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Abstract. We give the general solution of the functional equation

h1


x

λ1 (α+ y)


1

λ1 (α+ y)
fY (y) = h2


y

λ2 (β + x)


1

λ2 (β + x)
fX (x)

for all (x, y) ∈ R2
+ with nonnegative functions h1, h2, fX , fY : R+ → R,

such that there exist sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue
measure, on which these functions are positive

1. Introduction

In papers [8] and [9] we solved functional equation

(1.1) h1


x

λ1 (α+ y)


1

λ1 (α+ y)
fY (y) = h2


y

λ2 (β + x)


1

λ2 (β + x)
fX (x)

for almost all (x, y) ∈ R2
+ (R+ is the set of positive real numbers), by reducing it

to the same equation satisfied everywhere on R2
+. To do this we had to suppose
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(ii) In case α = 0, β > 0 equation (1.1) with the substitutions x → β x/y,
y → 1/y and with the notations

H1 (t) = h1


β

λ1
t


, H2 (t) = h2


1

λ2β

1

t


(t ∈ R+) ,

F1 (t) =
t

λ1
fY


1

t


, F2 (t) =

1

λ2β (1 + t)
fX (βt) (t ∈ R+)

provides us the equation

(2.2) H1 (x)F1 (y) = H2 (x+ y)F2


x

y



for all (x, y) ∈ R2
+.

(iii) In case α > 0, β = 0 equation (1.1) with the substitutions x → 1/y,
y → αx/y and with the notations

H1 (t) = h1


1

λ1αt


, H2 (t) = h2


α

λ2
t


(t ∈ R+) ,

F1 (t) =
1

λ1α (1 + t)
fY (αt) , F2 (t) =

t

λ2
fX


1

t


(t ∈ R+)

shows that equation

(2.3) H2 (x)F2 (y) = H1 (x+ y)F1


x

y



is satisfied for all (x, y) ∈ R2
+.

Remark 2.1. The definition of Fi, Hi (i = 1, 2) (in all three cases) shows
that the functions are nonnegative on R+ and there exist sets B1, B2, B3,
B4 ⊂ R+ with positive Lebesgue measure, on which they are positive.

Remark 2.2. In cases (ii) and (iii), equations (2.2) and (2.3) are dual to
each other with the cange of (H1, F1) and (H2, F2). Here we can use the results
of Baker ([1]) and Lajkó ([7]).

From the solutions of (2.1), (2.2) and (2.3) we get the solutions of (1.1) in
cases (i), (ii) and (iii), respectively.
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that the unknown functions in (1.1) are measurable and positive everywhere
on their domains.

Then in [6] and [10] we supposed only that the unknown functions in (1.1)
are density functions of some random variables (i.e. nonnegative and Lebegue
integrable with integral 1). We showed that they are positive almost everywhere
on their domains.

Here we give the general solution (without any regularity assumption) of
equation (1.1) for all (x, y) ∈ R2

+ with nonnegative functions h1, h2, fX ,
fY : R+ → R, such that there exist sets A1, A2, A3, A4 ⊂ R+ with posi-
tive Lebesgue measure, on which these functions are positive, respectively. We
also suppose that λ1, λ2 ∈ R+ and α, β ≥ 0 are arbitrary constants.
We use the following generalization of Steinhaus’ theorem ([2]):

Theorem 1.1. Let U be an open subset of R2 and F : U → R be a contin-
uously differentiable function with nonvanishing partial derivatives, moreover
let A, B ⊂ R (A×B ⊂ U) be measurable sets with positive Lebesgue measure,
then the set F (A,B) has an interior point, i.e. F (A,B) contains a nonvoid
open interval.

2. The reduction of equation (1.1)

We will distinguish three cases:

(i) α > 0, β > 0; (ii) α = 0, β > 0; (iii) α > 0, β = 0.

The case α = 0, β = 0 is skipped now.

(i) In case α > 0, β > 0 equation (1.1) with the substitution x → βx,
y → αy and with the notations

H1 (t) = h1


β

λ1α

1

t


, H2 (t) = h2


α

λ2β

1

t


(t ∈ R+) ,

F1 (y) =
1

λ1α (1 + y)
fY (αy) (y ∈ R+) , F2 (x) =

1

λ2β (1 + x)
fX (βx) (x ∈ R+)

gives us, that equation

(2.1) H1


y + 1

x


F1 (y) = H2


x+ 1

y


F2 (x)

is satisfied for all (x, y) ∈ R2
+.
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If we use the transformation

(T ) u = G1 (x, y) =
x+ y + 1

xy
, v = G2 (x, y) =

y + 1

x
, (x, y) ∈ R2

+

with the inverse transformation

(T−1) x = G1 (u, v) =
u+ v + 1

uv
, y = G2 (u, v) =

v + 1

u
, (x, y) ∈ R2

+,

we get from equation (3.1) the functional equation

(3.2) H1


u+ v + 1

uv


F1


v + 1

u


= H2 (u)F2 (v)

for all (u, v) ∈ R2
+.

Equations (3.2) and (3.1) are dual if we change (H1, F1) and (H2, F2), so
using equation (3.2) and Theorem 1.1, by precisely the same steps as above, we
can prove that the sets {H1 = 0} and {F1 = 0} contain nonvoid open interval,
say I = (a, b) ⊂ R+ and J = (c, d) ⊂ R+, respectively.

Then we have

H1 (x)F1 (y) = 0 for all x ∈ (a, b) and y ∈ (c, d) .

Hence by (3.2)

H2 (u) = 0 for all u ∈

x+ y + 1

xy
|x ∈ (a, b) , y ∈ (c, d)


= L1

and

F2 (v) = 0 for all v ∈

y + 1

x
|x ∈ (a, b) , y ∈ (c, d)


=M1.

We shall prove that

(3.3)





L1 =


b+ d+ 1

bd
,
a+ c+ 1

ac


= (a, b) ,

M1 =


c+ 1

b
,
d+ 1

a


= (c, d) .

We get for the Jacobian of T that

J =



−y + 1

x2y
−x+ 1

xy2

−y + 1

x2

1

x


= −y + 1

x3y


1 +

x+ 1

y


< 0,

thus T is regular.
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3. The general solution of (2.1)

First we prove that the solutions of the everywhere satisfied equation (2.1)
are positive everywhere on R+. To do this we will use Theorem 1.1 with
U = R2

+.

Theorem 3.1. Let H1, H2, F1, F2 : R+ → R be nonnegative functions, sat-
isfying (2.1) for all (x, y) ∈ R2

+ such that there exist sets B1, B2, B3, B4 ⊂ R+

with positive Lebesgue measure, on which the functions are positive, respec-
tively. Then H1, H2, F1, F2 : R+ → R are positive everywhere on R+.

Proof. We will use the notation {H1 = 0} = {x ∈ R+|H1 (x) = 0} and the
analogous notations {H2 = 0}, {F1 = 0}, {F2 = 0}.
First we will prove that the sets {H1 = 0}, {H2 = 0}, {F1 = 0}, {F2 = 0}

contain nonvoid open intervals, respectively.

If we use the transformation x → (y+1)/x we get from (2.1) the functional
equation

(3.1) H1 (x)F1 (y) = H2


x+ y + 1

xy


F2


y + 1

x


(x, y) ∈ R2

+.

To prove that {H2 = 0} contains a nonvoid open interval, we have to check
for the function G1 (x, y) =

x+y+1
xy (x, y ∈ R+) that

∂G1

∂x
(x, y) = −y + 1

x2y
< 0,

∂G1

∂y
(x, y) = −x+ 1

xy2
< 0.

Since H1 and F1 are positive on Lebesgue measurable sets B1 and B3 with
positive Lebesgue measure, respectively, then by Theorem 1.1 the set B1+B3+1

B1B3

contains a nonvoid open interval, thus H2 is different from 0 for all points of
the contained nonvoid open interval, thus {H2 = 0} contains a nonvoid open
interval.

Similarly, to prove that {F2 = 0} contains a nonvoid open interval we may
use for the function G2 (x, y) =

y+1
x (x, y ∈ R+) that the partial derivatives

∂G2

∂x
(x, y) = −y + 1

x2
< 0,

∂G2

∂y
(x, y) =

1

x
> 0

for all (x, y) ∈ R2
+. By Theorem 1.1 the set B3+1

B1
contains a nonvoid open in-

terval, thus F2 is different from zero for all points of this nonvoid open interval,
thus the set {F2 = 0} contains a nonvoid open interval.
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(c1, d1) =


b+ c+ 1

a+ c+ 1

a

b
c,

a+ d+ 1

b+ d+ 1

b

a
d


.

It is valid moreover, that a1 < a, b < b1, c1 < c and d < d1.

We have showed that

H1 (x)F1 (y) = 0 for all x ∈ (a, b) , y ∈ (c, d)

implies
H1 (x)F1 (y) = 0 for all x ∈ (a1, b1) , y ∈ (c1, d1) .

Now define positive sequences ak, bk, ck and dk by

(a) an+1 =
an + cn + 1 + cn (dn + 1) + ancn

(an + cn + 1) (dn + 1)
an,

(b) bn+1 =
bn + dn + 1 + dn (cn + 1) + bndn

(bn + dn + 1) (cn + 1)
bn,

(c) cn+1 =
bn + cn + 1

an + cn + 1

an
bn

cn,

(d) dn+1 =
an + dn + 1

bn + dn + 1

bn
an

dn,

for n = 1, 2, 3, . . .

By repeating the above argument and using induction we find

H1 (x)F1 (y) = 0 if x ∈ (an, bn) and y ∈ (cn, dn)

for every n = 1, 2, 3, . . .

We show that ā = limn→∞ an = 0, b̄ = limn→∞ bn = +∞, c̄ = limn→∞ cn =
= 0, d̄ = limn→∞ dn = +∞.
It is easy to see that ak and ck are strictly decreasing and bk, dk are

strictly increasing, further b̄ > 0, d̄ > 0, ā ≥ 0, c̄ ≥ 0.
From (b) we get

b̄ =
b̄+ d̄+ 1 + d̄ (c̄+ 1) + b̄d̄�

b̄+ d̄+ 1

(c̄+ 1)

b̄,

which implies b̄ = +∞ or in case 0 < b̄ < +∞

b̄+ d̄+ 1 + d̄ (c̄+ 1) + b̄d̄�
b̄+ d̄+ 1


(c̄+ 1)

= 1 ⇐⇒ d̄
�
b̄+ 1


= c̄

�
b̄+ 1


⇐⇒ d̄ = c̄,
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It is well known that under regular transformation the image of an open
connected domain is again an open connected domain (see [3]). Thus the image
of the open rectangle (a, b) × (c, d) is an open connected domain. Further the
image of the closed rectangle [a, b]× [c, d] is a closed domain and the boundary
of this domain is the image of the boundary of the closed rectangle.

One can easily see that the images of the lines

x = a, x = b, y = c and y = d

are the curves
u+ v + 1

uv
= a,

u+ v + 1

uv
= b,

v + 1

u
= c,

v + 1

u
= d.

By simple calculation we get (3.3).

Now using (3.2) and the fact, that H2 (u)F2 (v) = 0 for all u ∈ (a, b) and
for all v ∈ (c, d) and T−1 = T , by the same argument as above, we have

H1 (x) = 0 for all x ∈

b + d + 1

bd
,
a + c + 1

ac


= (a1, b1) ,

F1 (y) = 0 for all y ∈

c + 1

b
,
d + 1

a


= (c1, d1) .

It is easy to show, that

(a1, b1) =


a+ c+ 1 + c (d+ 1) + ac

(a+ c+ 1) (d+ 1)
a,

b+ d+ 1 + d (c+ 1) + bd

(b+ d+ 1) (c+ 1)
b


,
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Now we are ready to prove the following general result for (2.1).

Theorem 3.2. If the nonnegative functions Hi, Fi : R+ → R (i = 1, 2)
satisfy (2.1) for all (x, y) ∈ R2

+ and they are positive on sets B1, B2, B3,
B4 ⊂ R+ with positive Lebesgue measure, then

H1 (x) = exp (−l1 (x) + l2 (x) + l3 (x+ 1) + d2) (x ∈ R+) ,

H2 (x) = exp (l1 (x) + l2 (x) + l3 (x+ 1) + d1) (x ∈ R+) ,

F1 (x) = exp


l1


x+ 1

x


− l2 (x (x+ 1))− l3 (x)− d3


(x ∈ R+) ,

F2 (x) = exp


−l1


x+ 1

x


− l2 (x (x+ 1))− l3 (x)− d4


(x ∈ R+) ,

where li : R+ → R (i = 1, 2, 3) satisfies the Cauchy logarithmic equation

li (xy) = li (x) + li (y) (x, y ∈ R+)

and d1, d2, d3, d4 ∈ R are arbitrary constants with d1 + d3 = d2 + d4.

Proof. By Theorem 3.1 Hi, Fi (i = 1, 2) are positive. Taking the logarithm
of (2.1), we get the functional equation

ln


H2


x+ 1

y


+ ln


1

F1 (y)


= ln


H1


y + 1

x


+ ln


1

F2 (x)



for all (x, y) ∈ R2
+. Thus the functions

G1 = ln ◦H2, G2 = ln ◦H1, F 1 = ln ◦
1

F1
, F 2 = ln ◦

1

F2

satisfy the functional equation

G1


x+ 1

y


+ F 1 (y) = G2


y + 1

x


+ F 2 (x)

�
(x, y) ∈ R2

+


.

Using Theorem 6 from paper of Glavosits and Lajkó ([4]) and that

H2 = exp ◦G1, H1 = exp ◦G2, F1 = exp ◦
�
−F 1


, F2 = exp ◦

�
−F 2


,

we get immediately the statement of our Theorem. 
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but this is impossible, because c1 < d1 and ck is strictly decreasing, dk is
strictly increasing. So b̄ = +∞.
From (c) we get

cn+1 =
1 + cn+1

bn

an + cn + 1
ancn,

and by b̄ = +∞ this implies that

c̄ =
1

ā+ c̄+ 1
āc̄,

which provides that c̄ = 0 or

ā

ā+ c̄+ 1
= 1 ⇐⇒ c̄+ 1 = 0,

but this is a contradiction, because c̄ ≥ 0. Thus c̄ = 0.
From (a) by c̄ = 0 we get that

ā =
ā+ 1

(ā+ 1)
�
d̄+ 1

 ā

holds, which gives that ā = 0 or

ā+ 1

(ā+ 1)
�
d̄+ 1

 = 1 ⇐⇒ d̄+ 1 = 0,

but d̄ > 0 gives that it is impossible. Thus ā = 0.

From (d) we get

dn+1 =
1 + dn+1

an

1 + dn+1
bn

dn,

and this implies that

d̄ =
1 + d̄+1

ā

1 + d̄+1
b̄

d̄,

which is valid if d̄ = +∞ or 1
ā =

1
b̄
, but this is a contradiction, because ā = 0,

b̄ = +∞. Thus d̄ = +∞.
Then it follows that H1 and F1 are different from 0 everywhere on R+ and

therefore H2 and F2 are different from 0 everywhere on R+ as well.

Therefore H1, H2, F1, F2 are positive everywhere on R+. 
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1

F2

satisfy the functional equation

G1


x+ 1

y


+ F 1 (y) = G2


y + 1

x


+ F 2 (x)

�
(x, y) ∈ R2

+


.

Using Theorem 6 from paper of Glavosits and Lajkó ([4]) and that

H2 = exp ◦G1, H1 = exp ◦G2, F1 = exp ◦
�
−F 1


, F2 = exp ◦

�
−F 2


,

we get immediately the statement of our Theorem. 
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Theorem 5.1. If the nonnegative functions h1, h2, fX , fY : R+ → R
satisfy equation (1.1) in case (i) for all (x, y) ∈ R2

+ and they are positive on
the sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue measure, then

h1 (x) = exp


−l1


β

λ1α

1

x


+ l2


β

λ1α

1

x


+ l3


β

λ1α

1

x
+ 1


+ d2


,

h2 (x) = exp


l1


α

λ2β

1

x


+ l2


α

λ2β

1

x


+ l3


α

λ2β

1

x
+ 1


+ d1


,

fX (x) = λ2 (β + x) exp


−l1


x+ β

x


− l2


x (x+ β)

β2


− l3


x

β


− d4


,

fY (x) = λ1 (α+ x) exp


l1
x+ α

x


− l2


x (x+ α)

α2


− l3

x

α


− d3



for all x ∈ R+, where l1, l2, l3 : R+ → R are logarithmic functions and d1, d2,
d3, d4 ∈ R are arbitrary constants with d1 + d3 = d2 + d4.

Theorem 5.2. If the nonnegative functions h1, h2, fX , fY : R+ → R
satisfy equation (1.1) in case (ii) for all (x, y) ∈ R2

+ and they are positive on
the sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue measure, then

h1 (x) = exp


a


λ1

β
x


+ l1


λ1

β
x


+ d1


,

h2 (x) = exp


a


1

λ2β

1

x


+ l2


1

λ2β

1

x


+ d2


,

fX (x) = λ2 (β + x) exp


l1


x

β


− l2


x+ β

β


+ d4


,

fY (x) = λ1x exp


a


1

x


+ l2


1

x


− l1


1

x


+ d3



for all x ∈ R+, where a : R → R is additive, l1, l2 : R+ → R are logarithmic
functions and d1, d2, d3, d4 ∈ R are arbitrary constants with d1+d3 = d2+d4.

Theorem 5.3. If the nonnegative functions h1, h2, fX , fY : R+ → R
satisfy equation (1.1) in case (iii) for all (x, y) ∈ R2

+ and they are positive on
the sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue measure, then

h1 (x) = exp


a


1

λ1α

1

x


+ l2


1

λ1α

1

x


+ d2


,

h2 (x) = exp


a


λ2

α
x


+ l1


λ2

α
x


+ d1


,

fX (x) = λ2x exp


a


1

x


+ l2


1

x


− l1


1

x


+ d3


,

fY (x) = λ1 (α+ x) exp

l1
x

α


− l2

x+ α

α


+ d4



for all x ∈ R+, where a : R → R is additive, l1, l2 : R+ → R are logarithmic
functions and d1, d2, d3, d4 ∈ R are arbitrary constants with d1+d3 = d2+d4.
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4. The general solution of (2.2) and (2.3)

Using the main results of papers Baker ([1]) and Lajkó ([7]) for the general
solution of the so-called Olkin-Baker functional equation

f (x) g (y) = p (x+ y) q


x

y

 �
(x, y) ∈ R2

+


,

we get the following theorems for equation (2.2) and (2.3).

Theorem 4.1. If the nonnegative functions H1, H2, F1, F2 : R+ → R
satisfy (2.2) for all (x, y) ∈ R2

+ and they are positive on sets B1, B2, B3,
B4 ⊂ R+ with positive Lebesgue measure, then

H1 (x) = exp (a (x) + l1 (x) + d1) ,

H2 (x) = exp (a (x) + l2 (x) + d3) ,

F1 (x) = exp (a (x) + l2 (x)− l1 (x) + d2) ,

F2 (x) = exp (l2 (x)− l1 (x+ 1) + d4)

for all x ∈ R+, where a : R → R is additive, l1, l2 : R+ → R are logarithmic
functions and d1, d2, d3, d4 ∈ R are arbitrary constants with d1+d3 = d2+d4.

Theorem 4.2. If the nonnegative functions H1, H2, F1, F2 : R+ → R
satisfy (2.3) for all (x, y) ∈ R2

+ and they are positive on sets B1, B2, B3,
B4 ⊂ R+ with positive Lebesgue measure, then

H1 (x) = exp (a (x) + l2 (x) + d3) ,

H2 (x) = exp (a (x) + l1 (x) + d1) ,

F1 (x) = exp (a (x) + l2 (x)− l1 (x) + d2) ,

F2 (x) = exp (l2 (x)− l1 (x+ 1) + d4)

for all x ∈ R+, where a : R → R is additive, l1, l2 : R+ → R are logarithmic
functions and d1, d2, d3, d4 ∈ R are arbitrary constants with d1+d3 = d2+d4.

5. Main results for equation (1.1)

Using Theorems 3.2, 4.1 and 4.2 and the definitions of Hi, Fi (i = 1, 2) in
cases (i), (ii) and (iii), respectively, we get easily the following theorems for the
general solution of equation (1.1).
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Theorem 5.1. If the nonnegative functions h1, h2, fX , fY : R+ → R
satisfy equation (1.1) in case (i) for all (x, y) ∈ R2

+ and they are positive on
the sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue measure, then

h1 (x) = exp


−l1


β

λ1α

1

x


+ l2


β

λ1α

1

x


+ l3


β

λ1α

1

x
+ 1


+ d2


,

h2 (x) = exp


l1


α

λ2β

1

x


+ l2


α

λ2β

1

x


+ l3


α

λ2β

1

x
+ 1


+ d1


,

fX (x) = λ2 (β + x) exp


−l1


x+ β

x


− l2


x (x+ β)

β2


− l3


x

β


− d4


,

fY (x) = λ1 (α+ x) exp


l1
x+ α

x


− l2


x (x+ α)

α2


− l3

x

α


− d3



for all x ∈ R+, where l1, l2, l3 : R+ → R are logarithmic functions and d1, d2,
d3, d4 ∈ R are arbitrary constants with d1 + d3 = d2 + d4.

Theorem 5.2. If the nonnegative functions h1, h2, fX , fY : R+ → R
satisfy equation (1.1) in case (ii) for all (x, y) ∈ R2

+ and they are positive on
the sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue measure, then

h1 (x) = exp


a


λ1

β
x


+ l1


λ1

β
x


+ d1


,

h2 (x) = exp


a


1

λ2β

1

x


+ l2


1

λ2β

1

x


+ d2


,

fX (x) = λ2 (β + x) exp


l1


x

β


− l2


x+ β

β


+ d4


,

fY (x) = λ1x exp


a


1

x


+ l2


1

x


− l1


1

x


+ d3



for all x ∈ R+, where a : R → R is additive, l1, l2 : R+ → R are logarithmic
functions and d1, d2, d3, d4 ∈ R are arbitrary constants with d1+d3 = d2+d4.

Theorem 5.3. If the nonnegative functions h1, h2, fX , fY : R+ → R
satisfy equation (1.1) in case (iii) for all (x, y) ∈ R2

+ and they are positive on
the sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue measure, then

h1 (x) = exp


a


1

λ1α

1

x


+ l2


1

λ1α

1

x


+ d2


,

h2 (x) = exp


a


λ2

α
x


+ l1


λ2

α
x


+ d1


,

fX (x) = λ2x exp


a


1

x


+ l2


1

x


− l1


1

x


+ d3


,

fY (x) = λ1 (α+ x) exp

l1
x

α


− l2

x+ α

α


+ d4



for all x ∈ R+, where a : R → R is additive, l1, l2 : R+ → R are logarithmic
functions and d1, d2, d3, d4 ∈ R are arbitrary constants with d1+d3 = d2+d4.
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Abstract. Suppose that a power series f(z) =
∞

ν=0 aν(z − z0)
ν

with positive radius of convergence has a sequence of H.-O.-gaps. Then
there exists a neighborhood U(z0) of z0, such that the rearrangement
f(z) =

∞
ν=0 bν(z − ζ)ν also has H.-O.-gaps for all ζ ∈ U(z0).

1. Introduction

Let be given a power series
∞

ν=0 aν(z − z0)
ν with radius of convergence

R, where 0 < R < ∞. We say that this series has a sequence {pk, qk} of
Hadamard–Ostrowski-gaps (H.-O.-gaps for short) if the following conditions
hold:

• pk, qk are natural numbers with p1 < q1 < p2 < q2 < . . . ,

• there exists λ > 1 such that qk
pk

> λ for all k ∈ N,

• for I :=
∞
k=1

[pk, qk] we have limν→∞
ν∈I

|aν |1/ν < 1
R .

Key words and phrases: H.-O.-gaps, overconvergence, rearrangements.
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