SOME REMARKS ON A RESULT OF TIMOFEEV AND KHRIPUNOVA

Imre Kátai (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer on his seventieth anniversary

Communicated by Bui Minh Phong

(Received September 24, 2012; accepted November 10, 2012)

Abstract. The sum $\sum_{\substack{n \leq x \\ n \in \mathcal{N}_k}} \tau(n-1)\omega(n+1)$ is investigated where $\tau(n) =$ = number of divisors of n, $\omega(n) =$ number of prime divisors of n, $\Omega(n) =$ = number of prime power divisors of n, $\mathcal{N}_k = \{n | \Omega(n) = k\}$.

1. Introduction

1.1. Notation

 \mathcal{P} = set of primes, p and q with and without indices always denote prime numbers. $\omega(n)$ = number of distinct prime factors of n; $\Omega(n)$ = number of prime power divisors of n; $\tau(n)$ = number of divisors of n; $\tau_k(n)$ = number of positive integers x_1, x_2, \ldots, x_k satisfying $n = x_1 \cdots x_k$. Let p(n) be the smallest and P(n) be the largest prime factor of n. For some integer $k \ge 1$ let $\mathcal{P}_k := \{n \mid \omega(n) = k\}; \ \mathcal{N}_k := \{n \mid \Omega(n) = k\}, \ \pi_k(x) := \#\{n \le x \mid n \in \mathcal{P}_k\}, \ N_k(x) := \#\{n \le x \mid \Omega(n) = k\}.$

Key words and phrases: Divisor function, prime divisor function, square-full integers. 2010 Mathematics Subject Classification: 11N37.

Research supported by the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645).

Furthermore we shall write x_k instead of the k-fold iterate of $\log x$, i.e. $x_1 = \log x$, $x_2 = \log x_1$, $x_3 = \log x_2$,... (We shall use this abbreviation only for the variable x.)

1.2. Preliminaries

Sathe [1] and A. Selberg [2] showed that for $x \ge 3$, $1 \le k \le (2 - \xi) x_2$, where $0 < \xi < 1$, we have

$$N_k(x) = \frac{x}{x_1} F\left(\frac{k}{x_2}\right) \frac{x_2}{(k-1)!} \left(1 + \mathcal{O}_{\xi}\left(\frac{1}{x_2}\right)\right).$$

Here

$$F(z) := \frac{1}{\Gamma(z+1)} \prod_{p} \left(1 - \frac{1}{p}\right)^{z} \left(1 - \frac{z}{p}\right)^{-1},$$

 $\Gamma(x)$ is the Euler gamma function.

For $(2 + \varepsilon) x_2 \leq k \leq x_1/\log 2$ the behaviour of $N_k(x)$ was studied by J.-L. Nicolas [3]. He proved, that in this range of k,

$$N_{k}(x) = \frac{Cx}{2^{k}}\log\frac{x}{2^{k}} + \mathcal{O}\left(\frac{x}{2^{k}}\left(\log\frac{3x}{2^{k}}\right)^{\beta}\right)$$

where $0 < \beta < 1$, and

$$C = \frac{1}{4} \prod_{p>2} \left(1 + \frac{1}{p(p-2)} \right).$$

Similar theorem is valid for $\pi_k(x)$. Let

$$\lambda(z) := \frac{1}{\Gamma(z+1)} \prod_{p} \left(1 + \frac{z}{p-1} \right) \left(1 - \frac{1}{p} \right)^{z}.$$

Let A > 0 be an arbitrary constant. Then, uniformly as $x \ge 3$, $1 \le k \le Ax_2$ we have

$$\pi_k\left(x\right) = \frac{x}{x_1} \cdot \frac{x_2^{k-1}}{(k-1)!} \left\{ \lambda\left(\frac{k-1}{x_2}\right) + \mathcal{O}\left(\frac{k}{x_2^2}\right) \right\},\,$$

where the constant, implied by the error term may depend on A.

N.M. Timofeev and M.B. Khripunova in their paper [4] proved a theorem of Titchmarsh type, and of a Vinogradov–Bombieri type for the integers in \mathcal{N}_k which is quoted in this paper as Lemma 1 and Lemma 2.

Let $t \geq 2$, $Q(t) = \prod_{p < t} p$, $p \in \mathcal{P}$. Let $\varepsilon, \varepsilon_1, \varepsilon_2, \ldots$ be arbitrary small positive numbers. Denote

$$\mu(x, k, t, a, d) := \#\{n \le x | n \in \mathcal{N}_k, \quad (n, Q(t)) = 1, \quad n \equiv a \pmod{d}\}$$

Lemma 1. Let $2 \le t \le \sqrt{x}$, $k \le x_2^2$, and let

$$\sum_{d \le Q} \max_{y \le x} \max_{(a,d)=1} \left| \mu(y,k,t,a,d) - \frac{1}{\varphi(d)} \#\{n \le y | n \in \mathcal{N}_k, (n,dQ(t)) = 1\} \right|.$$

 $\Lambda_{+}(t) =$

Then

$$\Delta_k(t) \ll Q\sqrt{x} \exp\left(x_2^{2+\varepsilon}\right) + \frac{x}{x_1^B},$$

where $\varepsilon > 0$ and B are arbitrary positive constants.

Lemma 2. Suppose $k \leq (2-\varepsilon) x_2$, $0 < \varepsilon < 1$, $d \leq x^{\frac{1}{2}+\alpha(k)}$, $2 \leq t \leq x^{\beta(k)}$, $\alpha(k) = \frac{1}{3k}$ and $\beta(k) = \frac{1}{10} \exp\left(-\frac{k}{2}\right)$. Let $0 < \varepsilon_1 < 1$. Then there exists a constant $c(\varepsilon, \varepsilon_1)$ such that

$$\mu\left(x,k,t,a,d\right) \le c\left(\varepsilon,\varepsilon_{1}\right) \frac{x}{\varphi\left(d\right)x_{1}} \left(1+\varepsilon_{1}\right)^{k} \frac{\left(\log\frac{x_{1}}{\log t}\right)^{k-1}}{(k-1)!}.$$

They used their results to prove the asymptotic of the sums

$$\sum_{\substack{n \in \mathcal{N}_k \\ n \leq x}} \tau (n-1) \quad \text{in [4], and} \quad \sum_{\substack{n < N \\ n \in \mathcal{N}_k}} \tau (N-n) \quad \text{in [5]}$$

Solving a weakened conjecture of Ivič [6] I proved in [7] that

(1.1)
$$\sum_{n \le x} \tau \left(n + \tau \left(n \right) \right) = \mathcal{D}xx_1 + \mathcal{O}\left(\frac{xx_1}{x_2}\right).$$

(1.1) is an easy consequence of Lemma 1. The proof is going on the usual way with the help of Lemma 1. Finally we proved that the contribution of the integers $n \in \bigcup_{k \ge (2-\varepsilon)x_2} \mathcal{N}_k$ to (1.1) is less than $\mathcal{O}\left(\frac{xx_1}{x_2}\right)$.

As we mentioned in [7] one can prove similarly

(1.2)
$$\sum_{n \le x} \tau \left(n + f(n) \right) = \mathcal{D}_f x x_1 + \mathcal{O}\left(\frac{x x_1}{x_2}\right)$$

with some constants $\mathcal{D}_f > 0$, if $f(n) = \omega(n), \Omega(n), \tau(\tau(n)), 2^{\omega(n)}, \tau_k(n)$, where $\tau_k(n)$ is the number of solutions of $n = u_1 \dots u_k$ in positive integers u_1, \dots, u_k . Similar theorems can be proved if we substitute τ on the left hand side of (1.2) by $2^{\omega(m)}$. Even one can prove the asymptotic of (1.2) if we sum only on the set $n \in \mathcal{N}_k$ for a given k uniformly as $1 \le k \le (2 - \varepsilon) x_2$. Changing τ into τ_3 in (1.2), we stock. We are able to prove only the exact order of $\sum_{n \le x} \tau_3 (n + f(n))$.

1.3. On sums of form $\sum \tau (f(n) n)$

Assume that f is a multiplicative function taking on positive integer values, $1 \leq f(p^a) < ca^{c_1}$ with suitable constants c, c_1 , and $f(p) = A \in \mathcal{P}$ for every prime p.

Let

$$A_{y}(n) := \prod_{\substack{p^{\alpha} \mid \mid n \\ p < y}} p^{\alpha}, \quad B_{y}(n) := \prod_{\substack{p^{\alpha} \mid \mid n \\ p \ge y}} p^{\alpha}.$$

Then $n = A_y(n) \cdot B_y(n)$.

Let $y = x_2$, and A_x be a monotonically increasing sequence tending to infinity as $x \to \infty$.

One can observe that the contribution of $\sum_{n \leq x} \tau(f(n)n)$ for those n for which $B_{x_2}(n)$ is not square-free, or $A_{x_2} > x_2^{\overline{A}_x}$ is $o(xx_1x_2)$. For the other integers n we can write $f(n) = f(A_{x_2}(n)) \cdot A^{\omega(B_{x_2}(n))}$, $nf(n) = A_{x_2}(n) f(A_{x_2}(n)) \cdot A^{\omega(B_{x_2}(n))} \cdot B_{x_2}(n)$.

Let K run over the integers up to $x_2^{A_x}$ satisfying $P(K) \leq x_2$, and m run over the square free integers m satisfying $p(m) > x_2$. Let $Kf(K) = A^{\alpha(K)}R_K$, where $(R_K, A) = 1$. Thus we have

(1.3)
$$\sum_{n \le x} \tau (f(n)n) = \sum_{K} \tau (R_K) \sum_{m \le x/K} (\omega(m) + \alpha(K) + 1) \tau (m) + o(xx_1x_2).$$

It remained to estimate the sums

1

$$\sum_{\substack{m \leq y \\ \gamma(m) \geq x_2}} \tau(m) |\mu(m)|, \quad \sum_{m \leq y} \tau(m) |\mu(m)| \omega(m)$$

for $x/x_2^{A_x} \le y \le x$, which can be done on routine way.

Thus we have

$$\sum_{n \le x} \tau \left(f(n) \, n \right) = (1 + o_x(1)) \, cx x_1 x_2$$

we do not want to give a complete proof of this relation.

1.4. Theorems

We shall prove

Theorem 1. Let $r \geq 2$ be an integer. Then

(1.4)
$$S(x) := \sum_{n \le x} \tau_r \left(\tau(n) \, n \right) = (1 + o(1)) \, cx x_1 x_2^{r-1}$$

holds, where c is a suitable positive constant.

Theorem 2. We have

(1.5)
$$T(x) := \sum_{n \le x} \tau (n\tau (n-1)) = C (1 + o_x (1)) x x_1 x_2,$$

where C is a positive constant.

1.5.

In the proof of Theorem 2 we shall use Lemma 3. For some integer $\mathcal{D} > 0$ let $\mathcal{B}_{\mathcal{D}}$ be the semigroup generated by $\{1, p_1, \ldots, p_r\}$ where p_1, \ldots, p_r are the prime factors of \mathcal{D} , i.e. $\mathcal{B}_{\mathcal{D}} = \{1, p_1^{\alpha_1}, \ldots, p_r^{\alpha_r} | \alpha_j = 0, 1, 2, \ldots; j = 1, \ldots, r\}$. Let $\alpha_p(n)$ be that exponent k for which $p^k | n$ and $p^{k+1} \nmid n$.

Lemma 3. Let $A, B, C \leq x_1$ be positive integers, (A, B) = 1, q run over the primes in $\mathcal{I} = [x_1^2, x^{\eta}]$, where $0 < \eta < 1/10$. Then

(1.6)
$$\sum_{q \in \mathcal{I}} \sum_{\substack{A\nu \equiv 1 \pmod{Bq} \\ p\nu \leq x}} \tau \left(CA\nu \right) = E\left(A, B, C\right) xx_1x_2 + \mathcal{O}\left(xx_2 \right),$$

where

$$E(A, B, C) = \frac{2}{A\varphi(B)} \prod_{p|(B,C)} \tau\left(p^{\alpha_p(C)}\right) \prod_{\substack{p|AC\\p \nmid B}} \left(1 - \frac{1}{p}\right)^2 \sum_{\mu=0}^{\infty} \frac{p^{\alpha_p(C) + \alpha_p(A)}}{p^{\mu}},$$

and the constant implied by the \mathcal{O} term may depend on A, B, C.

Remark. One can prove better assertions, by using known results of D.I. Tolev [9] or Heath–Brown [10], but this lemma is sufficient for our purposes.

Theorem 3. Let

$$S_k(x) := \sum_{\substack{n \le x \\ n \in \mathcal{N}_k}} \tau(n-1) \omega(n+1).$$

Let $0 < \xi < 1$. Then, for $1 \le k \le (2 - \xi) x_2$ we have

(1.7)
$$S_{k}(x) = (1 + o_{x}(1)) x x_{2} \prod_{p} \left(1 + \frac{1}{p(p-1)} \right) \times \prod_{p} \left(1 - \frac{k-1}{(p^{2} - p + 1) x_{2}} \right) F\left(\frac{k}{x_{2}}\right) \frac{x_{2}^{k-1}}{(k-1)!}.$$

Here F is defined in Section 1.1.

Especially, for k = 1:

$$S_{1}(x) := \sum_{p \le x} \tau (p-1) \omega (p+1) = (1 + o_{x}(1)) Cxx_{2},$$

where

$$C = \prod \left(1 + \frac{1}{p(p-1)} \right).$$

Remark. Timofeev and Khripunova proved in [4] that

(1.8)
$$\sum_{\substack{n \le x \\ n \in \mathcal{N}_k}} \tau (n-1) = x \prod_p \left(1 + \frac{1}{p(p-1)} \right) \prod_p \left(1 - \frac{k-1}{(p^2 - p + 1)x_2} \right) \times F\left(\frac{k}{x_2}\right) \frac{x_2^{k-1}}{(k-1)!} \left(1 + \mathcal{O}_{\xi}\left(\frac{1}{\sqrt{x_2}}\right) \right).$$

2. Proof of Theorem 1

It is known that $\sum_{m \leq y} \tau_r(m) \leq C_1 y (\log y)^{r-1}$, if $y \geq 2$, furthermore that $\tau_r(ab) \leq \tau_r(a) \cdot \tau_r(b)$.

Let us write every n in the form n = Km, where K is the square-full part and m is the square-free part of n.

Since
$$n\tau(n) = K \cdot \tau(K) \cdot 2^{\omega(n)} \cdot m$$
, we obtain that

$$\tau_{r}(n\tau(n)) \leq \tau_{r}(K) \cdot \tau_{r}(\tau(K)) \tau_{r}(m) \binom{\omega(m) + r - 1}{r - 1} \leq C_{2}\tau_{r}(K) \tau_{r}(K) \omega(m)^{r-1}.$$

It is clear, furthermore, that

$$\sum_{m \le y} \tau_r(m) \,\omega(m)^{r-1} \le C_3 \sum_{j=1}^r \sum_{p_1 < \dots < p_j} \tau_r(p_1 \dots p_j \nu) \le \\ \le C_4(r) \, y \,(\log y)^{r-1} \sum_{j=1}^{r-1} \sum_{p_1 < \dots p_j < y} \frac{\tau_r(p_1) \dots \tau_r(p_j)}{p_1 \dots p_j} \le \\ \le C_5(r) \, y \,(\log y)^{r-1} \left(1 + \sum_{p < y} \frac{\tau_r(p)}{p}\right)^{r-1} \le \\ \le C_6(r) \, y \,(\log y)^{r-1} \,(\log \log 10y)^{r-1} \,.$$

It is obvious that

$$\sum \frac{\tau_r\left(K\right)\tau_r\left(\tau\left(K\right)\right)}{K}$$

is convergent, where K runs over the square-full integers.

Let

(2.1)
$$T_K(x) = \sum_{n \le x} \tau_r(n\tau(n)),$$

where * indicates that we sum over those *n* the square-full part of which is *K*.

Let $Y_x \to \infty$ arbitrarily slowly. Then

(2.2)
$$S(x) = \sum_{K \le Y_x} T_K(x) + o_{Y_x}(1) x \cdot x_1^{r-1} x_2^{r-1}.$$

Let us fix some $K (\leq Y_x)$. Write $K\tau(K) = 2^{\alpha_K} \cdot R$, R odd, $m = 2^{\delta_0} m_1 m_2$, where $\delta_0 \in \{0, 1\}$; m_1, m_2 are coprime odd integers, m_2 is the largest odd divisor of m coprime to R (consequently $m_1|R$). We have

$$T_{K}(x) = \sum_{\delta_{o}=0}^{1} \sum_{m_{1}|R} \sum_{m_{2} \leq \frac{x}{Km_{1} \cdot 2^{\delta_{0}}}} \tau_{r} \left(2^{\alpha_{k}+\delta_{0}+\omega(m)}\right) \tau_{r} (Rm_{1}) \tau_{r} (m_{2}) =$$

$$= \sum_{\delta_{o}=0}^{1} \sum_{m_{1}|R}^{+} \tau_{r} (Rm_{1}) \times$$

$$\times \sum_{m_{2} \leq \frac{x}{Km_{1} \cdot 2^{\delta_{0}}}} \binom{\alpha_{k}+\delta_{0}+\omega(m_{1})+\omega(m_{2})+r-1}{r-1} \tau_{r} (m_{2}),$$

where ** indicates that we sum over those square-free integers which are coprime to 2R, + indicates that m_1 runs over the square-free divisors of R.

Since the contribution of those m_2 for which $\omega(m_2) < \frac{1}{2}x_2$ is very small, and $\alpha_K + \delta_0 + \omega(m_1)$ is less than $\mathcal{O}(Y_x)$, say, therefore the binomial coefficient on the right hand side of (2.3) can be substituted by $\frac{\omega(m_2)^{r-1}}{(r-1)!}$.

Thus we have

$$T_{K}(x) = \sum_{\delta_{o}=0}^{1} \sum_{m_{1}|R}^{+} \tau_{r}(Rm_{1}) \sum_{m_{2} \leq \frac{x}{Km_{1} \cdot 2^{\delta_{0}}}}^{**} \frac{\omega(m_{2})^{r-1}}{(r-1)!} \tau_{r}(m_{2}) + \mathcal{O}\left(\sum_{m_{1}|R} \tau_{r}(Rm_{1}) \sum_{m_{2} \leq \frac{x}{Km_{1}}}^{**} \omega(m_{2})^{r-2} \cdot \tau_{r}(m_{2})\right).$$

Since

$$\sum_{(\nu,\mathcal{D})=1} \frac{\tau_r\left(\nu\right) |\mu\left(\nu\right)|}{\nu^s} = \prod_{p \nmid \mathcal{D}} \left(1 + \frac{\tau_r\left(p\right)}{p^s}\right) = \prod_{p \mid \mathcal{D}} \frac{1}{1 + \frac{r}{p^s}} \zeta^r\left(s\right) A_r\left(s\right),$$

where $A_r(s) = \prod_p \left(1 + \frac{r}{p^s}\right) \left(1 - \frac{1}{p^s}\right)^r$, $A_r(s)$ is bounded in the halfplane Re $s > \frac{1}{2} + \varepsilon$, ($\varepsilon > 0$ constant), we can deduce that

(2.4)
$$\sum_{\substack{\nu \le x \\ (\nu, \mathcal{D})=1}} \tau_r(\nu) |\mu(\nu)| = (1 + o_x(1)) \prod_{p \mid \mathcal{D}} \frac{1}{1 + \frac{r}{p}} A_r(1) x \cdot x_1^{r-1},$$

which is valid for $\mathcal{D} \leq x^{1/3}$, say.

Let
$$\tilde{\omega}(n) := \sum_{\substack{p|n\\p < x^{\frac{1}{10r}}}} 1$$
. Then $0 \le \omega(n) - \tilde{\omega}(n) \le 10r$, if $n \le x$, i.e.

$$\omega(n)^{r-1} = \tilde{\omega}(n)^{r-1} + \mathcal{O}\left(\omega(n)^{r-2}\right).$$
 Hence

(2.5)
$$\frac{\omega(m_2)^{r-1}}{(r-1)!} = \sum_{\substack{p_1 \dots p_{r-1} \mid m_2 \\ p_1 < \dots < p_{r-1} < x^{\frac{1}{10r}}}} 1 + \mathcal{O}\left(\omega(m_2)^{r-2}\right).$$

Thus

(2.6)
$$\sum_{m_2 \leq \frac{x}{Km_1 \cdot 2^{\delta_0}}}^{**} \frac{\omega (m_2)^{r-1}}{(r-1)!} \tau_r(m_2) = \sum_{m_2 \leq \frac{x}{Km_1 \cdot 2^{\delta_0}}}^{**} \frac{\tilde{\omega} (m_2)^{r-1}}{(r-1)!} \tau_r(m_2) + \mathcal{O}\left(\frac{x}{Km_1} x_1^{r-1} \cdot x_2^{r-2}\right).$$

From (2.5) we obtain that the sum on the right hand side of (2.6) is

(2.7)
$$\sum_{\substack{p_1 < \dots < p_{r-1} < x^{\frac{1}{10r}} \\ \nu \leq \frac{(p_1 \dots p_{r-1})^{2Km_1) = 1}}{K \cdot m_1 \cdot 2^{\delta_0} p_1 \dots p_{r-1}}} \tau_r (p_1 \dots p_{r-1}) | \mu (p_1 \dots p_{r-1}\nu) |$$

which can be estimated by using (2.4). Thus (2.7) equals to

$$\sum_{\substack{p_1 < \dots < p_{r-1} < x^{\frac{1}{10r}} \\ (p_1 \dots p_{r-1})^{\nu, 2Km_1) = 1}}} (1 + o_x(1)) x x_1^{r-1} A_r(1) \times \frac{\tau_r(p_1 \dots p_{r-1})}{Km_1 \cdot 2^{\delta_o} p_1 \dots p_{r-1}} \prod_{p|2Kp_1 \dots p_{r-1}} \frac{1}{1 + \frac{r}{p}}.$$

We can observe that

(2.9)
$$\sum_{\substack{p_1 < \dots < p_{r-1} < x^{\frac{1}{10r}} \\ (p_1 \dots p_{r-1}\nu, 2Km_1) = 1}} \prod_{j=1}^{r-1} \frac{\tau_r(p_j)}{p_j + (r+1)} = \frac{1 + o_x(1)}{(r-1)!} \left\{ \sum_{p < x^{\frac{1}{10r}}} \frac{\tau_r(p)}{p} \right\}^{r-1} = \frac{1 + o_x(1)}{(r-1)!} r^{r-1} \cdot x_2^{r-1}.$$

Collecting our estimates we obtain our theorem.

3. Proof of Lemma 3

The left hand side of (1.6) can be written as

$$\sum_{\sigma \in \mathcal{B}_{AC}} \tau \left(CA\sigma \right) \sum_{q \in \mathcal{I}} \sum_{A \sigma \mu \equiv 1 \pmod{Bq} \atop \mu \leq x/A\sigma} \tau \left(\mu \right) \chi_{AC}^{(0)} \left(\mu \right)$$

where

$$\chi^{(0)}_{AC}(n) = \begin{cases} 1, & \text{if} \quad (n, AC) = 1, \\ 0, & \text{if} \quad (n, AC) > 1. \end{cases}$$

The contribution of $\sigma > x_1$ can be ignored. For fixed σ , $(\sigma, B) = 1$, we can use the theorem of D. Wolke [8], according to

$$\sum_{q \in \mathcal{I}} \left| \sum_{\substack{\mu \le x/A\sigma \\ A\sigma\mu \equiv 1 \pmod{Bq}}} \tau\left(\mu\right) \chi_{AC}^{(0)}\left(\mu\right) - \frac{1}{\varphi\left(Bq\right)} \sum_{\substack{\mu \le x/A\sigma \\ (\mu,Bq)=1}} \tau\left(\mu\right) \chi_{AC}^{(0)}\left(\mu\right) \right| \ll \frac{x}{AC} x_1^{-20}.$$

、

Thus

$$\sum_{q \in \mathcal{I}} \sum_{\substack{\mu \leq x/A\sigma \\ A\sigma\mu \equiv 1 \pmod{Bq}}} \tau\left(\mu\right) \chi_{AC}^{(0)}\left(\mu\right) = \frac{1}{\varphi\left(B\right)} \left(\sum_{q \in \mathcal{I}} \frac{1}{q-1}\right) \sum_{\substack{\mu \leq x/A\sigma \\ (\mu,Bq)=1}} \tau\left(\mu\right) \chi_{AC}^{(0)}\left(\mu\right) + \mathcal{O}\left(\frac{x}{AC}x_1^{-20}\right) + \text{Error.}$$

$$\text{Error} \ll \sum_{q \in \mathcal{I}} \frac{1}{\varphi\left(B\right)} \frac{1}{q} \sum_{\substack{q^l m \leq x/A\sigma \\ l \geq 1 \\ (m,q)=1}} \tau\left(q^l m\right) \ll$$

$$\ll \sum_{q \in \mathcal{I}} \frac{1}{\varphi\left(B\right)} \left\{\sum_{l \geq 1} \frac{\tau\left(q^l\right)}{q^{l+1}} \frac{x}{A\sigma} x_1 + \mathcal{O}\left(\sqrt{x}\right)\right\} \ll \frac{xx_1}{A\sigma\varphi\left(B\right)} 1/x_1.$$

We can write

$$\sum_{\substack{\mu \le x/A\sigma \\ (\mu,Bq)=1}} \tau\left(\mu\right) \chi_{AC}^{(0)}\left(\mu\right) = \sum_{\mu \le x/A\sigma} \tau\left(\mu\right) \chi_{ABC}^{(0)}\left(\mu\right)$$

and the right hand side

$$=\frac{\varphi^2 \left(ABC\right)}{\left(ABC\right)^2} \frac{\chi}{A\sigma} \{x_1 + \mathcal{O}\left(1\right)\}.$$

Collecting our estimates, Lemma 3 easily follows.

Proof of Theorem 2 4.

Let t be a multiplicative function defined on prime powers p^{α} , $\alpha \geq 2$ to be $t(p^{\alpha}) = p^{\alpha}$. Furthermore let t(2) = 2, and t(p) = 1 if p is odd prime. It is clear that the set $\{t(n) | n \in \mathbb{N}\} = \mathcal{E}$ is the union of the set of square-full numbers and the twice of the square-full numbers. Let e(n) be defined from the equation = t(n) e(n). We say that e(n) is the odd square-free part, and t(n) be the quasi square-free part of n.

Let $K, L \in \mathcal{E}$.

(4.1)
$$\Sigma_{K,L} := \sum_{\substack{n \leq x \\ t(n-1) = K \\ t(n) = L \\ n \leq x}} \tau \left(n\tau \left(n - 1 \right) \right).$$

If the sum (4.1) is nonempty, then (K, L) = 1, 2|KL. Let us write n - 1 = $= Km, n = L\nu$, where m is the odd square-free part of n-1, and ν is the odd square-free part of n. We have (K, m) = 1, $(L, \nu) = 1$.

Let $\tau^{(2)}(n) := \tau(\tau(n))$. Since $\tau(ab) < \tau(a) \cdot \tau(b), \tau(a) < a$ holds for every $a, b \in \mathbb{N}$, therefore

$$\tau (n\tau (n-1)) \le \tau (n) \tau^{(2)} (n-1) \le \tau^2 (n) + \tau^2 (n-1).$$

We shall prove that

(4.2)
$$\sum_{\max(K,L)>x_1^5} \Sigma_{K,L} = o_x(1) x x_1 x_2.$$

Indeed.

(4.3)
$$\sum_{K > x_1^5} \sum_{L} \sum_{m \le x/K} \{ \tau^2(m) \, \tau^2(K) + \tau^2(Km+1) \} = \Sigma_1 + \Sigma_2,$$

where in Σ_1 we sum over $K \in [x_1^5, x^{1/4}]$, and in Σ_2 over $K > x^{1/4}$. Σ_2 is small, since $\tau(m), \tau(K), \tau(Km+1)$ are less than $c_{\varepsilon} x^{\varepsilon/2}$, therefore $\Sigma_2 \ll$ $\ll x^{\varepsilon} \sum_{K > x^{1/4}} 1/K \ll x^{0,9}$, say.

Since $\sum_{m \le x/k} \tau^2(m) \ll \frac{x}{K} x_1^3$, and $\sum_{Km+1 \le x} \tau^2(Km+1) \ll \frac{x}{K} x_1^3$ for $K \le x^{1/4}$

(say), therefore

(4.4)
$$\Sigma_1 \ll x \cdot x_1^3 \sum_{x_1^5 \le K \le x^{1/4}} \frac{\tau^2(K)}{K}.$$

Since $\tau^2(K) \ll K^{\varepsilon}$, for an arbitrary small $\varepsilon > 0$, therefore the sum on the right hand side of (4.3) is less than $x_1^{-5/2+\varepsilon}$. Thus $\Sigma_1 \ll x \cdot x_1^{0,9}$ say, consequently (4.4) is less than $o_x(1) x \cdot x_1 x_2$.

We can overestimate the contribution of those n for which $L > x_1^5$, similarly. We omit the details.

Let $\gamma > 1/\log 2$ be a constant. Let \mathcal{B} be the set of those $n \leq x$ for which $\omega(m) > \gamma x_2$. We shall observe that the contribution of those integers to T(x) for which $n \in \mathcal{B}$ is $o_x(1) x x_1 x_2$. Observe that $u/2^u$ is monotonically decreasing, therefore $\frac{\omega(m)}{2^{\omega(m)}} \leq \frac{\gamma x_2}{2^{\gamma x_2}}$, if $\omega(m) \geq \gamma x_2$. Furthermore

$$\tau (n\tau (n-1)) \leq \tau (n) \tau^{(2)} (K) (\omega (m) + 1) \leq$$

$$\leq 2\tau (Km+1) \tau^{(2)} (K) \tau (m) \frac{\gamma x_2}{2^{\gamma x_2}} \leq$$

$$\leq 2\tau (Km+1) \tau (Km) \frac{\gamma x_2}{2^{\gamma x_2}}.$$

Thus

(4.5)
$$\sum_{n\in\mathcal{B}}\tau\left(n\tau\left(n-1\right)\right)\ll\frac{x_2}{2^{\gamma x_2}}\sum_{n\leq x}\tau\left(n\right)\tau\left(n-1\right)\ll\frac{x\cdot x_1^2x_2}{2^{\gamma x_2}}.$$

Since $x_1/2^{\gamma x_2} \ll x_1^{-\varepsilon}$, therefore we can drop the integers $n \in \mathcal{B}$.

Let $\Sigma_{K,L}^{(1)}$ be the sum of $\tau (n\tau (n-1))$ appearing in $\Sigma_{K,L}$, and additionally satisfying $\omega (m) \leq \gamma x_2$. Then, we have $\tau (n\tau (n-1)) \leq 2\gamma x_2 \tau (n) \tau^{(2)} (K)$, and so

$$\Sigma_{K,L}^{(1)} \le 2\gamma x_2 \tau^{(2)}(K) \sum_{\substack{\nu \le x/L \\ L\nu \equiv 1 \pmod{K}}} \tau(L\nu) \ll x_2 \tau^{(2)}(K) \tau(L) \frac{x}{KL} x_1.$$

Since $\sum_{K \in \mathcal{E}} \frac{\tau^{(2)}(K)}{K} < \infty$, $\sum_{L \in \mathcal{E}} \frac{\tau(L)}{L} < \infty$, therefore, if Y_x is tending to infinity, then

(4.6)
$$\sum_{\max(K,L) \ge Y_x} \Sigma_{K,L}^{(1)} = o_x \left(x x_1 x_2 \right).$$

Now we assume that $K, L \leq Y_x, (K, L) = 1$. Let $L\tau(K) = 2^{\beta}R, R$ is odd. We have $2^{\beta} \leq Y_x^2$. Then $n\tau(n-1) = 2^{\beta}R \cdot 2^{\omega(m)}\nu$, consequently

(4.7)
$$\tau (n\tau (n-1)) = (\omega (m) + \beta + 1) \tau (R\nu).$$

Here we used that ν is odd. Thus

(4.8)
$$\Sigma_{K,L}^{(1)} = \sum \omega(m) \tau(R\nu) + \sum (\beta + 1) \tau(R\nu) = \Sigma_{K,L}^{(2)} + \Sigma_{K,L}^{(3)}.$$

The second sum is less than

$$\ll (\beta+1) \tau (R) \sum_{\substack{\nu \leq x/L \\ L\nu \equiv 1(K)}} \tau (\nu) \ll (\beta+1) \frac{\tau (R)}{KL} x x_1.$$

Let us choose $Y_x \to \infty$ so that $Y_x = \mathcal{O}(x_3)$. We obtain that

(4.9)
$$\sum_{K,L < x_1^{5/2}} \Sigma_{K,L}^{(3)} = o_x(1) x x_1 x_2.$$

Let η be a small positive number, $\omega_1(n) = \sum_{p \mid n \ p \in [x_1^2, x^{\eta}]} 1$. Let

(4.10)
$$\Sigma_{K,L}^{(2,1)} = \sum \omega_1(m) \tau(R\nu).$$

Since $0 \leq \omega(m) - \omega_1(m) \leq 1/\eta$, therefore

$$\sum_{K,L} \left(\Sigma_{K,L}^{(2)} - \Sigma_{K,L}^{(2,1)} \right) \ll \left(\frac{1}{\eta} + x_3 \right) x x_1.$$

It remains to estimate $\Sigma_{K,L}^{(2,1)}$.

Since $(\nu, 2) = 1$, therefore $\tau (R\nu) = \frac{1}{(\beta+1)} \tau (\tau (K) L\nu)$. Taking into account that $(\nu, \mu) = 1$, (K, m) = 1, $(L, \nu) = 1$, therefore

$$\Sigma_{K,L}^{(2,1)} = \sum_{q \in [x_1^2, x^{\eta}]} \sum_{\delta_1 \mid K} \sum_{\kappa_1 \mid L} \sum_{(\delta_2, K) = 1} \sum_{(\kappa_2, L) = 1} \mu(\delta_1) \mu(\delta_2) \mu(\kappa_1) \mu(\kappa_2) \times U_q(\delta_1, \delta_2, \kappa_1, \kappa_2),$$

where

(4.11)
$$U_q\left(\delta_1, \delta_2, \kappa_1, \kappa_2\right) := \sum_{\substack{L\kappa_1\kappa_2^2 \equiv 1 \pmod{\delta_1\delta_2^2K_q}\\\nu \leq \frac{x}{L\kappa_1\kappa_2^2}}} \tau\left(\tau\left(K\right)\kappa_1 L\kappa_2^2\nu\right).$$

We have

$$U_{q}\left(\delta_{1},\delta_{2},\kappa_{1},\kappa_{2}\right) \leq \tau\left(\tau\left(K\right)\right)\tau\left(\kappa_{1}\right)\tau\left(L\right)\tau\left(\kappa_{2}^{2}\right)\sum_{L\kappa_{1}\kappa_{2}^{2}\equiv1\pmod{\delta_{1}\delta_{2}^{2}Kq}\atop L\kappa_{1}\kappa_{2}^{2}\leq x}\tau\left(\nu\right).$$

The sum on the right hand side is

$$\ll \frac{xx_1}{L\kappa_1\kappa_2^2\delta_1\delta_2^2Kq} \quad \text{if} \quad \max\left(L\kappa_1\kappa_2^2, \delta_1\delta_2^2Kq\right) \le x^{3/4},$$

and $\ll \frac{x^{\epsilon}}{L\kappa_1\kappa_2^2Kq\delta_1\delta_2^2}$ in general.

Thus

$$\begin{split} \sum_{x_1^2 < q < x^{\eta}} \sum_{\max(\kappa_2, \delta_2) > Y_x} U_q(\delta_1, \delta_2, \kappa_1, \kappa_2) \ll \\ \ll \frac{\tau^2(K) \tau(L) x x_1 x_2}{LK} \sum_{\kappa_1 \mid L} \frac{\tau(\kappa_1) \mid \mu(\kappa_1) \mid}{\kappa_1} \sum_{\delta_1 \mid K} \frac{\mid \mu(\delta_1) \mid}{\delta_1} \times \\ \times \sum_{\max(\kappa_2, \delta_2) > Y_x} \frac{1}{\kappa_2^2 \delta_2^2} + \mathcal{O}\left(x^{0,9}\right) \ll \\ \ll \frac{1}{Y_x} \frac{\tau^2(K) \tau(L) x x_1 x_2}{LK} \prod_{p \mid L} \left(1 + \frac{2}{p}\right) \cdot \frac{K}{\varphi(K)} + \mathcal{O}\left(x^{0,9}\right). \end{split}$$

Summing over all possible K, L the contribution of these sums is $o_x(1) x x_1 x_2$. It remains to estimate the sums (4.11) under the condition $\max(\kappa_2, \delta_2) \leq Y_x$. To estimate (4.10) let us write $A = L\kappa_1\kappa_2^2$, $B_q = \delta_1\delta_2^2 Kq$, $C = \tau(K)$.

Let

(4.12)
$$H_q := \sum_{\substack{\nu \leq Y \\ A\nu \equiv 1 \pmod{Bq}}} \tau \left(CA\nu \right), \quad \text{where } Y = \frac{x}{A}$$

Then the right hand side of (4.11) equals to H_q . Let us write $\nu = \sigma \mu$, where $(\mu, CA) = 1$, and all the prime factors of σ divide CA. Then

$$H_q = \sum_{\sigma} \tau \left(CA\sigma \right) \sum_{\substack{\mu \leq Y/\sigma \\ (A\sigma)\mu \equiv 1 \pmod{Bq} \\ (\mu, CA) = 1}} = \sum_{\sigma} \tau \left(CA\sigma \right) T_{\sigma}.$$

 T_{σ} can be estimated by Lemma 3. Lemma 3 is valid if $K, L, \delta_1, \delta_2, \kappa_1, \kappa_2$ are fixed. Then there exists a suitable sequence $Y_x \to \infty$, such that it remains valid uniformly as $\max(K, L, \delta_1, \delta_2, \kappa_1, \kappa_2) \leq Y_x$. Arguing as earlier, we can get that

$$\begin{split} \sum_{K,L\in\mathcal{E}\atop\max(K,L)>Y_x} |\Sigma_{K,L}^{(2)}| + \sum_{K,L\in\mathcal{E}\atop\max(K,L)\leq Y_x} \sum_{q\in \left(x_1^2, \frac{\eta}{2}\right)} \sum_{\delta_1|K} \sum_{\kappa_1|L} \sum_{(\delta_2,K)=1\atop\max(\delta_1,\delta_2,\kappa_1,\kappa_2)\geq Y_x} \times \\ \times \sum_{(\kappa_2,L)=1} U_q\left(\delta_1,\delta_2,\kappa_1,\kappa_2\right) = o\left(xx_1x_2\right). \end{split}$$

Hence our theorem follows.

5. Proof of Theorem 3

The assertion is based on Lemma 1 and 2. Let $\varepsilon_x \to 0$ (slowly). We distinguish two cases:

- (A) $3k < \varepsilon_x \cdot x_2,$
- (B) $3k \ge \varepsilon_x \cdot x_2.$

In the case (B) let $\mathcal{I} = \left[x^{\frac{1}{3k}}, x^{\frac{1}{\varepsilon_x x_2}}\right]$. It is clear that for $n \le x$,

(5.1)
$$\omega_o(n) := \sum_{\substack{p \mid n \\ p > x^{\frac{1}{\varepsilon_x \cdot x_2}}}} 1 \le \varepsilon_x \cdot x_2.$$

Let $\omega_1(n) = \sum_{\substack{p \mid n \\ p < x \ 3k}} 1$, and in the case (A) let $\omega_2(n) = \sum_{\substack{p \mid n \\ p \in \mathcal{I}}} 1$.

Let
$$S_k^{(j)}(x) := \sum_{\substack{n \le x \\ n \in \mathcal{N}_k}} \tau(n-1) \omega_j(n+1)$$
 $(j = 0, 1, 2)$, where $S_k^{(2)}(x) = 0$

in the case (B).

From (5.1), by (1.7) we obtain that

(5.2)
$$S_k^{(0)}(x) \ll \varepsilon_x x_1 N_k(x) \,.$$

Assume that we are in the case (A). We shall estimate $S_{k}^{\left(2\right)}\left(x\right)$.

From (1.7) we obtain that

(5.3)
$$S_k^{(2)}(x) \ll \delta_x x_2 x_1 N_k(x) + \Sigma_1,$$

where

(5.4)
$$\Sigma_{1} = \sum_{\substack{n \le x \\ n \in N_{k} \\ \omega_{2}(n+1) \ge \delta_{x} \cdot x_{2}}} \tau (n-1) \, \omega_{2} \, (n+1)$$

Here we assume that $\delta_x \to 0$, slowly. Let *n* be counted in (5.4). Assume that $p_1 < \ldots < p_T$ are all the distinct prime divisors of n + 1 located in \mathcal{I} . It is clear that $T \ge [\delta_x x_2]$. Let $Q = p_1 \ldots p_T = Q_1 Q_2$, where $Q_1 = p_1 \ldots p_{[T/2]}$. Since $Q_1 < Q_2$, $Q \le x$, therefore $Q_1 \le \sqrt{x}$. Furthermore $\omega(Q) \le 3\omega(Q_1)$. Consequently

(5.5)
$$\Sigma_1 \leq \sum_{\substack{\omega(Q_1) \geq \frac{\delta_x x_2}{3} \\ Q_1 \leq \sqrt{x}}} \omega(Q_1) \sum_{\substack{n+1 \equiv 0 \pmod{Q_1}}} \tau(n-1).$$

It is known (see [11]) that

(5.6)
$$\sum_{En+R \le x} \tau \left(En+R\right) \ll \frac{xx_1}{E}$$

uniformly as $(1 \leq) E \ll x^{1-\delta}$, 0 < R < E, (E, R) = 1, the constant implied by \ll may depend on δ . From (5.5), (5.6) we deduce that

(5.7)
$$\Sigma_1 \ll x x_1 \sum_{\omega(Q_1) \ge j_0} \frac{\omega(Q_1)}{Q_1},$$

(5.8)
$$U := \sum_{p \in \mathcal{I}} 1/p \le \log \frac{1/\varepsilon_x x_2}{1/3k} + 1 \le \log \frac{6e}{\varepsilon_x} = \tau_x.$$

We may assume that $\tau_x \to \infty$ arbitrarily slowly, if ε_x has been chosen appropriately to tend to 0.

It is clear that

$$\frac{\omega(Q_1)}{Q_1} = \sum_{p|Q_1} \frac{1}{p} \cdot \frac{1}{(Q_1/p)},$$

consequently

c

(5.9)
$$\sum_{\omega(Q_1) \ge j_0} \frac{\omega(Q_1)}{Q_1} = \sum_{p \in \mathcal{I}} \frac{1}{p} \sum_{\omega(Q_3) \ge j_0 - 1} \frac{1}{Q_3},$$

where Q_3 run over the square free integers all prime factors of which belong to \mathcal{I} . Then the right hand side of (5.9) is less than

$$U \cdot \sum_{l=j_0-1} \frac{1}{l!} U^l \le \frac{cU^{j_0}}{(j_0-1)!} \quad (=:M) \,.$$

Observe that

$$\log M \le \log c + j_0 \log U - j_0/2 \log j_0 \le -\frac{\varepsilon_x x_2 x_3}{3},$$

if x is large enough, i.e.

$$M \ll \exp\left(-\frac{\varepsilon_x x_2 x_3}{3}\right).$$

Hence, and from (5.7) we obtain that

$$\Sigma_1 \ll o_x\left(1\right) x_1 N_k\left(x\right)$$

uniformly as $k \leq (2 - \xi) x_2$.

To complete the proof of Theorem 3 it remains to show that $S_k^{(1)}(x)$ asymptotically equals to the right hand side of (1.6). This can be done by applying the method of Timofeev and Khripunova.

We have

(5.10)
$$S_{k}^{(1)}(x) = \sum_{p < x^{1/3k}} A_{p}(x),$$

where

(5.11)
$$A_p(x) = \sum_{\substack{n \le x \\ n \in \mathcal{N}_k \\ n+1 \equiv 0 \pmod{p}}} \tau(n-1).$$

We have

(5.12)
$$A_p(x) = 2 \sum_{u \le \sqrt{x}} \#\{n \equiv 1 \pmod{u}, u^2 < n < x, n \equiv -1 \pmod{p}\} + O\left(\#\{n \le x | n - 1 = \text{square}\}\right).$$

As in [4] we can drop the contribution of the error term, and even those integers which are counted for $u \ge \sqrt{x} \exp\left(-x_2^4\right)$. For the summands for $u < \sqrt{x} \exp\left(-x_2^4\right)$ we can apply Lemma 1:

$$\#\{n \equiv 1 \pmod{u^2 < n < x}, n \equiv -1 \pmod{p}\} = \\ = \#\{n \equiv l_{u,p} \pmod{pu}, n \le x\} - \#\{n \equiv l_{u,p} \pmod{pu}, n < u^2\}$$

if (u, p) = 1, where $l_{u,p}$ is determined from $n \equiv 1 \pmod{u}$, $n \equiv -1 \pmod{p}$.

(5.13)
$$A_p(x) = 2 \sum_{u \le \sqrt{x}} B_u(x) + \mathcal{O}\left(\#\{n \le x | n-1 = \text{square}\}\right),$$

(5.14) $B_u(x) = \#\{n \in \mathcal{N}_k, n \equiv -1 \pmod{p}, n \equiv 1 \pmod{u}, u^2 < n < x\}.$

As in [4] we can drop $\sum_{u > \sqrt{x} \exp\left(-x_2^4\right)} B_u(x)$. The contribution of the error

term is small, $\ll \sqrt{x}$. The contribution of $A_2(x)$ is not larger than (1.7). Let p > 2. If $B_u(x) \neq 0$, then (u, p) = 1. For such a pair let $l_{u,p}$ be the residue (mod pu) such that $n \equiv 1 \pmod{u}$, $n \equiv -1 \pmod{p}$. We have

$$B_{u}(x) = \#\{n \in \mathcal{N}_{k}, n \equiv l_{u,p} \pmod{pu}, n \leq x\} - \\ - \#\{n \in \mathcal{N}_{k}, n \equiv l_{u,p} \pmod{pu}, n < u^{2}\} = \\ = \mu(x, k, 2, l_{u,p}, pu) - \mu(u^{2}, k, 2, l_{u,p}, pu).$$

Applying Lemma 1 and Lemma 2, as in [4], we obtain the theorem. We do not give the details.

References

- [1] Sathe, L.G., On a problem of Hardy on the distribution of integers having a given number of prime factors, J. Indian Math. Soc., 17 (1953), 63–141.
- [2] Selberg, A., Note on a paper by L. G. Sathe, J. Indian Math. Soc., 18 (1954), 83–87.
- [3] Nicolas, J.-L., Sur la distribution des nombres entiers ayant une quantité fixe de facteurs premiers, Acta Arith., 44 (1984), 191–200.
- [4] Timofeev N.M. and M.B. Khripunova, Distribution of numbers with a given number of prime divisors in progressions, *Mat. Zametki* [Mathematical Notes], 55 (1994), 144–156.
- [5] Timofeev, N.M. and M.B. Khripunova, The Titchmarsh problem with integers having a given number of prime divisors, *Mat. Zametki* [*Mathematical Notes*], **59** (1996), 421–434.
- [6] Ivič, A., An asymptotic formula involving the enumerating function of finite Abelian groups, Univ. Beograd Publ Elektrotech., Fak. Ser. Mat., 3 (1992), 61–62.
- [7] Kátai, I., On a problem of A. Ivič, Mathematica Pannonica, 18 (2007), 11–18.
- [8] Wolke, D., Uber die mittlere Verteilung der Werte zahlentheoretischer Funktionen auf Restklassen I, Math. Ann., 202 (1973), 1–25.
- [9] Tolev, D.I., On the divisor problem in arithmetic progression, C.R. Acad. Bulgare Sci., 41 (1988), 33–36.
- [10] Heath-Brown D.R., The fourth power moment of the Riemann zeta function, Proc. London Math. Soc., 38 (1979), 385–422.
- [11] Vinogradov, A.I. and Yu.V. Linnik, Estimates for the number of divisors in short intervals in arithmetical progression (in Russian), Uspehi Mat. Nauk, 12, 4(71) (1957), 277–280.

I. Kátai

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University Pázmány Péter sétány 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu