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Abstract. The sum

n≤x
n∈Nk

τ(n − 1)ω(n + 1) is investigated where τ(n) =

= number of divisors of n, ω(n) = number of prime divisors of n, Ω(n) =
= number of prime power divisors of n, Nk = {n|Ω(n) = k}.

1. Introduction

1.1. Notation

P= set of primes, p and q with and without indices always denote prime
numbers. ω (n)= number of distinct prime factors of n; Ω (n)= number of
prime power divisors of n; τ (n)= number of divisors of n; τk (n)= number
of positive integers x1, x2, . . . , xk satisfying n = x1 · · ·xk. Let p (n) be the
smallest and P (n) be the largest prime factor of n. For some integer k ≥ 1 let
Pk := {n | ω (n) = k}; Nk := {n | Ω (n) = k}, πk (x) := #{n ≤ x | n ∈ Pk},
Nk (x) := #{n ≤ x | Ω (n) = k}.
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Let t ≥ 2, Q (t) =

p<t
p, p ∈ P. Let ε, ε1, ε2, . . . be arbitrary small

positive numbers. Denote

µ (x, k, t, a, d) := #{n ≤ x|n ∈ Nk, (n,Q (t)) = 1, n ≡ a (mod d)}.

Lemma 1. Let 2 ≤ t ≤
√
x, k ≤ x22, and let

∆k (t) =


d≤Q

max
y≤x

max
(a,d)=1

µ (y, k, t, a, d)−
1

ϕ (d)
#{n ≤ y|n ∈ Nk, (n, dQ (t)) = 1}

 .

Then
∆k (t) Q

√
x exp

�
x2+ε
2


+
x

xB1
,

where ε > 0 and B are arbitrary positive constants.

Lemma 2. Suppose k ≤ (2− ε)x2, 0 < ε < 1, d ≤ x
1
2+α(k), 2 ≤ t ≤ xβ(k),

α (k) = 1
3k and β (k) =

1
10 exp

�
−k

2


. Let 0 < ε1 < 1. Then there exists a

constant c (ε, ε1)such that

µ (x, k, t, a, d) ≤ c (ε, ε1)
x

ϕ (d)x1
(1 + ε1)

k


log x1

log t

k−1

(k − 1)!
.

They used their results to prove the asymptotic of the sums


n∈Nk
n≤x

τ (n− 1) in [4], and

n<N
n∈Nk

τ (N − n) in [5].

Solving a weakened conjecture of Ivič [6] I proved in [7] that

(1.1)

n≤x

τ (n+ τ (n)) = Dxx1 +O

xx1
x2


.

(1.1) is an easy consequence of Lemma 1. The proof is going on the usual
way with the help of Lemma 1. Finally we proved that the contribution of the

integers n ∈


k≥(2−ε)x2

Nk to (1.1) is less than O

xx1

x2


.

As we mentioned in [7] one can prove similarly

(1.2)

n≤x

τ (n+ f (n)) = Dfxx1 +O

xx1
x2
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Furthermore we shall write xk instead of the k-fold iterate of log x, i.e.
x1 = log x, x2 = log x1, x3 = log x2, . . . . (We shall use this abbreviation only
for the variable x.)

1.2. Preliminaries

Sathe [1] and A. Selberg [2] showed that for x ≥ 3, 1 ≤ k ≤ (2− ξ)x2,
where 0 < ξ < 1, we have

Nk (x) =
x

x1
F


k

x2


x2

(k − 1)!


1 +Oξ


1

x2


.

Here

F (z) :=
1

Γ (z + 1)


p


1− 1

p

z 
1− z
p

−1

,

Γ (x) is the Euler gamma function.

For (2 + ε)x2 ≤ k ≤ x1/ log 2 the behaviour of Nk (x) was studied by
J.-L. Nicolas [3]. He proved, that in this range of k,

Nk (x) =
Cx

2k
log
x

2k
+O


x

2k


log

3x

2k

β


where 0 < β < 1, and

C =
1

4


p>2


1 +

1

p (p− 2)


.

Similar theorem is valid for πk (x). Let

λ (z) :=
1

Γ (z + 1)


p


1 +

z

p− 1


1− 1

p

z

.

Let A > 0 be an arbitrary constant. Then, uniformly as x ≥ 3, 1 ≤ k ≤ Ax2
we have

πk (x) =
x

x1
· x

k−1
2

(k − 1)!


λ


k − 1
x2


+O


k

x22


,

where the constant, implied by the error term may depend on A.

N.M. Timofeev and M.B. Khripunova in their paper [4] proved a theorem
of Titchmarsh type, and of a Vinogradov–Bombieri type for the integers in Nk

which is quoted in this paper as Lemma 1 and Lemma 2.
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(1.1)

n≤x

τ (n+ τ (n)) = Dxx1 +O

xx1
x2


.

(1.1) is an easy consequence of Lemma 1. The proof is going on the usual
way with the help of Lemma 1. Finally we proved that the contribution of the

integers n ∈


k≥(2−ε)x2

Nk to (1.1) is less than O

xx1

x2


.

As we mentioned in [7] one can prove similarly

(1.2)

n≤x
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Thus we have

n≤x

τ (f (n)n) = (1 + ox (1)) cxx1x2.

we do not want to give a complete proof of this relation.

1.4. Theorems

We shall prove

Theorem 1. Let r ≥ 2 be an integer. Then

(1.4) S (x) :=

n≤x

τr (τ (n)n) = (1 + o (1)) cxx1x
r−1
2

holds, where c is a suitable positive constant.

Theorem 2. We have

(1.5) T (x) :=

n≤x

τ (nτ (n− 1)) = C (1 + ox (1))xx1x2,

where C is a positive constant.

1.5.

In the proof of Theorem 2 we shall use Lemma 3. For some integer D > 0
let BD be the semigroup generated by {1, p1, . . . , pr} where p1, . . . , pr are the
prime factors of D, i.e. BD = {1, pα1

1 , . . . , p
αr
r |αj = 0, 1, 2, . . . ; j = 1, . . . , r}.

Let αp (n) be that exponent k for which p
k|n and pk+1  n.

Lemma 3. Let A,B,C ≤ x1 be positive integers, (A,B) = 1, q run over
the primes in I = [x21, xη], where 0 < η < 1/10. Then

(1.6)

q∈I


Aν≡1 (modBq)

pν≤x

τ (CAν) = E (A,B,C)xx1x2 +O (xx2) ,

where

E (A,B,C) =
2

Aϕ (B)


p|(B,C)

τ

pαp(C)

 
p|AC
pB


1− 1

p

2 ∞
µ=0

pαp(C)+αp(A)

pµ
,

and the constant implied by the O term may depend on A,B,C.
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with some constants Df > 0, if f (n) = ω (n) ,Ω (n) , τ (τ (n)) , 2ω(n), τk (n),
where τk (n) is the number of solutions of n = u1 . . . uk in positive integers
u1, . . . , uk. Similar theorems can be proved if we substitute τ on the left hand
side of (1.2) by 2ω(m). Even one can prove the asymptotic of (1.2) if we sum
only on the set n ∈ Nk for a given k uniformly as 1 ≤ k ≤ (2− ε)x2. Changing
τ into τ3 in (1.2), we stock. We are able to prove only the exact order of
n≤x

τ3 (n+ f (n)).

1.3. On sums of form


τ (f (n)n)

Assume that f is a multiplicative function taking on positive integer values,
1 ≤ f (pa) < cac1 with suitable constants c, c1, and f (p) = A ∈ P for every
prime p.

Let

Ay (n) :=

pα||n
p<y

pα, By (n) :=

pα||n
p≥y

pα.

Then n = Ay (n) ·By (n).

Let y = x2, and Ax be a monotonically increasing sequence tending to
infinity as x→ ∞.

One can observe that the contribution of


n≤x τ (f (n)n) for those n

for which Bx2
(n) is not square-free, or Ax2

> xAx
2 is o (xx1x2). For the

other integers n we can write f (n) = f (Ax2
(n)) · Aω(Bx2 (n)), nf (n) =

= Ax2
(n) f (Ax2

(n)) ·Aω(Bx2 (n)) ·Bx2
(n).

Let K run over the integers up to xAx
2 satisfying P (K) ≤ x2, and m run

over the square free integers m satisfying p (m) > x2. Let Kf (K) = A
α(K)RK ,

where (RK , A) = 1. Thus we have

(1.3)


n≤x

τ (f (n)n) =

K

τ (RK)


m≤x/K

(ω (m) + α (K) + 1) τ (m)+

+o (xx1x2) .

It remained to estimate the sums


m≤y

p(m)≥x2

τ (m) |µ (m) |,

m≤y

τ (m) |µ (m) |ω (m)

for x/xAx
2 ≤ y ≤ x, which can be done on routine way.
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p

2 ∞
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Let us write every n in the form n = Km, where K is the square-full part
and m is the square-free part of n.

Since nτ (n) = K · τ (K) · 2ω(n) ·m, we obtain that

τr (nτ (n)) ≤ τr (K) · τr (τ (K)) τr (m)

ω (m) + r − 1
r − 1


≤

≤ C2τr (K) τr (K)ω (m)
r−1
.

It is clear, furthermore, that


m≤y

τr (m)ω (m)
r−1 ≤C3

r
j=1


p1<...<pj

τr (p1 . . . pjν) ≤

≤C4 (r) y (log y)
r−1

r−1
j=1


p1<...pj<y

τr (p1) . . . τr (pj)

p1 . . . pj
≤

≤C5 (r) y (log y)
r−1


1 +


p<y

τr (p)

p

r−1

≤

≤C6 (r) y (log y)
r−1

(log log 10y)
r−1
.

It is obvious that
 τr (K) τr (τ (K))

K

is convergent, where K runs over the square-full integers.

Let

(2.1) TK (x) =

n≤x

∗
τr (nτ (n)) ,

where ∗ indicates that we sum over those n the square-full part of which is K.

Let Yx → ∞ arbitrarily slowly. Then

(2.2) S (x) =


K≤Yx

TK (x) + oYx (1)x · xr−1
1 xr−1

2 .

Let us fix some K (≤ Yx). Write Kτ (K) = 2αK · R, R odd, m = 2δ0m1m2,
where δ0 ∈ {0, 1}; m1,m2 are coprime odd integers, m2 is the largest odd
divisor of m coprime to R (consequently m1|R).
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Remark. One can prove better assertions, by using known results of
D.I. Tolev [9] or Heath–Brown [10], but this lemma is sufficient for our purposes.

Theorem 3. Let

Sk (x) :=

n≤x
n∈Nk

τ (n− 1)ω (n+ 1) .

Let 0 < ξ < 1. Then, for 1 ≤ k ≤ (2− ξ)x2 we have

(1.7)

Sk (x) = (1 + ox (1))xx2

p


1 +

1

p (p− 1)


×

×

p


1− k − 1

(p2 − p+ 1)x2


F


k

x2


xk−1
2

(k − 1)!
.

Here F is defined in Section 1.1.

Especially, for k = 1 :

S1 (x) :=

p≤x

τ (p− 1)ω (p+ 1) = (1 + ox (1))Cxx2,

where

C =


1 +
1

p (p− 1)


.

Remark. Timofeev and Khripunova proved in [4] that

(1.8)


n≤x
n∈Nk

τ (n− 1) = x

p


1 +

1

p (p− 1)


p


1− k − 1

(p2 − p+ 1)x2


×

×F

k

x2


xk−1
2

(k − 1)!


1 +Oξ


1

√
x2


.

2. Proof of Theorem 1

It is known that

m≤y

τr (m) ≤ C1y (log y)
r−1

, if y ≥ 2, furthermore that

τr (ab) ≤ τr (a) · τr (b).
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ω (n)
r−1

= ω̃ (n)
r−1

+O

ω (n)

r−2

. Hence

(2.5)
ω (m2)

r−1

(r − 1)!
=


p1...pr−1|m2

p1<...<pr−1<x
1

10r

1 +O

ω (m2)

r−2

.

Thus

(2.6)

∗∗

m2≤ x

Km1·2δ0

ω (m2)
r−1

(r − 1)!
τr(m2) =

∗∗

m2≤ x

Km1·2δ0

ω̃ (m2)
r−1

(r − 1)!
τr (m2)+

+O

x

Km1
xr−1
1 · xr−2

2


.

From (2.5) we obtain that the sum on the right hand side of (2.6) is

(2.7)


p1<...<pr−1<x
1

10r

(p1...pr−1ν,2Km1)=1

ν≤ x

K·m1·2δ0p1...pr−1

τr (p1 . . . pr−1) |µ (p1 . . . pr−1ν) |

which can be estimated by using (2.4). Thus (2.7) equals to



p1<...<pr−1<x
1

10r

(p1...pr−1ν,2Km1)=1

(1 + ox (1))xx
r−1
1 Ar (1)×

× τr (p1 . . . pr−1)

Km1 · 2δop1 . . . pr−1


p|2Kp1...pr−1

1

1 + r
p

.

We can observe that

(2.9)



p1<...<pr−1<x
1

10r

(p1...pr−1ν,2Km1)=1

r−1
j=1

τr (pj)

pj + (r + 1)
=
1 + ox (1)

(r − 1)!







p<x
1

10r

τr (p)

p





r−1

=

=
1 + ox (1)

(r − 1)!
rr−1 · xr−1

2 .

Collecting our estimates we obtain our theorem. 
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We have

TK (x) =

1
δo=0


m1|R

∗∗

m2≤ x

Km1·2δ0

τr


2αk+δ0+ω(m)


τr (Rm1) τr (m2) =

=

1
δo=0


m1|R

+
τr (Rm1)×

×
∗∗

m2≤ x

Km1·2δ0


αk + δ0 + ω (m1) + ω (m2) + r − 1

r − 1


τr (m2) ,

where ∗∗ indicates that we sum over those square-free integers which are co-
prime to 2R, + indicates that m1 runs over the square-free divisors of R.

Since the contribution of those m2 for which ω (m2) <
1
2x2 is very small,

and αK + δ0+ω (m1) is less than O (Yx), say, therefore the binomial coefficient
on the right hand side of (2.3) can be substituted by ω(m2)

r−1

(r−1)! .

Thus we have

TK (x) =

1
δo=0


m1|R

+
τr (Rm1)

∗∗

m2≤ x

Km1·2δ0

ω (m2)
r−1

(r − 1)!
τr (m2)+

+O


 

m1|R

τr (Rm1)
∗∗

m2≤ x
Km1

ω (m2)
r−2 · τr (m2)


 .

Since


(ν,D)=1

τr (ν) |µ (ν) |
νs

=

pD


1 +
τr (p)

ps


=


p|D

1

1 + r
ps
ζr (s)Ar (s) ,

where Ar (s) =

p


1 + r

ps


1− 1

ps

r
, Ar (s) is bounded in the halfplane

Re s > 1
2 + ε, (ε > 0 constant), we can deduce that

(2.4)

ν≤x

(ν,D)=1

τr (ν) |µ (ν) | = (1 + ox (1))

p|D

1

1 + r
p

Ar (1)x · xr−1
1 ,

which is valid for D ≤ x1/3, say.

Let ω̃ (n) :=

p|n

p<x
1

10r

1. Then 0 ≤ ω (n) − ω̃ (n) ≤ 10r, if n ≤ x, i.e.
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1
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p

.
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=
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2 .
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4. Proof of Theorem 2

Let t be a multiplicative function defined on prime powers pα, α ≥ 2 to
be t (pα) = pα. Furthermore let t (2) = 2, and t (p) = 1 if p is odd prime. It
is clear that the set {t (n) |n ∈ N} = E is the union of the set of square-full
numbers and the twice of the square-full numbers. Let e (n) be defined from
the equation = t (n) e (n). We say that e (n) is the odd square-free part, and
t (n) be the quasi square-free part of n.

Let K,L ∈ E ,

(4.1) ΣK,L :=

n≤x

t(n−1)=K
t(n)=L
n≤x

τ (nτ (n− 1)) .

If the sum (4.1) is nonempty, then (K,L) = 1, 2|KL. Let us write n − 1 =
= Km, n = Lν, where m is the odd square-free part of n− 1, and ν is the odd
square-free part of n. We have (K,m) = 1, (L, ν) = 1.

Let τ (2) (n) := τ (τ (n)). Since τ (ab) ≤ τ (a) ·τ (b) , τ (a) < a holds for every
a, b ∈ N, therefore

τ (nτ (n− 1)) ≤ τ (n) τ (2) (n− 1) ≤ τ2 (n) + τ2 (n− 1) .

We shall prove that

(4.2)


max(K,L)>x5
1

ΣK,L = ox (1)xx1x2.

Indeed,

(4.3)

K>x5

1


L


m≤x/K

{τ2 (m) τ2 (K) + τ2 (Km+ 1)} = Σ1 +Σ2,

where in Σ1 we sum over K ∈ [x51, x
1/4], and in Σ2 over K > x

1/4. Σ2 is
small, since τ (m) , τ (K) , τ (Km+ 1) are less then cεx

ε/2, therefore Σ2 
 xε


K>x1/4

1/K  x0,9, say.

Since


m≤x/k

τ2 (m) x
Kx

3
1, and


Km+1≤x

τ2 (Km+ 1) x
Kx

3
1 for K ≤ x1/4

(say), therefore

(4.4) Σ1  x · x31


x5
1≤K≤x1/4

τ2 (K)

K
.
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3. Proof of Lemma 3

The left hand side of (1.6) can be written as


σ∈BAC

τ (CAσ)

q∈I


Aσµ≡1 (mod Bq)

µ≤x/Aσ

τ (µ)χ
(0)
AC (µ)

where

χ
(0)
AC (n) =


1, if (n,AC) = 1,

0, if (n,AC) > 1.

The contribution of σ > x1 can be ignored. For fixed σ, (σ,B) = 1, we can use
the theorem of D. Wolke [8], according to


q∈I




µ≤x/Aσ
Aσµ≡1 (mod Bq)

τ (µ)χ
(0)
AC (µ)−

1

ϕ (Bq)


µ≤x/Aσ
(µ,Bq)=1

τ (µ)χ
(0)
AC (µ)


 x

AC
x−20
1 .

Thus


q∈I


µ≤x/Aσ

Aσµ≡1 (mod Bq)

τ (µ)χ
(0)
AC (µ) =

1

ϕ (B)




q∈I

1

q − 1


 

µ≤x/Aσ
(µ,Bq)=1

τ (µ)χ
(0)
AC (µ)+

+O
 x
AC
x−20
1


+ Error.

Error

q∈I

1

ϕ (B) q


qlm≤x/Aσ

l≥1
(m,q)=1

τ
�
qlm






q∈I

1

ϕ (B)





l≥1

τ
�
ql


ql+1

x

Aσ
x1 +O

�√
x


  xx1

Aσϕ (B)
1/x1.

We can write


µ≤x/Aσ
(µ,Bq)=1

τ (µ)χ
(0)
AC (µ) =


µ≤x/Aσ

τ (µ)χ
(0)
ABC (µ)

and the right hand side

=
ϕ2 (ABC)

(ABC)
2

χ

Aσ
{x1 +O (1)}.

Collecting our estimates, Lemma 3 easily follows. 
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4. Proof of Theorem 2

Let t be a multiplicative function defined on prime powers pα, α ≥ 2 to
be t (pα) = pα. Furthermore let t (2) = 2, and t (p) = 1 if p is odd prime. It
is clear that the set {t (n) |n ∈ N} = E is the union of the set of square-full
numbers and the twice of the square-full numbers. Let e (n) be defined from
the equation = t (n) e (n). We say that e (n) is the odd square-free part, and
t (n) be the quasi square-free part of n.

Let K,L ∈ E ,

(4.1) ΣK,L :=

n≤x

t(n−1)=K
t(n)=L
n≤x

τ (nτ (n− 1)) .

If the sum (4.1) is nonempty, then (K,L) = 1, 2|KL. Let us write n − 1 =
= Km, n = Lν, where m is the odd square-free part of n− 1, and ν is the odd
square-free part of n. We have (K,m) = 1, (L, ν) = 1.

Let τ (2) (n) := τ (τ (n)). Since τ (ab) ≤ τ (a) ·τ (b) , τ (a) < a holds for every
a, b ∈ N, therefore

τ (nτ (n− 1)) ≤ τ (n) τ (2) (n− 1) ≤ τ2 (n) + τ2 (n− 1) .

We shall prove that

(4.2)


max(K,L)>x5
1

ΣK,L = ox (1)xx1x2.

Indeed,

(4.3)

K>x5

1


L


m≤x/K

{τ2 (m) τ2 (K) + τ2 (Km+ 1)} = Σ1 +Σ2,

where in Σ1 we sum over K ∈ [x51, x
1/4], and in Σ2 over K > x

1/4. Σ2 is
small, since τ (m) , τ (K) , τ (Km+ 1) are less then cεx

ε/2, therefore Σ2 
 xε


K>x1/4

1/K  x0,9, say.

Since


m≤x/k

τ2 (m) x
Kx

3
1, and


Km+1≤x

τ2 (Km+ 1) x
Kx

3
1 for K ≤ x1/4

(say), therefore

(4.4) Σ1  x · x31


x5
1≤K≤x1/4

τ2 (K)

K
.
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The second sum is less than

 (β + 1) τ (R)


ν≤x/L
Lν≡1(K)

τ (ν) (β + 1)
τ (R)

KL
xx1.

Let us choose Yx → ∞ so that Yx = O (x3). We obtain that

(4.9)


K,L<x
5/2
1

Σ
(3)
K,L = ox (1)xx1x2.

Let η be a small positive number, ω1 (n) =

p|n

p∈[x21,x
η ]

1. Let

(4.10) Σ
(2,1)
K,L =


ω1 (m) τ (Rν) .

Since 0 ≤ ω (m)− ω1 (m) ≤ 1/η, therefore


K,L


Σ

(2)
K,L − Σ(2,1)

K,L





1

η
+ x3


xx1.

It remains to estimate Σ
(2,1)
K,L .

Since (ν, 2) = 1, therefore τ (Rν) = 1
(β+1)τ (τ (K)Lν). Taking into account

that (ν, µ) = 1, (K,m) = 1, (L, ν) = 1, therefore

Σ
(2,1)
K,L =


q∈[x2

1,x
η ]


δ1|K


κ1|L


(δ2,K)=1


(κ2,L)=1

µ (δ1)µ (δ2)µ (κ1)µ (κ2)×

×Uq (δ1, δ2, κ1, κ2) ,

where

(4.11) Uq (δ1, δ2, κ1, κ2) :=


Lκ1κ
2
2≡1 (mod δ1δ

2
2Kq)

ν≤ x
Lκ1κ

2
2

τ
�
τ (K)κ1Lκ

2
2ν


.

We have

Uq (δ1, δ2, κ1, κ2) ≤ τ (τ (K)) τ (κ1) τ (L) τ
�
κ22

 
Lκ1κ

2
2≡1 (mod δ1δ

2
2Kq)

Lκ1κ
2
2≤x

τ (ν) .

The sum on the right hand side is

 xx1
Lκ1κ22δ1δ

2
2Kq

if max
�
Lκ1κ

2
2, δ1δ

2
2Kq


≤ x3/4,

and  xε

Lκ1κ2
2Kqδ1δ22

in general.
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Since τ2 (K) Kε, for an arbitrary small ε > 0, therefore the sum on the right

hand side of (4.3) is less than x
−5/2+ε
1 . Thus Σ1  x · x0,91 say, consequently

(4.4) is less than ox (1)x · x1x2.

We can overestimate the contribution of those n for which L > x51, similarly.
We omit the details.

Let γ > 1/ log 2 be a constant. Let B be the set of those n ≤ x for which
ω (m) > γx2. We shall observe that the contribution of those integers to T (x)
for which n ∈ B is ox (1)xx1x2. Observe that u/2u is monotonically decreasing,
therefore ω(m)

2ω(m) ≤ γx2

2γx2 , if ω (m) ≥ γx2. Furthermore

τ (nτ (n− 1)) ≤ τ (n) τ (2) (K) (ω (m) + 1) ≤

≤ 2τ (Km+ 1) τ (2) (K) τ (m)
γx2
2γx2

≤

≤ 2τ (Km+ 1) τ (Km)
γx2
2γx2

.

Thus

(4.5)

n∈B
τ (nτ (n− 1)) x2

2γx2


n≤x

τ (n) τ (n− 1) x · x21x2
2γx2

.

Since x1/2
γx2  x−ε

1 , therefore we can drop the integers n ∈ B.

Let Σ
(1)
K,L be the sum of τ (nτ (n− 1)) appearing in ΣK,L, and additionally

satisfying ω (m) ≤ γx2. Then, we have τ (nτ (n− 1)) ≤ 2γx2τ (n) τ
(2) (K),

and so

Σ
(1)
K,L ≤ 2γx2τ

(2) (K)


ν≤x/L
Lν≡1 (mod K)

τ (Lν) x2τ (2) (K) τ (L)
x

KL
x1.

Since

K∈E

τ (2)(K)
K < ∞,


L∈E

τ(L)
L < ∞, therefore, if Yx is tending to infinity,

then

(4.6)


max(K,L)≥Yx

Σ
(1)
K,L = ox (xx1x2) .

Now we assume that K,L ≤ Yx, (K,L) = 1. Let Lτ (K) = 2βR,R is odd. We
have 2β ≤ Y 2

x . Then nτ (n− 1) = 2βR · 2ω(m)ν, consequently

(4.7) τ (nτ (n− 1)) = (ω (m) + β + 1) τ (Rν) .

Here we used that ν is odd. Thus

(4.8) Σ
(1)
K,L =


ω (m) τ (Rν) +


(β + 1) τ (Rν) = Σ

(2)
K,L +Σ

(3)
K,L.
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The second sum is less than

 (β + 1) τ (R)


ν≤x/L
Lν≡1(K)

τ (ν) (β + 1)
τ (R)

KL
xx1.

Let us choose Yx → ∞ so that Yx = O (x3). We obtain that

(4.9)


K,L<x
5/2
1

Σ
(3)
K,L = ox (1)xx1x2.

Let η be a small positive number, ω1 (n) =

p|n

p∈[x21,x
η ]

1. Let

(4.10) Σ
(2,1)
K,L =


ω1 (m) τ (Rν) .

Since 0 ≤ ω (m)− ω1 (m) ≤ 1/η, therefore


K,L


Σ

(2)
K,L − Σ(2,1)

K,L





1

η
+ x3


xx1.

It remains to estimate Σ
(2,1)
K,L .

Since (ν, 2) = 1, therefore τ (Rν) = 1
(β+1)τ (τ (K)Lν). Taking into account

that (ν, µ) = 1, (K,m) = 1, (L, ν) = 1, therefore

Σ
(2,1)
K,L =


q∈[x2

1,x
η ]


δ1|K


κ1|L


(δ2,K)=1


(κ2,L)=1

µ (δ1)µ (δ2)µ (κ1)µ (κ2)×

×Uq (δ1, δ2, κ1, κ2) ,

where

(4.11) Uq (δ1, δ2, κ1, κ2) :=


Lκ1κ
2
2≡1 (mod δ1δ

2
2Kq)

ν≤ x
Lκ1κ

2
2

τ
�
τ (K)κ1Lκ

2
2ν


.

We have

Uq (δ1, δ2, κ1, κ2) ≤ τ (τ (K)) τ (κ1) τ (L) τ
�
κ22

 
Lκ1κ

2
2≡1 (mod δ1δ

2
2Kq)

Lκ1κ
2
2≤x

τ (ν) .

The sum on the right hand side is

 xx1
Lκ1κ22δ1δ

2
2Kq

if max
�
Lκ1κ

2
2, δ1δ

2
2Kq


≤ x3/4,

and  xε

Lκ1κ2
2Kqδ1δ22

in general.
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5. Proof of Theorem 3

The assertion is based on Lemma 1 and 2. Let εx → 0 (slowly). We
distinguish two cases:

(A) 3k < εx · x2,
(B) 3k ≥ εx · x2.

In the case (B) let I =

x

1
3k , x

1
εxx2


. It is clear that for n ≤ x,

(5.1) ωo (n) :=

p|n

p>x

1
εx·x2

1 ≤ εx · x2.

Let ω1 (n) =

p|n

p<x
1
3k

1, and in the case (A) let ω2 (n) =

p|n
p∈I

1.

Let S
(j)
k (x) :=


n≤x
n∈Nk

τ (n− 1)ωj (n+ 1) (j = 0, 1, 2), where S
(2)
k (x) = 0

in the case (B).

From (5.1), by (1.7) we obtain that

(5.2) S
(0)
k (x) εxx1Nk (x) .

Assume that we are in the case (A). We shall estimate S
(2)
k (x).

From (1.7) we obtain that

(5.3) S
(2)
k (x) δxx2x1Nk (x) + Σ1,

where

(5.4) Σ1 =

n≤x
n∈Nk

ω2(n+1)≥δx·x2

τ (n− 1)ω2 (n+ 1) .

Here we assume that δx → 0, slowly. Let n be counted in (5.4). Assume that
p1 < . . . < pT are all the distinct prime divisors of n + 1 located in I. It is
clear that T ≥ [δxx2]. Let Q = p1 . . . pT = Q1Q2, where Q1 = p1 . . . p[T/2].
Since Q1 < Q2, Q ≤ x, therefore Q1 ≤

√
x. Furthermore ω (Q) ≤ 3ω (Q1).

Consequently

(5.5) Σ1 ≤


ω(Q1)≥ δxx2
3

Q1≤
√
x

ω (Q1)

n≤x

n+1≡0 (mod Q1)

τ (n− 1) .
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Thus


x2
1<q<xη


max(κ2,δ2)>Yx

Uq(δ1, δ2, κ1, κ2)

 τ2 (K) τ (L)xx1x2
LK


κ1|L

τ (κ1) |µ (κ1) |
κ1


δ1|K

|µ (δ1) |
δ1

×

×


max(κ2,δ2)>Yx

1

κ22δ
2
2

+O
�
x0,9




 1

Yx

τ2 (K) τ (L)xx1x2
LK


p|L


1 +

2

p


· K

ϕ (K)
+O

�
x0,9


.

Summing over all possible K,L the contribution of these sums is ox (1)xx1x2.
It remains to estimate the sums (4.11) under the condition max (κ2, δ2) ≤ Yx.
To estimate (4.10) let us write A = Lκ1κ

2
2, Bq = δ1δ

2
2Kq, C = τ (K).

Let

(4.12) Hq :=

ν≤Y

Aν≡1 (mod Bq)

τ (CAν) , where Y =
x

A
.

Then the right hand side of (4.11) equals to Hq. Let us write ν = σµ, where
(µ,CA) = 1, and all the prime factors of σ divide CA. Then

Hq =

σ

τ (CAσ)


µ≤Y/σ
(Aσ)µ≡1 (mod Bq)

(µ,CA)=1

=

σ

τ (CAσ)Tσ.

Tσ can be estimated by Lemma 3. Lemma 3 is valid if K,L, δ1, δ2, κ1, κ2 are
fixed. Then there exists a suitable sequence Yx → ∞, such that it remains
valid uniformly as max (K,L, δ1, δ2, κ1, κ2) ≤ Yx. Arguing as earlier, we can
get that


K,L∈E

max(K,L)>Yx

|Σ(2)
K,L|+


K,L∈E

max(K,L)≤Yx



q∈(x2
1,
η
2)


δ1|K


κ1|L


(δ2,K)=1

max(δ1,δ2,κ1,κ2)≥Yx

×

×


(κ2,L)=1

Uq (δ1, δ2, κ1, κ2) = o (xx1x2) .

Hence our theorem follows. 
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5. Proof of Theorem 3

The assertion is based on Lemma 1 and 2. Let εx → 0 (slowly). We
distinguish two cases:

(A) 3k < εx · x2,
(B) 3k ≥ εx · x2.

In the case (B) let I =

x

1
3k , x

1
εxx2


. It is clear that for n ≤ x,

(5.1) ωo (n) :=

p|n

p>x

1
εx·x2

1 ≤ εx · x2.

Let ω1 (n) =

p|n

p<x
1
3k

1, and in the case (A) let ω2 (n) =

p|n
p∈I

1.

Let S
(j)
k (x) :=


n≤x
n∈Nk

τ (n− 1)ωj (n+ 1) (j = 0, 1, 2), where S
(2)
k (x) = 0

in the case (B).

From (5.1), by (1.7) we obtain that

(5.2) S
(0)
k (x) εxx1Nk (x) .

Assume that we are in the case (A). We shall estimate S
(2)
k (x).

From (1.7) we obtain that

(5.3) S
(2)
k (x) δxx2x1Nk (x) + Σ1,

where

(5.4) Σ1 =

n≤x
n∈Nk

ω2(n+1)≥δx·x2

τ (n− 1)ω2 (n+ 1) .

Here we assume that δx → 0, slowly. Let n be counted in (5.4). Assume that
p1 < . . . < pT are all the distinct prime divisors of n + 1 located in I. It is
clear that T ≥ [δxx2]. Let Q = p1 . . . pT = Q1Q2, where Q1 = p1 . . . p[T/2].
Since Q1 < Q2, Q ≤ x, therefore Q1 ≤

√
x. Furthermore ω (Q) ≤ 3ω (Q1).

Consequently

(5.5) Σ1 ≤


ω(Q1)≥ δxx2
3

Q1≤
√
x

ω (Q1)

n≤x

n+1≡0 (mod Q1)

τ (n− 1) .
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To complete the proof of Theorem 3 it remains to show that S
(1)
k (x) asymp-

totically equals to the right hand side of (1.6). This can be done by applying
the method of Timofeev and Khripunova.

We have

(5.10) S
(1)
k (x) =


p<x1/3k

Ap (x) ,

where

(5.11) Ap (x) =

n≤x
n∈Nk

n+1≡0 (mod p)

τ (n− 1) .

We have

(5.12)

Ap (x) = 2

u≤

√
x

#{n ≡ 1 (mod u), u2 < n < x, n ≡ −1 (mod p)}+

+O (#{n ≤ x|n− 1 = square}) .

As in [4] we can drop the contribution of the error term, and even those
integers which are counted for u ≥

√
x exp

�
−x42


. For the summands for

u <
√
x exp

�
−x42


we can apply Lemma 1:

#{n ≡ 1 (mod u2 < n < x), n ≡ −1 (mod p)} =
= #{n ≡ lu,p (mod pu), n ≤ x} −#{n ≡ lu,p (mod pu), n < u2}

if (u, p) = 1, where lu,p is determined from n ≡ 1 (mod u), n ≡ −1 (mod p).

(5.13) Ap (x) = 2

u≤

√
x

Bu (x) +O (#{n ≤ x|n− 1 = square}) ,

(5.14) Bu (x) = #{n ∈ Nk, n ≡ −1 (mod p), n ≡ 1 (mod u), u2 < n < x}.

As in [4] we can drop


u>
√
x exp(−x4

2)
Bu (x). The contribution of the error

term is small, 
√
x. The contribution of A2 (x) is not larger than (1.7). Let

p > 2. If Bu (x) = 0, then (u, p) = 1. For such a pair let lu,p be the residue
(mod pu) such that n ≡ 1 (mod u), n ≡ −1 (mod p). We have

Bu (x) = #{n ∈ Nk, n ≡ lu,p (mod pu), n ≤ x}−
−#{n ∈ Nk, n ≡ lu,p (mod pu), n < u2} =

= µ (x, k, 2, lu,p, pu)− µ
�
u2, k, 2, lu,p, pu


.

Applying Lemma 1 and Lemma 2, as in [4], we obtain the theorem. We do not
give the details. 
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It is known (see [11]) that

(5.6)


En+R≤x

τ (En+R) xx1
E
,

uniformly as (1 ≤)E  x1−δ, 0 < R < E, (E,R) = 1, the constant implied
by  may depend on δ. From (5.5), (5.6) we deduce that

(5.7) Σ1  xx1


ω(Q1)≥j0

ω (Q1)

Q1
,

j0 =
δx·x2

3 . Let

(5.8) U :=

p∈I

1/p ≤ log
1/εxx2
1/3k

+ 1 ≤ log
6e

εx
= τx.

We may assume that τx → ∞ arbitrarily slowly, if εx has been chosen appro-
priately to tend to 0.

It is clear that
ω (Q1)

Q1
=


p|Q1

1

p
· 1

(Q1/p)
,

consequently

(5.9)


ω(Q1)≥j0

ω (Q1)

Q1
=


p∈I

1

p


ω(Q3)≥j0−1

1

Q3
,

where Q3 run over the square free integers all prime factors of which belong to
I. Then the right hand side of (5.9) is less than

U ·


l=j0−1

1

l!
U l ≤ cU j0

(j0 − 1)!
(=:M) .

Observe that

logM ≤ log c+ j0 logU − j0/2 log j0 ≤ −εxx2x3
3
,

if x is large enough, i.e.

M  exp

−εxx2x3

3


.

Hence, and from (5.7) we obtain that

Σ1  ox (1)x1Nk (x)

uniformly as k ≤ (2− ξ)x2.
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To complete the proof of Theorem 3 it remains to show that S
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We have

(5.10) S
(1)
k (x) =


p<x1/3k

Ap (x) ,

where

(5.11) Ap (x) =

n≤x
n∈Nk

n+1≡0 (mod p)

τ (n− 1) .

We have

(5.12)

Ap (x) = 2

u≤

√
x

#{n ≡ 1 (mod u), u2 < n < x, n ≡ −1 (mod p)}+
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As in [4] we can drop the contribution of the error term, and even those
integers which are counted for u ≥

√
x exp

�
−x42


. For the summands for

u <
√
x exp

�
−x42


we can apply Lemma 1:

#{n ≡ 1 (mod u2 < n < x), n ≡ −1 (mod p)} =
= #{n ≡ lu,p (mod pu), n ≤ x} −#{n ≡ lu,p (mod pu), n < u2}

if (u, p) = 1, where lu,p is determined from n ≡ 1 (mod u), n ≡ −1 (mod p).

(5.13) Ap (x) = 2

u≤

√
x

Bu (x) +O (#{n ≤ x|n− 1 = square}) ,

(5.14) Bu (x) = #{n ∈ Nk, n ≡ −1 (mod p), n ≡ 1 (mod u), u2 < n < x}.

As in [4] we can drop


u>
√
x exp(−x4

2)
Bu (x). The contribution of the error

term is small, 
√
x. The contribution of A2 (x) is not larger than (1.7). Let

p > 2. If Bu (x) = 0, then (u, p) = 1. For such a pair let lu,p be the residue
(mod pu) such that n ≡ 1 (mod u), n ≡ −1 (mod p). We have

Bu (x) = #{n ∈ Nk, n ≡ lu,p (mod pu), n ≤ x}−
−#{n ∈ Nk, n ≡ lu,p (mod pu), n < u2} =

= µ (x, k, 2, lu,p, pu)− µ
�
u2, k, 2, lu,p, pu


.

Applying Lemma 1 and Lemma 2, as in [4], we obtain the theorem. We do not
give the details. 
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Abstract. The main aim of this paper is to investigate properties of
statistically convergent sequences. Also, the definition of statistical mono-
tonicity and upper (or lower) peak points of real valued sequences will be
introduced. The interplay between the statistical convergence and these
concepts are also studied. Finally, the statistically monotonicity is gener-
alized by using a matrix transformation.

1. Introduction

The concept of statistical convergence for real or complex valued sequence
was introduced in the journal ”Colloq. Math.”by H. Fast in [5] and H. Steinhaus
in [17] independently in the same year 1951. The idea of this concept is based
on the notation of asymptotic density of a setK ⊂ N (see for example [11], [12]).

Key words and phrases: Statistical convergence, Lower-Upper peak point, statistical mono-
tone.
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