminaries

In the sequel we sometimes denote the nth partial quotient and the nth
sign in the continued fraction expansion to the nearest integer of x by an(x)
and �n(x), respectively.

Lemma 2.1. Given j, n ∈ N, we have an(x) = ±j if, and only if,

T n−1(x) ∈
�� −1

j − 1

2

,
−1

j + 1

2

�

∪
�

1

j + 1

2

,
1

j − 1

2

��

∩ [− 1

2
, 1

2
).

More precisely, for positive T n−1(x), we have �n(x) = +1 and

an(x) = j ≥ 3 ⇐⇒ T n−1(x) ∈
�

1

j + 1

2

,
1

j − 1

2

�

,

an(x) = 2 ⇐⇒ T n−1(x) ∈
�

2

5
, 1
2

�

.

while, for negative T n−1(x), we have �n(x) = −1 and

an(x) = j ≥ 3 ⇐⇒ T n−1(x) ∈
� −1
j − 1

2

,
−1

j + 1

2

�

,

an(x) = 2 ⇐⇒ T n−1(x) ∈
�

− 1

2
,− 2

5

�

.

A partial quotient equal to 1 is impossible.

This indicates a symmetry in the distribution of partial quotients with re-
spect to zero for the interior of the intervals. Furthermore, the lemma implies
Condition (1.2). Another trivial consequence is L(2) = [− 1

2
, 1

2
); hence, every

real number has a continued fraction expansion to the nearest integer with all
partial quotients being larger than or equal to two which is an assertion of the
theorem for b = 2. (See Figure 1 for an illustration.)

Proof. Writing

x =
�1(x)

1

|x|

=
�1(x)

� 1

|x| +
1

2
�+ 1

|x| − � 1

|x| +
1

2
� =

�1(x)

a1(x) + T (x)
,

we find a1(x) = j if, and only if,

|x| ∈
�

1

j + 1

2

,
1

j − 1

2

�

∩ [− 1

2
, 1

2
),

where the intersection on the right is with respect to the condition x ∈ [− 1

2
, 1
2
).

The corresponding intervals may or may not lie completely inside [− 1

2
, 1

2
). In
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Figure 1. Distribution of the partial quotients a1 and a2; the structure is
fractal.
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�
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b
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In view of the second partial quotient a2 ≥ b we further find by a simple
calculation

−1
b +

−1
b− 1

2

≤ x ≤ 1

b +

−1
b− 1

2

.

Going on, we find via an ≥ b the inequality

(3.1) −β ≤ x ≤ β

with β = [0,+1/b,−1/b,−1/b, . . .] = 1

2
(b−

√
b2 − 4) as in Lemma 2.2. Hence,

L(b) ⊂ [−β, β] and a necessary condition to find a representation of an arbitrary
real number as a sum of an integer and m continued fractions to the nearest
integer each of which having no partial quotient less than b is thatmL(b) covers
an interval of length at least one. We thus obtain the necessary inequality

|[−mβ,mβ]| = 2mβ ≥ 1.

In view of β ∼ b−1 by Lemma 2.2 we thus may expect m to be about b
2
.

However, m = � b−1

2
� will not suffice since

m =

�

b− 1
2

�

<
1

2β
=

b+
√
b2 − 4
4

<
b

2
,

as a simple computation shows.

For a start we remove from the complete interval [− 1

2
, 1

2
) the intervals

[− 1

2
,−β) and (β, 1

2
) according to Condition (3.1); obviously, the two signs

�1 = ±1 are responsible for removing intervals on both sides. Notice that
0 < β ≤ 1

2
(3 −

√
5) < 1

2
for any b ≥ 3. In the remaining closed interval

J0 := [−β, β] all real numbers x = [0, �1/a1, �2/a2, . . . , �n/an, . . .] have a first
partial quotient a1 ≥ b as already explained above. Now consider all such x
having sign �1 = � for some fixed � ∈ {±1} and partial quotient a1 = a for
some a ≥ b. Clearly, the set of those x forms an interval I1(�/a), say. Since
each element of I1(�/a) is of the form

x = [0, �/a+ T (x)] =
�

a+ T (x)

with T (x) ∈ [− 1

2
, 1
2
), we have either

I1(−1/a) = {x = [0,−1/a+ t] : t ∈ [− 1

2
, 1

2
)} =

�

[0,−1/a− 1

2
], [0,−1/a+ 1

2
]
�

or

I1(+1/a) = {x = [0,+1/a+ t] : t ∈ [− 1

2
, 1

2
)} =

�

[0,+1/a+ 1

2
], [0,+1/a− 1

2
]
�

according to the sign � = ±1. In view of the condition a2 ≥ b we remove from
any such I1(�/a) in the next step two semi-open intervals with boundary points
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Proof. In view of the definition of β,

β =
1

b +

−1
b +

−1
b +

. . . =
1

b− β
;

hence, β is the positive root of the quadratic equation β2 − bβ + 1 = 0. The
asymptotic formula for β follows easily from the Taylor expansion

β =
b

2

�

1−
�

1− 4

b2

�

=
1

b
+
1

b3
+
2

b5
+O

�

1

b7

�

.

The lemma is proved. �

The next and final lemma is due to Cusick & Lee [5]. It is a generalization
of Hall’s interval arithmetic for the addition of Cantor sets which is the core of
his method. We denote the length of an interval I by |I|.

Lemma 2.3. Let I0, I1, . . . , In be disjoint bounded closed intervals of real
numbers. Suppose that an open interval G is removed from the middle of I0,
leaving two closed intervals L and R on the left and right, respectively. If

(2.1) |G| ≤ (m− 1)min{|L|, |R|, |I1|, . . . , |In|}

for some positive integer m, then

m



L ∪R ∪
n
�

j=1

Ij



 = m

n
�

j=0

Ij .

Hence, if a sufficiently small interval is removed from the middle of some
interval in a certain disjoint union, still the m-folded sum of the shrinked union
adds up to the m-folded sum of the complete union. For the straightforward
proof we refer to Cusick & Lee [5].

3. A Cusick & Lee-type theorem

The method of proof is along the lines of Hall’s original paper [7] and Cusick
& Lee [5] as well. Since the case b = 2 has already been solved in the previous
section, we may suppose b ≥ 3.
Assume x = [0, �1/a1, �2/a2, . . . , �n/an, . . .] ∈ L(b), then, by Lemma 2.1,

the condition a1 ≥ b on the first partial quotient implies

− 1

b− 1

2

≤ x ≤ 1

b− 1

2

.



327

Sums of continued fractions to the nearest integer 327
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�
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�
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√
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4
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b

2
,
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2
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2
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√
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�
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2
, 1
2
), we have either

I1(−1/a) = {x = [0,−1/a+ t] : t ∈ [− 1

2
, 1

2
)} =

�
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2
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2
]
�

or
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2
, 1

2
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�
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2
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2
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�
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The main idea now is applying Lemma 2.3 to this dissection process over
and over again. In the beginning (when n = 0) we have J0 = [−β, β] and we
remove step by step all open intervals of the form

G1(+1/a) = ([0,+1/a+ 1− β], (0,+1/a+ β])

for all a ≥ b and their counterparts on the negative real axis. In fact, these are
two closed intervals L := [−β, [0,+1/a+ β]] and R := [[0,+1/a− β], β] on
the left and right of G1(+1/a). Lemma 2.3 implies

m(L ∪R) = m(L ∪G1(+1/a) ∪R) = mJ0,

provided Condition (2.1) for the lengths of the intervals of type G1 and L,R
is fulfilled. It is an easy computation to prove that the start of the Cantor dis-
section process gives no obstruction to the general case which we shall consider
below. In view of the symmetry the situation on the left is similar.

In the general case, we have to find the least positive integer m satisfying

(3.2) |Gn+1(a,±1/an+1)| ≤ (m− 1) min
an+1≥b

|Jn+1(a,±1/an+1)|

with arbitrary an+1 ≥ b. If this quantity m is found, then it follows from
Lemma 2.3 in combination with J0 = [−β, β] that mL(b) = [−mβ,mβ] and we
are done, provided 2mβ ≥ 1 in order to cover an interval of length at least one.
For this aim we compute the lengths of the corresponding intervals by the

standard continued fraction machinery as follows. Firstly, any continued frac-
tion to the nearest integer can be written as a convergent

x = [0, �1/a1, . . . , �n/an] =
pn
qn

with coprime pn and qn > 0. The numerators and denominators pn, qn satisfy
certain recursion formulae (as in the case of regular continued fractions; see
[11], Kapitel I), which leads to

[0, �1/a1, . . . , �n/an ± β] = [0, �1/a1, . . . , �n/an,±1/b− β] =
(b− β)pn ± pn−1

(b− β)qn ± qn−1

,

as well as

[0, �1/a1, . . . , �n/an,±1/an+1 + 1− β] =
(an+1 + 1− β)pn ± pn−1

(an+1 + 1− β)qn ± qn−1

,

and

[0, �1/a1, . . . , �n/an,±1/an+1 + β] =
(an+1 + β)pn ± pn−1

(an+1 + β)qn ± qn−1
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[0,±1/a ± 1

2
] and [0,±1/a ± β] on both sides. Consequently, the remaining

intervals are

J1(−1/a) := [[0,−1/a− β], [0,−1/a+ β]]

and

J1(+1/a) := [[0,+1/a+ β], [0,+1/a− β]] .

In general, we consider an interval Jn(a) consisting of those real numbers
x having a prescribed continued fraction expansion to the nearest integer;
denote by a an arbitrary admissible sequence of signs and partial quotients
�1/a1, . . . , �n/an, namely positive integers aj ≥ b and �j ∈ {±1}, then Jn(a) is
the closed interval

Jn(a) := [[0, �1/a1, . . . , �n/an − β], [0, �1/a1, . . . , �n/an + β]] .

Here and in the sequel it may happen that in an interval [A,B] or (A,B) we
have the relation A > B for the boundary points in which case the interval
is meant to be equal to [B,A], resp. (B,A). From such an interval Jn(a) we
remove the open intervals of the form

Gn+1(a
�) := ([0, �1/a1, . . . , �n/an, �/a+ 1− β], [0, �1/a1, . . . , �n/an, �/a+ β])

for any a ≥ b and � = ±1, where

a
� := a, �/a := �1/a1, . . . , �n/an, �/a

(by adding �/a to a at the end). This leads to further intervals of the form
Jn+1(a

�). Following Cusick & Lee [5], we call this the Cantor dissection process
(see Figure 2 for an illustration).

Figure 2. The first step of the Cantor dissection process for b = 3; for instance,
the number 2

7
= [0,+1/4− 1

2
] is excluded from L(b).
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The main idea now is applying Lemma 2.3 to this dissection process over
and over again. In the beginning (when n = 0) we have J0 = [−β, β] and we
remove step by step all open intervals of the form

G1(+1/a) = ([0,+1/a+ 1− β], (0,+1/a+ β])

for all a ≥ b and their counterparts on the negative real axis. In fact, these are
two closed intervals L := [−β, [0,+1/a+ β]] and R := [[0,+1/a− β], β] on
the left and right of G1(+1/a). Lemma 2.3 implies

m(L ∪R) = m(L ∪G1(+1/a) ∪R) = mJ0,

provided Condition (2.1) for the lengths of the intervals of type G1 and L,R
is fulfilled. It is an easy computation to prove that the start of the Cantor dis-
section process gives no obstruction to the general case which we shall consider
below. In view of the symmetry the situation on the left is similar.

In the general case, we have to find the least positive integer m satisfying

(3.2) |Gn+1(a,±1/an+1)| ≤ (m− 1) min
an+1≥b

|Jn+1(a,±1/an+1)|

with arbitrary an+1 ≥ b. If this quantity m is found, then it follows from
Lemma 2.3 in combination with J0 = [−β, β] that mL(b) = [−mβ,mβ] and we
are done, provided 2mβ ≥ 1 in order to cover an interval of length at least one.
For this aim we compute the lengths of the corresponding intervals by the

standard continued fraction machinery as follows. Firstly, any continued frac-
tion to the nearest integer can be written as a convergent

x = [0, �1/a1, . . . , �n/an] =
pn
qn

with coprime pn and qn > 0. The numerators and denominators pn, qn satisfy
certain recursion formulae (as in the case of regular continued fractions; see
[11], Kapitel I), which leads to

[0, �1/a1, . . . , �n/an ± β] = [0, �1/a1, . . . , �n/an,±1/b− β] =
(b− β)pn ± pn−1

(b− β)qn ± qn−1

,

as well as

[0, �1/a1, . . . , �n/an,±1/an+1 + 1− β] =
(an+1 + 1− β)pn ± pn−1

(an+1 + 1− β)qn ± qn−1

,

and

[0, �1/a1, . . . , �n/an,±1/an+1 + β] =
(an+1 + β)pn ± pn−1

(an+1 + β)qn ± qn−1



330

Sums of continued fractions to the nearest integer 331

where a0, a1 are integers and α2 is real (such that the expression on the left
makes sense). Hence, the theorem of Cusick & Lee (1.1) immediately implies
that every complex number z can be written as the sum of a Gaussian integer
and 2b regular continued fractions, where b of them have real partial quotients
an ≥ b while the others have partial quotients of the form ±ian with integral
an ≥ b. Here the set of partial quotients Z is replaced by the set of Gaussian
integers Z[i]. Using Theorem 1.1 we may deduce in the same way a comparable
result for continued fractions to the nearest integer in the complex case:

Corollary 4.1. Every complex number z can be written as the sum of
a Gaussian integer and 2� b+1

2
� continued fractions to the nearest Gaussian

integer, where half of them have real partial quotients an ≥ b while the other
half have partial quotients of the form ±ian with integral an ≥ b.

In future work we shall consider complex methods for continued fractions to
the nearest Gaussian integer as introduced by A. Hurwitz [9]. We expect that a
careful analysis of the complex case will allow representations with less complex
continued fractions. Of course, the partial quotients will not necessarily carry as
much structure as in the above application; they just will be ’random’ Gaussian
integers of absolute value at least b.
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after a short computation. Using this in combination with

pn+1qn − pnqn+1 = (−1)n
n+1
�

j=1

�j = ±1,

yields

|Gn+1(a
�)| = 1− 2β

((an+1 + β)qn ± qn−1)((an+1 + 1− β)qn ± qn−1)
,

as well as

|Jn+1(a
�)| = an+1 + 2β − b

((b− β)qn ± qn−1)((an+1 + β)qn ± qn−1)
,

and

|Jn+1(a
�)| = an+1 + 1− b

((an+1 + 1− β)qn ± qn−1)((b − β)qn ± qn−1)
,

depending on Jn+1(a
�) lying on the left or on the right of Gn+1(a

�). Plugging
this into (3.2), leads to

m− 1 ≥ max

�

1− 2β
an+1 + 2β − b

· (b− β)qn ± qn−1

(an+1 + 1− β)qn ± qn−1

,

1− 2β
an+1 + 1− b

· (b− β)qn ± qn−1

(an+1 + β)qn ± qn−1

�

.

In view of an+1 ≥ b we deduce the condition

m ≥ 1 + 1− 2β
2β

=
1

2β
=

b+
√
b2 − 4
4

Hence, we may choose m = � b+1

2
� as another short computation shows. This

proves the theorem.

4. Complex continued fractions

We conclude with some observations for complex continued fractions. Given
a complex number z = x+ iy, where i =

√
−1 denotes, as usual, the imaginary

unit in the upper half-plane, we may apply results for real continued fractions
to both, the real and the imaginary part of z separately. A short computation
shows

i

�

a0 +
1

a1 +

1

α2

�

= ia0 +
1

−ia1 +

1

iα2

,
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Abstract. In this paper we introduce a new example of sampling set for
the Bergman space which can be connected to the Blaschke group oper-
ation. Using this set we will generate a multiresolution analysis in the
Bergman space and we present properties of the projection operator on
the resolution levels. The construction is an analogy with the multireso-
lution generated by the discrete affine wavelets in the space of the square
integrable functions on the real line, and in fact is the discretization of the
continuous voice transform generated by a representation of the Blaschke
group over the Bergman space.

1. Introduction

The plan of this paper is as follows. First we present some basic results
connected to the Bergman space, we give the definition of the voice transform
generated by a representation of the Blaschke group on A2. In the second
section we introduce a discrete subset of the Blaschke group and we give a
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polation and approximation, reconstruction algorithm.
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1913; 2nd ed. 1929; 3rd ed. 1954 in two volumes.
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