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Abstract. The sum > 7(n — 1)w(n + 1) is investigated where 7(n) =
n<x
neENy

= number of divisors of n, w(n) = number of prime divisors of n, Q(n) =
= number of prime power divisors of n, A} = {n|Q(n) = k}.

1. Introduction

1.1. Notation

P= set of primes, p and ¢ with and without indices always denote prime
numbers. w (n)= number of distinct prime factors of n; Q (n)= number of
prime power divisors of n; 7 (n)= number of divisors of n; 74 (n)= number
of positive integers x1, o, ...,z satisfying n = x1---x,. Let p(n) be the
smallest and P (n) be the largest prime factor of n. For some integer k& > 1 let
Pr:={n|wn)=k}; Npe:={n|Qn) =k}, m(x):=#{n<z|nec P}
Ni (z) =#{n <z |Q(n) =k}
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240 I. Kétai

Furthermore we shall write x; instead of the k-fold iterate of logz, i.e.
x1 =logx, xo =logxy, x3 =logxa,... . (We shall use this abbreviation only
for the variable x.)

1.2. Preliminaries

Sathe [1] and A. Selberg [2] showed that for z > 3, 1 <k < (2—¢) o,
where 0 < £ < 1, we have

i 2o g (ra(2))

Fo - l(o5) (-5)

T (z) is the Euler gamma function.

Here

For (2+¢)xzes < k < z1/log2 the behaviour of Nj (x) was studied by
J.-L. Nicolas [3]. He proved, that in this range of k,

Cx x x 32\"”
Nk(srz)2klog2k+(9<2,€ (log2k> >

where 0 < 5 < 1, and

(]

p>2

Similar theorem is valid for 7 (). Let

Vo= () ()

Let A > 0 be an arbitrary constant. Then, uniformly as x >3, 1<k < Az,

we have oy
_Z. 5 kol L
wo= e () o ()}

where the constant, implied by the error term may depend on A.

N.M. Timofeev and M.B. Khripunova in their paper [4] proved a theorem
of Titchmarsh type, and of a Vinogradov-Bombieri type for the integers in N},
which is quoted in this paper as Lemma 1 and Lemma 2.
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Let t > 2, Q(t) = [[p, p € P. Let e,e1,e9,... be arbitrary small
p<t

positive numbers. Denote

pla ktya,d) :=#{n<zneN,, (nQ1)=1 n=a (modd)}.

Lemma 1. Let 2 <t <./z, k<3, and let
Ag () =

max max w(y, k,t,a,d) — #{n < y|n € N, (n,dQ (t)) = 1}|.
y=x (a, =

d<Q

1
¢ (d)
Then "

Ay (t) < Qv/z exp (m§+€) + B
1
where € > 0 and B are arbitrary positive constants.

Lemma 2. Supposek < (2 —¢e)xy, 0<e<1,d< zrtel®) 2 <t < Pk
a(k) = o and B (k) = & exp(—%). Let 0 < ey < 1. Then there exists a

3k
constant ¢ (e,e1)such that
N
k (10g loglt)
(k—1)!

w(z kit a,d) <cleer) (I1+e1)

x
¢ (d) 21
They used their results to prove the asymptotic of the sums

Z 7(n—1) in [4], and ZT(N—n) in [5].

neNy n<N
n<xz neNy

Solving a weakened conjecture of Ivi¢ [6] I proved in [7] that

T
1.1 T(n+71(n)) =Dxx +O<>.
(1) 37t () = Dow 40 (T
(1.1) is an easy consequence of Lemma 1. The proof is going on the usual
way with the help of Lemma 1. Finally we proved that the contribution of the
integersne  |J  Nj to (1.1) is less than O (%)
k>(2—¢e)z2 2

As we mentioned in [7] one can prove similarly

(12) 27+ S () = Dy +0 (£2)
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with some constants Dy > 0, if f(n) = w(n),Q(n),7(r(n)),2°M, 7 (n),
where 71 (n) is the number of solutions of n = w; ...uy in positive integers
U, ..., u. Similar theorems can be proved if we substitute 7 on the left hand
side of (1.2) by 2(™). Even one can prove the asymptotic of (1.2) if we sum
only on the set n € N, for a given k uniformly as 1 < k < (2 — ) z5. Changing
T into 73 in (1.2), we stock. We are able to prove only the exact order of

> 13 (n+ f(n).

n<zx
1.3. On sums of form Y 7 (f (n)n)

Assume that f is a multiplicative function taking on positive integer values,
1 < f(p*) < ca® with suitable constants ¢, c;, and f(p) = A € P for every
prime p.

Let
Ay (n) = H p%*, By(n):= H pe.
oy 2y

Then n = A, (n) - By (n).

Let y = z3, and A, be a monotonically increasing sequence tending to
infinity as  — oo.

One can observe that the contribution of )  _ 7(f(n)n) for those n
for which B,, (n) is not square-free, or A,, > 45 is o(xx1xs). For the
other integers n we can write f(n) = f (A4, (n)) - AW(B”Z‘(”))7 nf(n) =
= Az, (1)  (As, (n)) - A°(P20) - By, ().

Let K run over the integers up to x’;” satisfying P (K) < x2, and m run

over the square free integers m satisfying p (m) > . Let Kf (K) = A5 Ry,
where (R, A) = 1. Thus we have

Yor(fmn) = 7[Rx) Y (Wm)+a(K)+1)7(m)+

+o (zx129) .

It remained to estimate the sums

Yo rm)lum)l, Y7 (m) |u(m) |w(m)

m<y m<y
p(m)=xy

for x/ 93‘241‘ < y < z, which can be done on routine way.
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Thus we have

Z T(f(n)n) =1+ 0, (1)) cxzi22.

n<z

we do not want to give a complete proof of this relation.
1.4. Theorems

We shall prove

Theorem 1. Let r > 2 be an integer. Then
(1.4) S(x) =Y 7 (r(n)n)=(1+o0(1)cxzzy "
n<x
holds, where c is a suitable positive constant.

Theorem 2. We have

(1.5) T (x):= Z T(nt(n—1))=C 1+ o0, (1)) zz120,

n<z

where C is a positive constant.
1.5.

In the proof of Theorem 2 we shall use Lemma 3. For some integer D > 0
let Bp be the semigroup generated by {1,p1,...,p.} where py,...,p, are the
prime factors of D, i.e. Bp = {1,p{",....p%"|e; =0,1,2,...; j=1,...,r}
Let a, (n) be that exponent k for which p*|n and pF*! ¢ n.

Lemma 3. Let A, B,C < x1 be positive integers, (A, B) = 1, q run over
the primes in T = [x2,2"], where 0 < n < 1/10. Then

(1.6) > > 7 (CAv) = E (A, B,C) zx129 + O (223)

q€Z Av=1 (mod Bq)

pr<z
where
2 oo
2 1 pap(c)"‘ap(A)
E(A,B,C) = T(pap<c>) (1_ > P
( ) Ap (B) 11 11 p Z:: pH
p|(B.C) A p=0

and the constant implied by the O term may depend on A, B, C.
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Remark. One can prove better assertions, by using known results of
D.I. Tolev [9] or Heath-Brown [10], but this lemma is sufficient for our purposes.

Theorem 3. Let

Sk (x) :== Z T(n—1Dwn+1).

n<z
neNy

Let 0 < & < 1. Then, for 1 <k < (2—&)xs we have

e = (1 +on () ] (14 05
M bt ()

Here F is defined in Section 1.1.

X

(1.7)

Especially, for k=1:

Si(@):=) T(p—Dw(p+1)=(1+0, (1) Cazs,

p<z

where
C:H<1+p(pl_1)>.

Remark. Timofeev and Khripunova proved in [4] that

sy = (et )T o)~
(1.8)  mv

() i (e ()
2. Proof of Theorem 1

It is known that > 7.(m) < Cly(logy)rfl, if y > 2, furthermore that
m<y

7 (ab) < 7. (a) - 7 (b).
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Let us write every n in the form n = K'm, where K is the square-full part
and m is the square-free part of n.

Since n1 (n) = K - 7 (K) - 2¢(™) . m, we obtain that

7 (n7 () < 70 (K) - 77 (7 (K)) 70 (m) (w (mr)f - 1) <

< Comy (K) 7y (K)w (m)"
It is clear, furthermore, that

Z 7 (m)w (m) ™! <Csy Z Z 7 (p1...pjv) <

m<y j=1p1<...<pj

<Ci)ylogyy Y Y i)

j=1p1<...p; <y Pr---pj

<Cs (r)y (logy)"™ <1+ZTT ) <

p<y

<Cs (r)y (logy)" " (loglog 10y)"

It is obvious that

7 (K) 7 (1 (K
> ()K(())

is convergent, where K runs over the square-full integers.

Let

(2.1) Ti (z) = 3 7 (n7 (n)),

n<x
where * indicates that we sum over those n the square-full part of which is K.

Let Y, — oo arbitrarily slowly. Then

(2.2) Z Tk (x) + oy, (1) z - ot tab ™t
K<Y,

Let us fix some K (<Y,). Write K7 (K) = 2°% - R, R odd, m = 2%m ms,
where 09 € {0,1}; my,mo are coprime odd integers, ms is the largest odd
divisor of m coprime to R (consequently mq|R).
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We have

Z Z Z** . (2ak+5o+w(m)) 7 (Rmy) 7 (m2) =

0o=0my|R m2<

7Km,1 .2%0
S IP IR
0o=0m1|R
o ap+ 90 +w(my) +w(me)+r—1
S ( )t 7 (ma).
mQSK'm;E-Q‘SO

where #* indicates that we sum over those square-free integers which are co-
prime to 2R, + indicates that m; runs over the square-free divisors of R.

Since the contribution of those ms for which w (msg) < 1x2 is very small,
and ax + 0o +w (my) is less than O (Yy), say, therefore the blnomlal coefficient

on the right hand side of (2.3) can be substituted by %

Thus we have

! + o w(mg) !
I LTINS S R
60:0 mlIR m2§ Kvnf-Q‘SO .

+0 Z Tr (Rmy) Z** w(ma)""2 - 7, (my)

mi|R mggﬁ
Since
T (V) |p (v T (p
s k] )V'S”'H<1+ pi)) ¢ () A0 (5),
(v,D)=1 piD p|D p*

where A, (s) = [] (1 + pl> (1 _ p%)r’ A, (s) is bounded in the halfplane
P
Re s > £ +¢, (¢ > 0 constant), we can deduce that

1) S n @) =040 ()] A (a2l

1+
(utlg)le pID P
which is valid for D < /3, say.
Let w(n) == >, 1. Then 0 < w(n) —@(n) < 10r, if n < z, ie.

pln
1

p<z 107
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wn) t=am)"T +0 (w (n)r72>. Hence

r—1
d (m2) r—2
' P1---Pp_1lmo
P1<~-<P7~71<mﬁ

Thus
r—1 ~ r—1
w (m) rm) = Y W(ET”?)D! e (ma) +

>
—. (r—1)! —.
(26) m2s e 2% M2 e 2%
< -1 -2
+0 A N
Km1

From (2.5) we obtain that the sum on the right hand side of (2.6) is

>

1
p1<...<pp_q1<wz 107
(P1---Ppr_1v,2Kmq)=1

xT

(2.7) T (p1--.pr—1) [0 (p1 - pro1v) |
v<
T K-m1:2°0py...p,_q
which can be estimated by using (2.4). Thus (2.7) equals to

>

1
p1<...<pp_1<xl0r

(P1-Pr_qv,2Kmy)=1
1

XKTr(pgﬁ...prfl) H e
m PrePr=t o kpy e P

(1+ 0, (1) x| A, (1) x

We can observe that

r—1
> .
LLlpi+(r+1) (r—1)!
(29) p1<..<pp._1<z e J=1 ! p<x o7
(P1---Pr_1v,2Kmq)=1
_ 1 + Oz (1) Tr—l . x;—I.

(r—1)

Collecting our estimates we obtain our theorem.

) _1to) | o n
! P
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3. Proof of Lemma 3

The left hand side of (1.6) can be written as

SorcanY. > rwxbew

G‘GBAC qu Aop=1 (mod Bgq)
u<w/Ac

where
R L (n, AC) = 1,
Xac ™ =120, it (n,4C) > 1

The contribution of o > x; can be ignored. For fixed o, (o, B) = 1, we can use
the theorem of D. Wolke [8], according to

1 L
> > 7 (1) X (1) — > (Ba) ’MZ/AU ()XY ()| < Y retd 0

qeT p<az/Ao <

Aop=1 (mod Bq) (1, Bq)=1
Thus

(0) 1 1 (0)

YooY rwxhew = B Yo X Twxas )+
qeT p<z/Ac ® gez 4 p<w/Ac

Aop=1 (mod Bq) (1, Bqg)=1

+0O (AC _20) + Error.
Z T (qlm) <
qEI glm<z/Ac

(ql) i::: T _ T
<<qe§; 1221 O (V) < o (57 /7

We can write

S rwxbew = > 7w xThe )

i<a/A <
(imgwsl n<lz/Ac

and the right hand side
2
w* (ABC) x
B (14(30)2)/10{“*0(1)}'

Collecting our estimates, Lemma 3 easily follows. |
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4. Proof of Theorem 2

Let ¢ be a multiplicative function defined on prime powers p®, « > 2 to
be t (p*) = p®. Furthermore let ¢(2) = 2, and ¢ (p) = 1 if p is odd prime. It
is clear that the set {t(n)|n € N} = £ is the union of the set of square-full
numbers and the twice of the square-full numbers. Let e (n) be defined from
the equation = ¢ (n)e (n). We say that e (n) is the odd square-free part, and
t (n) be the quasi square-free part of n.

Let K, L €&,

(4.1) Skri= », T(r(n-1)).

n<wx
t(n—1)=K
t(n)=L
n<wx

If the sum (4.1) is nonempty, then (K,L) = 1, 2|KL. Let us write n — 1 =
= Km, n = Lv, where m is the odd square-free part of n — 1, and v is the odd
square-free part of n. We have (K,m) =1, (L,v)=

Let 7?) (n) := 7 (7 (n)). Since 7 (ab) < 7 (a)-7 (b), 7 (a) < a holds for every
a,b € N, therefore

rnr(n—1)<70) TP n-1)<72(n)+72(n—-1).
We shall prove that
(4.2) Z Yk, =05 (1) zz120.
max(K,L)>z%
Indeed,
(4.3) ST K)+7*(Km+1)} =% + %,

K>x" L m<z/K

where in ¥; we sum over K € [xf, x1/4], and in X over K > x/4. 3, is
small, since 7(m),7 (K),7 (Km+ 1) are less then c.x%/2, therefore ¥y <
<zt Y 1/K < 2% say.

K>zl/4
Since > 7% (m) < Za2$,and Y 7T2(Km+1) < L2} for K < 2/*
mga:/k: Km+1<x

(say), therefore

(4.4) IS 721((K)'

2y <K <zl/4
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Since 72 (K) < K¢, for an arbitrary small € > 0, therefore the sum on the right

hand side of (4.3) is less than xf5/2+5. Thus ¥, < z - 2)? say, consequently
(4.4) is less than o, (1) x - x122.

We can overestimate the contribution of those n for which L > 3, similarly.
We omit the details.

Let v > 1/log2 be a constant. Let B be the set of those n < x for which
w (m) > ~yxs. We shall observe that the contribution of those integers to T ()

for which n € Bis o, (1) zz122. Observe that u/2% is monotonically decreasing,

w(m) Jyx2
ouw(m) S PREPRI

therefore if w(m) > ya9. Furthermore

T(nt(n—=1)) <7(n) @ (K)(w(m)+1) <

<27 (Km +1) 7@ (K) 7 (m) s <
L2
<27 (Km+ 1)1 (Km) 72z
Thus
2
o X -T7T2
(4.5) 27 (nt(n—-1)) < v Z: Tn)T(n—1) < 27;2
ne n<x

Since x1/2772 <« x1 °, therefore we can drop the integers n € B.

Let EE?L be the sum of 7 (n7 (n — 1)) appearing in X 1, and additionally
satisfying w (m) < yas. Then, we have 7 (n1(n — 1)) < 2yao7 (n) 7 (K),
and so

1 x
S < 2mr@(K) Y r (L) < mor® (K) 7 (L) Fanat

v<az/L
Lv=1 (mod K)

@)
Since > TT(K) < oo, Y % < 00, therefore, if Y, is tending to infinity,
Kee Lee
then

(4.6) Z E%)L = 0, (z2122) .
max(K,L)>Y,

Now we assume that K,L <Y,,(K,L) =1. Let L7 (K) = 2°R, R is odd. We
have 26 < V2. Then n7 (n — 1) = 2° R - 2°0™y, consequently

(4.7) T(nt(n—1))=(w(m)+F+1)7(Rv).
Here we used that v is odd. Thus

48)  ZW, =Y wm)r @)+ (B+1)7(Ry) =5@, + 3¢,
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The second sum is less than

< (B+1)T(R) E Tw)< (B+1) Iéfz) xx)
v<z/L
Lv=1(K)

Let us choose Y, — oo so that Y, = O (z3). We obtain that

(4.9) Z Eg’)L =0, (1) zz129.
K,L<z2/?
Let n be a small positive number, wy (n) = >, 1. Let
pln
pEla? 2]

(4.10) o)=Y wi(m
Since 0 < w (m) —wy (m) < 1/n, therefore
1
> (Eg,)L - Eﬁ?j?) < ( + xs) LZaR
K,L K

It remains to estimate E(I?’?.

Since (v,2) = 1, therefore 7 (Rv) = (B}H)T (7 (K) Lv). Taking into account

that (v,u) =1, (K,m)=1, (L,v)=1, therefore
(2,1
EID YD ID DD DR D 2) 1 (1) p (12)
q€[a?,2n] 61|K w1|L (82,K)=1 (k2,L)=1

Uq (617527 K1, 52) )

where
(4.11) Uy, (61,09, K1, ko) == > 7 (1 (K) k1 LK3v) .
Ly nd ;S%slagxq)
We have
Uq (61,02, k1, k2) < 7 (7 (K)) 7 (k1) 7 (L) 7 (K3) Z T(v).

Lrir3=1 (mod §162Kq)
Lkq nggm

The sum on the right hand side is

T

i 2 2 3/4
< Lordo3kg © max (Lki£3, 0105 Kq) < 2°/4,

d £ i 1
and < m m general.
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Thus
Z Z Uq(517527"<‘:17"<‘:2)<<
2 <q<z max(rz,02)>Ys

72 (K) TL(I?) Tr1X2 Z 7’(51)’\5(51” Z I E;il) | %

<
Hl‘L

x Y o+ 0(@®) <

K
max(k2,02)>Y, 272

1 72(K) 7 (L) zx122 2 K ’
<<?;1; LK E(1+p>s0(K)+O(x09)

51‘K

Summing over all possible K, L the contribution of these sums is o, (1) zz1 2.
It remains to estimate the sums (4.11) under the condition max (k2,d2) < Y.
To estimate (4.10) let us write A = Lr1k3, B, = 6103Kq, C = 7 (K).

Let

x
(4.12) H, = Z 7(CAv), whereY = 1

v<Y
Av=1 (mod Bq)

Then the right hand side of (4.11) equals to H,. Let us write v = oy, where
(1, CA) =1, and all the prime factors of o divide C A. Then

H, = ZT(CAO’) Z = ZT(CAO’)T

n<Y/o
(Ao)pu=1 (mod Bq)
(n,CA)=1

T, can be estimated by Lemma 3. Lemma 3 is valid if K, L, dy, 02, k1, ko are
fixed. Then there exists a suitable sequence Y, — oo, such that it remains
valid uniformly as max (K, L, 01,02, k1, k2) < Y. Arguing as earlier, we can
get that

SIS ARSED S SID 5 SHEED DI

K,LEE qe( )61\K k1|L (62, K)=1
max(K,L)>Yy max(K L)<Y LTsg max(8q,89,k1,k0)> Yy

Z Uq (513 527 K1, ’{2) =0 (xl'le) .

(k2,L)=1

Hence our theorem follows. |
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5. Proof of Theorem 3

The assertion is based on Lemma 1 and 2. Let ¢, — 0 (slowly). We
distinguish two cases:

(A) 3k < Egx * T2,
(B) 3k > ey - xo.

1

In the case (B) let Z = {xﬁ,xfﬂﬂ. It is clear that for n < z,

(5.1) w, (n) := Z 1<e,-ao.

pln
1

p>z T T2
Let wy (n) = >, 1, and in the case (A) let wy (n) = > 1.
o e
p<z 3k
Let S (2) := ¥ 7(n—1Dw;(n+1) (j=0,1,2), where S* (z) = 0
n<z
neENy,

in the case (B).
From (5.1), by (1.7) we obtain that

(5.2) S\ (z) < p21 N ().

Assume that we are in the case (A). We shall estimate Sl(f) (x).
From (1.7) we obtain that

(5.3) S (2) < 6pmami Ny, () + 51,

where

(5.4) Si= Y, tn-Dw(n+1).
TR,

wo(n+1)>84 -xo

Here we assume that 6, — 0, slowly. Let n be counted in (5.4). Assume that
p1 < ... < pr are all the distinct prime divisors of n + 1 located in Z. It is
clear that T" > [(le‘g] Let Q =P1---Pr = QlQQ, where Ql =P1---P[T/2]-
Since Q1 < Q2, Q < x, therefore Q7 < /x. Furthermore w (Q) < 3w (Q1).
Consequently

(5.5) <Y w(@) > r(n—1).

w(@p)>er2

n<x
n4+1=0 (mod Q1)
Q1<va
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It is known (see [11]) that
(5.6) Z 7(En+ R) < %,
En+R<x

uniformly as (1<)E <« 2%, 0 < R < E, (E,R) = 1, the constant implied
by < may depend on . From (5.5), (5.6) we deduce that

(5.7) X L zwy Z wéQ1)7
w@nZjo

jo = 222 Let

1/e, 6
/€ x2+1§10g—€:7:,3.
€

(5.8) U:=> 1/p<log Wi

pEL

We may assume that 7, — oo arbitrarily slowly, if €, has been chosen appro-
priately to tend to 0.

It is clear that

w(@1) 11
Q1 ple:l p (Qi1/p)’
consequently
(Q1) 1 1
(5.9) P S W
w(Q1)=Jo @ pel b w(Qs)=>jo—1 @

where Q3 run over the square free integers all prime factors of which belong to
Z. Then the right hand side of (5.9) is less than

1 cUo
U- U —— (= M).
Z = (jo— 1! ( )
l=j0—1
Observe that
log M <logc+ jologU — jo/2log jo <

if « is large enough, i.e.

M < exp (— megxg,)

3

Hence, and from (5.7) we obtain that
El < 0y (1) :ElNk (l’)

uniformly as k < (2 — £) xs.
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To complete the proof of Theorem 3 it remains to show that S l(€1) (x) asymp-
totically equals to the right hand side of (1.6). This can be done by applying
the method of Timofeev and Khripunova.

We have
(5.10) SV@= > 4,
p<xl/3k
where
5.11 A (2) = T(n—1).
p
A
n+1=0 (mod p)
‘We have

x) =2 Z #{n=1 (modu),u’<n<az,n=-1 (modp)t+
(5.12) N
+0O (#{n < z|n — 1 = square}) .
As in [4] we can drop the contribution of the error term, and even those
integers which are counted for u > /zexp (—m%). For the summands for
u < \/zexp (—a3) we can apply Lemma 1:
#{n=1 (modu?<n<z),n=-1 (modp)}=
=#{n=1,, (modpu),n<az}—-#{n=1,, (modpu),n<u?}

if (u,p) = 1, where 1, ,, is determined from n =1 (mod u), n = —1 (mod p).
(5.13) =2 Z B, (z) + O (#{n < z|n — 1 = square}),
N

(5.14) By (z) =#{neNp,n=—-1 (modp),n=1 (modu),u® <n <z}

As in [4] we can drop > B, (z). The contribution of the error
u>\/5exp(—z§)
term is small, < y/z. The contribution of As () is not larger than (1.7). Let
p > 2. If B, (x) # 0, then (u,p) = 1. For such a pair let [, , be the residue
(mod pu) such that n =1 (mod u), n = —1 (mod p). We have

By () =#{neNy,n=1,, (modpu),n<uz}-
—#{neNy,n=1,, (modpu),n<u}=
= [ (:L'7 k7 27 lu,p7pu) — K (’U/Q, k7 2a lu,p>pu) .

Applying Lemma 1 and Lemma 2, as in [4], we obtain the theorem. We do not
give the details. |
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