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Abstract. We consider the so-called empirical version of the Hsu–Robbins
series and find conditions for the existence of its moments.

1. Introduction

Let Xk, k ≥ 1, be a sequence of independent identically distributed random
variables and let Sn, n ≥ 1, be the sequence of their partial sums. According
to Hsu and Robbins [5], the sequence {Sn/n} is said to converge completely to
a constant µ if

∞
n=1

P


Sn

n
− µ

 ≥ ε


< ∞ for all ε > 0.

In a more convenient form, the latter condition is written as

∞
n=1

P(|Sn − nµ| ≥ nε) < ∞ for all ε > 0.

Hsu and Robbins [5] found the sufficient condition for the complete convergence
of {Sn/n} to µ, namely

E[X1] = µ, E[X2
1 ] < ∞.

Later, Erdős [2] proved the converse.
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Remark 2. The case (a) is easy to treat for integer r. We show this for a
particular case of r = 2. Then

ξ2 =

i,j≥1

1I{|Si|≥εi}1I{|Sj |≥εj} =

=
∞
i=1


j≤i

1I{|Si|≥εi}1I{|Sj |≥εj} +

∞
i=1


j>i

1I{|Si|≥εi}1I{|Sj |≥εj}.

Denoting the terms on the right hand side by ξ21 and ξ22 , respectively, we have

ξ21 =

∞
i=1

1I{|Si|≥εi}


j≤i

1I{|Sj |≥εj}


≤

∞
i=1

i1I{|Si|≥εi}.

Passing to the expectations

E[ξ21 ] ≤
∞
i=1

iP(|Si| ≥ εi).

By the Baum–Katz theorem with r = 2, the latter series is finite if and only if
E[X1] = 0 and E[|X1|3] < ∞. The same holds for ξ22 and thus case (a) follows.

3. Proof of the main result

We start with the following elementary lemma.

Lemma. Let an ∈ {0, 1} for each n.

(i) Let r ≥ 1. Then, for all n ≥ 1,


n
k=1

ak

r

≤ r

n
k=1

kr−1ak.

(ii) Let 0 < r ≤ 1. Then, for all n ≥ 1,


n
k=1

ak

r

≥ r

r + 1

n
k=1

kr−1ak.

Proof of Lemma. (i) It is clear that for r ≥ 1

(k − 1)r−1 ≤
k

k−1

xr−1 dx ≤ kr−1, k ≥ 1,
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Motivated by their results we assume throughout that the first moment
exists and is zero and we introduce the random variable

ξ
def
=

∞
n=1

1I{|Sn|≥εn},

where 1IA is the indicator of a random event A. Note that the right hand side
depends on ε but since our results do not depend on this quantity we suppress
this variable in the variable ξ . Then the Hsu–Robbins–Erdős theorem is stated
as follows

E[ξ] < ∞ for all ε > 0 ⇐⇒ E[X1] = 0, E[X2
1 ] < ∞.

The aim of this note is to find necessary and sufficient conditions for

(1) E[ξr] < ∞ for all ε > 0

if r > 0. It turns out that this question is related to a Baum–Katz [1] result
extending the Hsu–Robbins–Erdős theorem. Below is a particular case of the
Baum–Katz result.

Theorem (Baum and Katz [1]). If r > 0, then

∞
n=1

nr−1P(|Sn| ≥ εn) < ∞ for all ε > 0

if and only if

(2) E[X1] = 0 and E[|X1|r+1] < ∞.

2. Main result

Theorem 1. The following implications hold:

(a) if r ≥ 1, then (2) implies (1);

(b) if 0 < r ≤ 1, then (1) implies (2).

Remark 1. In the case r = 1, we obtain that (1) is equivalent to (2). This
result is, in fact, the Hsu–Robbins–Erdős theorem.
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Proof of Theorem 1. Let an = 1I{|Sn|≥εn}. For (a), we apply case (i) of
the above Lemma:

ξr ≤ r

∞
k=1

kr−11I{|Sk|≥εk}.

Passing to the expectations

E[ξr] ≤ r

∞
k=1

kr−1P(|Sk| ≥ εk).

By the Baum–Katz theorem, the right hand side is finite if E[|X|r+1] < ∞.

For (b), we apply case (ii) of the above Lemma:

ξr ≥ r

r + 1

∞
k=1

kr−11I{|Sk|≥εk}

hence, (1) implies that the expectation of the right hand side is finite which
implies E[|X|r+1] < ∞ by the Baum–Katz theorem. Now standard arguments
imply that random variable X has expectation zero. 

Remark 3. We do not know whether the implications (1) =⇒ (2) for
0 < r < 1 and (2) =⇒ (1) for r ≥ 1 hold but we conjecture that the two
statements are equivalent for all r > 0 .

4. Extensions

Here we will consider the multiindex case. Therefore, let {Xk, k ∈ Zd
+}, X

be i.i.d. random variables, that is, we discuss a random field with index set Zd
+,

d ≥ 2, denoting the positive integer d-dimensional lattice with coordinate-wise
partial ordering ≤. As before we discuss partial sums Sn =


k≤n Xk, n ∈ Zd

+ .
Finally, let |n| = n1 · · · · · nd .

In the following we assume again that the expectation of X exists and is
zero. Now we investigate the random variable

ξd
def
=



k∈Zd
+

1I{|Sk|≥ε |k|} .

Similarly to the case of d = 1, we are interested in moment conditions implying
the existence of the r-th moment of ξd, i.e.,

(3) E[ξrd] < ∞ for all ε > 0.
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whence

r

n

0

xr−1 dx = nr ≤ r

n
k=1

kr−1 for all n ≥ 1 .

Next, for 0 < r ≤ 1

r

n

0

xr−1 dx = nr ≥ r


n

k=1

(k − 1)r−1 + nr−1 − nr−1


≥ r


n

k=1

kr−1


− rnr

which in turn implies

nr ≥ r

r + 1

n
k=1

kr−1 .

Now fix n and let

In = {k ≤ n : ak = 1}, m = mn = card(In).

Then
In = {i1, . . . , im}, 1 ≤ i1 < · · · < im ≤ n.

It is clear that
i1 ≥ 1, . . . , im ≥ m.

Therefore

(a1 + · · ·+ an)
r = mr ≤ r(1r−1 + · · ·+mr−1) ≤
≤ r(ir−1

1 + · · ·+ ir−1
m ) =

= r(ir−1
1 ai1 + · · ·+ ir−1

m aim) =

= r
n

k=1

kr−1ak

which proves the case (i).

(ii)We use the same notation In,m, and i1, . . . , im as in the proof of case (i).
Since 0 < r ≤ 1 we find

(a1 + · · ·+ an)
r = mr ≥

≥ r

r + 1

m
k=1

kr−1 ≥

≥ r

r + 1
(ir−1

1 ai1 + · · ·+ ir−1
m aim) ≥

≥ r

r + 1

n
k=1

kr−1ak

which proves the case (ii). 
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with some positive c > 0. As above, we conclude that for r ≥ 1 and any
positive integer n

 
|k|≤n

ak

r

= mr ≤

≤ r
�
1r−1 + · · ·+mr−1


≤

≤ c r

|k1|r−1(log |k1|)(d−1)(r−1) + · · ·+

+ |km|r−1(log |km|)(d−1)(r−1)

=

= c r

|k1|r−1(log |k1|)(d−1)(r−1)ak1

+ · · ·+

+ |km|r−1(log |km|)(d−1)(r−1)akm


=

= c r

|k|≤n

|k|r−1(log |k|)(d−1)(r−1)ak .

Hence

E[ξrd] ≤ cr

|k|≥1

|k|r−1(log |k|)(d−1)(r−1)P(|Sk| > |k|ε) =

= cr

≥1

d() r−1(log )(d−1)(r−1)P(|S| >  ε) .

In sums with otherwise smooth summands we may replace d() by the asymp-
totic derivative of M(), i.e., (log )d−1. Hence, the last sum above is finite
if and only if (4) holds, as it can formally be seen using arguments similar
to those in the proof Lemma 3.1 in [3] or on page 2448 in [6]. The converse
implication follows as in the proof of Theorem 1 (b) and the arguments in the
proof of Lemma 3.1 in [3] or [6] again (the case of an arbitrary slowly varying
function is treated in [4] for d = 1). In doing so we use the inequality

νr−1 ≥ M()r−1 ≥ c(|kν |(log |kν |+ 1)d−1)r−1, 0 < r ≤ 1,

that follows from (5). 

Remark 4. Again we conjecture that the moment condition (4) is equiva-
lent to the moment condition (3).

Acknowledgement. The authors are grateful to the referee for the com-
ments and suggestions leading to improving the style of the presentation.
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Typically in these kind of results one needs a somewhat stronger moment con-
dition on X in case d > 1 as compared to d = 1 , namely

(4) E[|X|r+1(log+ |X|)(d−1) r] < ∞,

here log+ x = log(1+ x) for x ≥ 0. Now, we are ready to formulate our second
result.

Theorem 2. The following implications hold:

(a) if r ≥ 1, then (4) implies (3);

(b) if 0 < r ≤ 1, then (3) implies (4).

Proof. The proof follows similar arguments as the one for Theorem 1. Let
ak = 1I{|Sk|≥ε |k|}, k ∈ Zd

+, and for any positive integer n let

In = {k : |k| ≤ n and ak = 1}, m = mn = card(In) .

Then
In = {k1, . . . ,km}

where the indices are ordered along the hyperbolas |k| = ,  = 1, 2, . . . , and
therein in lexicographic order. In general we do not have any more that |kν | ≥ ν
since several indices may be incident to the same “hyperbola” |k| = ν. We
write d() = #{k ∈ Zd

+ with |k| = }. The terms d() themselves do not have
a nice asymptotic behavior, but their partial sums M(n) =

n
=1 d() have the

asymptotic

M(n) ∼ 1

(d− 1)!
n (logn)d−1, n → ∞,

see [7]. This asymptotic is well known in the generalized Dirichlet divisor
problem. In fact, we do not need the precise asymptotic for the proof below,
while the asymptotic relation

M(n)  n(logn)d−1

is sufficient for our purposes. The latter relation can be proved by comparing
M(n) and the volume of the domain

x1 ≥ 1, . . . , xd ≥ 1, x1 . . . xd ≤ n

in the space Rd.

Now we conclude that if |kν | = , then

(5) ν ≤ M() =M(|kν |) ≤ c|kν |(log |kν |)d−1
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Abstract. In [1] number system constructions were analysed using general
block diagonal bases. As a special case simultaneous systems were consid-
ered in the lattice of Gaussian integers. Extending the result of G. Nagy
[2] it was proved that except 43 cases, the Gaussian integers can always
serve as basic blocks for simultaneous number systems using dense digit
sets. In this paper we analyze the remaining cases and we give a complete
solution for the problem.

1. Introduction

Let Λ be a lattice in Rn, M : Λ → Λ be a linear operator such that
det(M) = 0, and let D be a finite subset of Λ containing 0.

Definition 1.1. The triple (Λ,M,D) is called a generalized number system
(GNS) if every element x of Λ has a unique, finite representation of the form

x =

l
i=0

M idi

where di ∈ D and l ∈ N, dl = 0.

Key words and phrases: Simultaneous number systems, digital expansions.
2010 Mathematics Subject Classification: 11Y55.
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