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Abstract. We explore the value distribution problem of sequences of
additive functions defined on the symmetric group endowed with the Ewens
probability measure. Necessary and sufficient conditions for the weak law
of large numbers are obtained if the parameter is not less than one. The
result can be applied to linear statistics of a random permutation matrix.

1. Introduction and the result

Throughout the paper, N,Z,R,C will denote the sets of natural, integer,
real, complex numbers, Z+ = N ∪ {0}, and n, i, j,∈ N while k, ki, s, si ∈ Z+.
For a vector s̄ = (s1, . . . , sn) ∈ Zn

+, we set (s̄) = 1s1 + · · ·+ nsn.
We deal with asymptotic value distribution problems of mappings defined

on the symmetric group Sn. Let σ ∈ Sn be an arbitrary permutation and
σ = κ1 · · ·κw be its representation as the product of independent cycles κi

and w := w(σ) be their number. If kj(σ), 1 ≤ j ≤ n, denotes the number
of cycles of length j in this decomposition, then k̄(σ) :=

�
k1(σ), . . . , kn(σ)


is called the cycle structure vector. The Ewens probability measure on the
subsets A ⊂ Sn is defined by

νn(A) := νn,θ(A) =
1

θ(n)


σ∈A

θw(σ),
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second author (see, e.g., [12], [13], and the references therein). In [11], he has
been more successful for θ = 1 in the case of the weak law of large numbers
(then F (x) = F0(x) is the degenerate at the zero point distribution function).
We now extend this result for θ ≥ 1.

In virtue of (1.3), one could expect that the conditions are close to that for
the sums of independent r.vsXj := ajξj , j ≤ n. The instance of λ(k̄(σ)) ≡ λn,
with an arbitrary sequence λ := λn ∈ R shows that this is not the case, however.
This sequence of functions obeys the degenerated limit law at the zero point
if centralized by λn, while the corresponding sum of Xj does not in general.
This shows that an additive function can have a deterministic summand to be
extracted in the first step of the problem solving. If we are successful in doing
this, the difference

h(σ;λ) := h(σ)− λ(σ) =

n
j=1

aj(λ)kj(σ),

where aj(λ) := aj − λj, demonstrates closer behavior in some stochastic sense
to the sums of independent r.vs aj(λ)ξj , j ≤ n. That have been established
to be true if permutations are taken with equal probabilities or even according
to a generalized Ewens measure, provided that the influence of long cycles is
negligible (see [13], [5]). If the latter does not hold and θ = 1, more bias
appears. As it is seen in the below formulated result, this gives an extra factor
(1− j/n)θ−1 in the conditions. Firstly, we present a quantitative result.

Define the Lévy distance of the random variable h(·) from the set of con-
stants

L(h; νn) := inf

ε+ νn(|h(σ)− a| ≥ ε) : a ∈ R, ε > 0


.

Denote

ψn(m) =
θ(m)

m!

n!

θ(n)

if m ∈ Z+. Let u ∨ v := max{u, v}, u ∧ v := min{u, v}, u∗ := (1 ∧ |u|) sgnu if
u, v ∈ R,

Un(h, λ) :=

j≤n

θ

j

�
aj(λ)

∗2
ψn(n− j)

and Un(h) = min{Un(h, λ) : λ ∈ R}. In the sequel,  is used as an analog of
O(·), moreover, dependence on θ in the involved constants is allowed.

Theorem 1.1. If θ ≥ 1, then

L(h; νn) ≤ 2
�
1 ∧ (2Un(h))

1/3


and
Un(h) (1/n) ∨ L(h; νn)

for all n ≥ 1.
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where θ > 0 is a fixed parameter and θ(n) := θ(θ+1) · · · (θ+n−1). One easily
finds the distribution of the cycle structure vector, namely,

(1.1) νn
�
k̄(σ) = s̄


=

n!

θ(n)

n
j=1

θ
j

sj 1

sj !
,

where s̄ = (s1, . . . , sn) ∈ Zn
+ and (s̄) = n. The probabilities on the right-hand

side of (1.1) define the so-called Ewens Sampling Formula on −1(n) which is
very important in the statistical problems (see, for instance, [1]). If ξj , j ≥ 1,
denote independent Poisson r.vs given on some probability space {Ω,F , P}
with Eξj = θ/j and ξ̄ := (ξ1, . . . , ξn), then

(1.2) νn
�
k̄(σ) = s̄


= P

�
ξ̄ = s̄

 (ξ̄) = n

, s̄ ∈ −1(n).

It is known [1] that

�
k1(σ), . . . kn(σ), 0, . . .


⇒

�
ξ1, . . . , ξn, ξn+1, . . .



in the sense of convergence of finite dimensional distributions. Here and in
what follows we assume that n→ ∞. We have even more. The total variation
distance
(1.3)
1

2


s1,...,sr≥0

νn
�
k1(σ) = s1, . . . , kr(σ) = sr


− P (ξ1 = s1, . . . , ξr = sr

 = o(1)

if and only if r = o(n). This and more precise results of the remainder in terms
of r/n can be found in [1].

By definition, an additive (completely additive) function h : Sn → R is
defined via a real array


aj , j ≥ 1


, by setting

(1.4) h(σ) :=
n

j=1

ajkj(σ).

If aj = anj , 1 ≤ j ≤ n, depends on n, we obtain a sequence of functions but
we will not add the index n, where no misunderstanding arises. Dealing with
the distribution νn ◦ h−1 we may also assume that aj = 0 if j > n. The main
problem in the field is the following question:

Under what conditions posed on the array {aj := anj}, 1 ≤ j ≤ n, there
exist a centralizing sequence α(n) ∈ R and a distribution function F (x) such
that νn

�
h(σ) − α(n) < x


converges to F (x) at the points of continuity of the

latter (weakly converges)?

Unfortunately, so far we could not afford to establish necessary and sufficient
conditions even for θ = 1. The most general results have been obtained by the
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second author (see, e.g., [12], [13], and the references therein). In [11], he has
been more successful for θ = 1 in the case of the weak law of large numbers
(then F (x) = F0(x) is the degenerate at the zero point distribution function).
We now extend this result for θ ≥ 1.

In virtue of (1.3), one could expect that the conditions are close to that for
the sums of independent r.vsXj := ajξj , j ≤ n. The instance of λ(k̄(σ)) ≡ λn,
with an arbitrary sequence λ := λn ∈ R shows that this is not the case, however.
This sequence of functions obeys the degenerated limit law at the zero point
if centralized by λn, while the corresponding sum of Xj does not in general.
This shows that an additive function can have a deterministic summand to be
extracted in the first step of the problem solving. If we are successful in doing
this, the difference

h(σ;λ) := h(σ)− λ(σ) =

n
j=1

aj(λ)kj(σ),

where aj(λ) := aj − λj, demonstrates closer behavior in some stochastic sense
to the sums of independent r.vs aj(λ)ξj , j ≤ n. That have been established
to be true if permutations are taken with equal probabilities or even according
to a generalized Ewens measure, provided that the influence of long cycles is
negligible (see [13], [5]). If the latter does not hold and θ = 1, more bias
appears. As it is seen in the below formulated result, this gives an extra factor
(1− j/n)θ−1 in the conditions. Firstly, we present a quantitative result.

Define the Lévy distance of the random variable h(·) from the set of con-
stants

L(h; νn) := inf

ε+ νn(|h(σ)− a| ≥ ε) : a ∈ R, ε > 0


.

Denote

ψn(m) =
θ(m)

m!

n!

θ(n)

if m ∈ Z+. Let u ∨ v := max{u, v}, u ∧ v := min{u, v}, u∗ := (1 ∧ |u|) sgnu if
u, v ∈ R,

Un(h, λ) :=

j≤n

θ

j

�
aj(λ)

∗2
ψn(n− j)

and Un(h) = min{Un(h, λ) : λ ∈ R}. In the sequel,  is used as an analog of
O(·), moreover, dependence on θ in the involved constants is allowed.

Theorem 1.1. If θ ≥ 1, then

L(h; νn) ≤ 2
�
1 ∧ (2Un(h))

1/3


and
Un(h) (1/n) ∨ L(h; νn)

for all n ≥ 1.
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If f is a fixed function, α(n) ∈ R, and β(n)→ ∞, chosen so that the conditions
of Corollary 1.1 are satisfied with anj := aj/β(n) we obtain the weak law of
large numbers for

�
Trf(σ) − α(n)


β(n). As we have stressed sequences of

functions f = fn can also be involved.

The proof of Theorem 1.1 is based upon the number-theoretical ideas orig-
inated by I.Z.Ruzsa in [15] and already adopted in probabilistic combinatorics
by the second author in the case θ = 1 (see [11]). The obstacles arising for
θ < 1 will be discussed at the end of the paper.

2. Lemmata

We start with an estimate of the variance

Varnh(σ) = Enh(σ)
2 −

�
Enh(σ)

2

with respect to the Ewens probability measure νn. Denote

x(m) = x(x− 1) · · · (x−m+ 1) and x(0) = 1.

Lemma 2.1. For arbitrary j, n ∈ N, si ∈ Z+, i ≤ j, and q := 1s1+· · ·+rsr,
we have

En


i≤j

ki(σ)(si)


= ψn(n− q)


i≤j

θ
i

si
.

Proof. See [1], p. 96. 

Lemma 2.2. If θ ≥ 1, then

(2.1) Varnh(σ) ≤ 2θ

j≤n

a2j
j
ψn(n− j) =: 2B2

n(h).

Proof. Let x+ denote the nonnegative part of x ∈ R and x− := x+−x. The
sequences {a+j } and {a−j }, 1 ≤ j ≤ n, give the splitting h(σ) = h+(σ)−h−(σ),
where h±(σ) are the completely additive functions defined via a±j respectively.

Thus, by virtue of (x + y)2 ≤ 2x2 + 2y2, it suffices to prove that Varnh(σ) ≤
≤ B2

n(h) in the case aj ≥ 0 for all j ≤ n.

Lemma 2.1 yields

(2.2) Enkj(σ) =
θaj
j
ψn(n− j), Enh(σ) = θ


j≤n

aj
j
ψn(n− j),
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We now give the answer to the above question in the case of the degenerate
limit distribution modifying a bit the conditions of the theorem.

Corollary 1.1. Let θ ≥ 1 and hn(σ) be a sequence of additive functions on
Sn defined via {aj = anj}, j ≤ n, in (1.4). The distributions νn

�
hn(σ)−α(n) <

< x

converge to F0(x) if and only if


j<n

anj(λ)
∗2

j


1− j

n

θ−1

= o(1)

for some λ = λn ∈ R and

α(n) = nλ+

j<n

|anj |<1

θanj(λ)

j


1− j

n

θ−1

+ o(1).

We now present some motivation. In the last decade, much attention was
paid to the random permutation matrix ensemble with the Ewens probability
measure endowed in it. Let M := M(σ) :=

�
1{i = σ(j)}


, 1 ≤ i, j ≤ n

and σ ∈ Sn, be such a matrix taken with the weighted frequency νn({M}) =
= νn({σ}) = θw(σ)/θ(n),

(1.5) Zn(x;σ) := det
�
I − xM(σ)


=


j≤n

(1− xj)kj(σ), x ∈ C,

be its characteristic polynomial, and let e2πiϕj(σ), where ϕj(σ) ∈ [0, 1) and
j ≤ n, be its eigenvalues. The papers [6], [16], and [17] or many preprints put
in the AMS arXiv (see, for instance, [2] and [7] and the references therein)
concern log |Zn(x;σ)|,  logZn(x;σ) or the linear statistics

Trf(σ) :=

j≤n

f
�
ϕj(σ)


=


j≤n

kj(σ)


0≤s≤j−1

f
s
j


,

where f : [0, 1]→ R is a sufficiently smooth function. The last relation, easily
seen from (1.5), is present in [2]. A great portion of the newly announced
results fall within the scope of the above formulated problem. Nevertheless,
the authors seldom observe this and prefer to rediscover them for the particular
statistics. In this regard, apart from papers [3], [11], [12], [13], [5], and others
implicitly containing limit theorems for such statistics, the present note can be
also of use.

In particular, the trace type statistics Trf(σ) is an additive function. The
above mentioned its shift by λn naturally appears as an approximation by
integral of the sum. To see this, it suffices to set


0≤s≤j−1

f
s
j


=: j

1

0

f(u)du+ aj =: jλ+ aj .
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If f is a fixed function, α(n) ∈ R, and β(n)→ ∞, chosen so that the conditions
of Corollary 1.1 are satisfied with anj := aj/β(n) we obtain the weak law of
large numbers for

�
Trf(σ) − α(n)


β(n). As we have stressed sequences of

functions f = fn can also be involved.

The proof of Theorem 1.1 is based upon the number-theoretical ideas orig-
inated by I.Z.Ruzsa in [15] and already adopted in probabilistic combinatorics
by the second author in the case θ = 1 (see [11]). The obstacles arising for
θ < 1 will be discussed at the end of the paper.

2. Lemmata

We start with an estimate of the variance

Varnh(σ) = Enh(σ)
2 −

�
Enh(σ)

2

with respect to the Ewens probability measure νn. Denote

x(m) = x(x− 1) · · · (x−m+ 1) and x(0) = 1.

Lemma 2.1. For arbitrary j, n ∈ N, si ∈ Z+, i ≤ j, and q := 1s1+· · ·+rsr,
we have

En


i≤j

ki(σ)(si)


= ψn(n− q)


i≤j

θ
i

si
.

Proof. See [1], p. 96. 

Lemma 2.2. If θ ≥ 1, then

(2.1) Varnh(σ) ≤ 2θ

j≤n

a2j
j
ψn(n− j) =: 2B2

n(h).

Proof. Let x+ denote the nonnegative part of x ∈ R and x− := x+−x. The
sequences {a+j } and {a−j }, 1 ≤ j ≤ n, give the splitting h(σ) = h+(σ)−h−(σ),
where h±(σ) are the completely additive functions defined via a±j respectively.

Thus, by virtue of (x + y)2 ≤ 2x2 + 2y2, it suffices to prove that Varnh(σ) ≤
≤ B2

n(h) in the case aj ≥ 0 for all j ≤ n.

Lemma 2.1 yields

(2.2) Enkj(σ) =
θaj
j
ψn(n− j), Enh(σ) = θ


j≤n

aj
j
ψn(n− j),
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Moreover, for any I ⊂ J ∩ [1, n− n0(K)] and

Sn :=

j∈I

Sj
n :=


j∈I


σ ∈ Sn : kj(σ) = 1, ki(σ) = 0 ∀i ∈ J \ {j}


,

we have that

(2.4) νn(Sn) ≥ c(K)

j∈I

1

j
ψn(n− j)

provided that n ≥ 2n0(K).

Proof. The first claim is Corollary 1.3 of Theorem 1.2 (see in [9]).

To prove the second one, we apply (1.2) and obtain

νn(S
j
n) = P


ξj = 1, ξi = 0 ∀i ∈ J \ {j}

 (ξ̄) = n

.

Set p(m) = P
�
(ξ̄) = m


for 0 ≤ m ≤ n. Then

p(n)νn(S
j
n) =

θ

j
P


ξi = 0 ∀i ∈ J |


i∈J
i≤n

iξi = n− j


.

Denote Jm := J ∩ [1;m] and Jm := {j : j ≤ m}\Jm for 0 ≤ m ≤ n. Observing
that (ξ̄) = n− j implies ξi = 0 for each n− j < i ≤ n, we obtain

p(n)νn(S
j
n) =

θ

j
exp


− θ


n−j<i≤n

1

i


×

×P

ξi = 0 ∀i ∈ Jn−j ,


i≤n−j

iξi = n− j


=

=
θ

j
exp


− θ


n−j<i≤n

1

i


p(n− j)νn−j

�
ki(σ) = 0 ∀i ∈ Jn−j


.

Here we again applied (1.2) for the symmetric group Sn−j . By Cauchy’s equa-
lity,

p(n) = P
�
(ξ̄) = n


=


s1,...,sn≥0

(s̄)=n


i≤n

e−θ/i
θ
i

si 1

si!
=

=
θ(n)

n!
exp


−

i≤n

θ

i


.
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and

Enh(σ)
2 =


i,j≤n

aiajEn

�
ki(σ)kj(σ)


=

=

j≤n

a2j


Enkj(σ) +Enkj(σ)(2)


+ θ2


i+j≤n
i =j

aiaj
ij

ψn(n− i− j) =

= B2
n(h) +


i+j≤n

aiaj
ij

ψn(n− i− j).

Hence

Varnh(σ) = B2
n(h) +


i+j≤n

aiaj
ij


ψn(n− i− j)− ψn(n− i)ψn(n− j)


−

−

i+j>n
i,j≤n

aiaj
ij

ψn(n− i)ψn(n− j)

for θ > 0.

If θ ≥ 1, we have ψn(n − i − j) ≤ ψn(n − i)ψn(n − j). Recalling that
aj ≥ 0, j ≤ n, we can omit negative terms and obtain the desired claim
Varnh(σ) ≤ B2

n(h).

The lemma is proved. 

Remark 2.1. It is worth to recall two results showing the quality of the
constant in (2.1). Denote

τn(θ) = sup

Varnh(σ)


B2

n(h) : h(σ) ≡ 0

.

We have that τn(1) = 3/2 + O(n−1) and τn(2) = 4/3 + O(n−1) (see [10] and
[14].

In the sequel J ⊂ {j : j ≤ n} will be an arbitrary nonempty set, maybe,
depending on n, and J = {j : j ≤ n} \ J .

Lemma 2.3. Let θ ≥ 1, K > 0, and J be such that

(2.3)

j∈J

1

j
≤ K <∞.

Denote
µn(K) = inf

J
νn

�
kj(σ) = 0 ∀ j ∈ J


,

where the infimum is taken over J satisfying (2.3). For a sufficiently large
n0(K), there exists a positive constant c(K), depending at most on θ and K,
such that µn(K) ≥ c(K) if n ≥ n0(K).



233

The law of large numbers 233

Moreover, for any I ⊂ J ∩ [1, n− n0(K)] and

Sn :=

j∈I

Sj
n :=


j∈I


σ ∈ Sn : kj(σ) = 1, ki(σ) = 0 ∀i ∈ J \ {j}


,

we have that

(2.4) νn(Sn) ≥ c(K)

j∈I

1

j
ψn(n− j)

provided that n ≥ 2n0(K).

Proof. The first claim is Corollary 1.3 of Theorem 1.2 (see in [9]).

To prove the second one, we apply (1.2) and obtain

νn(S
j
n) = P


ξj = 1, ξi = 0 ∀i ∈ J \ {j}

 (ξ̄) = n

.

Set p(m) = P
�
(ξ̄) = m


for 0 ≤ m ≤ n. Then

p(n)νn(S
j
n) =

θ

j
P


ξi = 0 ∀i ∈ J |


i∈J
i≤n

iξi = n− j


.

Denote Jm := J ∩ [1;m] and Jm := {j : j ≤ m}\Jm for 0 ≤ m ≤ n. Observing
that (ξ̄) = n− j implies ξi = 0 for each n− j < i ≤ n, we obtain

p(n)νn(S
j
n) =

θ

j
exp


− θ


n−j<i≤n

1

i


×

×P

ξi = 0 ∀i ∈ Jn−j ,


i≤n−j

iξi = n− j


=

=
θ

j
exp


− θ


n−j<i≤n

1

i


p(n− j)νn−j

�
ki(σ) = 0 ∀i ∈ Jn−j


.

Here we again applied (1.2) for the symmetric group Sn−j . By Cauchy’s equa-
lity,

p(n) = P
�
(ξ̄) = n


=


s1,...,sn≥0

(s̄)=n


i≤n

e−θ/i
θ
i

si 1

si!
=

=
θ(n)

n!
exp


−

i≤n

θ

i


.
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Lemma 2.2 implies

νn
�h(σ)−Enh

(σ)
 ≥ ε


≤ 2ε−2B2

n(h
).

Now,

νn
�h(σ)−Enh

(σ)
 ≥ ε


≤ νn

�h(σ)−Enh
(σ)

 ≥ ε

+ νn

�
h(σ) = 0


≤

≤ 2ε−2B2
n(h

) +

j≤n

1{|aj | ≥ 1}θ
j
ψn(n− j) ≤ 2ε−2Un(h).

For ε = (2δ)1/3 we achieve the minimum of ε+2ε−2δ. Thus, L(h; νn) ≤ 2(2δ)1/3

in the case 0 < δ < 1/2. Recalling the previous trivial bound we complete the
upper estimation in Theorem 1.1.

The lower estimate. If L(h; νn) ≥ c > 0 for some constant c, the task is
trivial. Now, let δ := 2L(h; νn) < c for a constant c < 1/2 to be chosen later.
We have that

νn(|h(σ)− a| ≥ δ) ≤ δ

for some a ∈ R and

Qn(δ) ≥ νn(|h(σ)− a| < δ) ≥ 1− δ ≥ 1/2.

Hence, by Lemma 2.4,

(3.1)

j≤n

a2j
j
1{|aj | < δ} ≤ Cδ2,


j≤n

1{|aj | ≥ δ}
j

≤ C.

Here we would have used aj(λ) instead of aj = aj(0) for some λ ∈ R. Justifying
this simplification, we recall that L(h; νn) = L(h − λn; νn) = δ/2 for every
λ; therefore, we could further deal with the shifted function h(σ, λ). Thus,
taking λ = 0 had no effect on the generality. Afterwards, having in mind that
ψn(n−j) ≤ 1 if θ ≥ 1, we will include this quantity as a factor of the summands
in (3.1).

Set âj = aj if |aj | < δ and âj = 0 otherwise, and denote ǎj = aj − âj for

j ≤ n. Further, define, as in (1.4), two completely additive functions ĥ(σ) and
ȟ(σ) via âj and ǎj respectively.

We now use Lemma 2.3 with J = {j ≤ n : |ǎj | ≥ δ}, K = C, and

I =

1 ≤ j ≤ n− n0(C), |ǎj | ≥

√
δ

,

where n > 2n0(C). If Sn is defined as in Lemma 2.3, then

νn(Sn) ≥ c1


j≤n−n0(C)

1

j
ψn(n− j)1{|aj | ≥

√
δ} =: c1α.
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Inserting this into the previous equality and using Lemma 2.3, we obtain

νn(S
j
n) ≥ c(K)

θ

j
ψn(n− j)

provided that n− j ≥ n0(K).

The sets Sj
n for j ∈ I are pairwise disjoint, therefore summing up over j ∈ I

the latter inequalities, we complete the proof of the lemma. 

The next lemma concerns the concentration function

Qn(u) := sup

νn

�
|h(σ)− x| < u


: x ∈ R


, u ≥ 0.

Denote

Dn(u) = min


j≤n

u2 ∧ a2j (λ)
j

: λ ∈ R

.

Lemma 2.4. For arbitrary θ > 0, we have

Qn(u) u
�
Dn(u)

−1/2
.
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h(σ) =

j≤n

aj1{|aj | < 1}kj(σ), h(σ) = h(σ)− h(σ).

Observe that, by virtue of (2.2),

νn
�
h(σ) = 0


≤


j≤n

1{|aj | ≥ 1}νn
�
kj(σ) ≥ 1


≤

≤

j≤n

1{|aj | ≥ 1}Enkj(σ) ≤

≤

j≤n

1{|aj | ≥ 1}θ
j
ψn(n− j).
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Lemma 2.2 implies

νn
�h(σ)−Enh

(σ)
 ≥ ε


≤ 2ε−2B2

n(h
).
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νn
�h(σ)−Enh

(σ)
 ≥ ε


≤ νn

�h(σ)−Enh
(σ)

 ≥ ε

+ νn

�
h(σ) = 0


≤

≤ 2ε−2B2
n(h

) +

j≤n

1{|aj | ≥ 1}θ
j
ψn(n− j) ≤ 2ε−2Un(h).
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Hence, by Lemma 2.4,

(3.1)

j≤n

a2j
j
1{|aj | < δ} ≤ Cδ2,


j≤n

1{|aj | ≥ δ}
j

≤ C.

Here we would have used aj(λ) instead of aj = aj(0) for some λ ∈ R. Justifying
this simplification, we recall that L(h; νn) = L(h − λn; νn) = δ/2 for every
λ; therefore, we could further deal with the shifted function h(σ, λ). Thus,
taking λ = 0 had no effect on the generality. Afterwards, having in mind that
ψn(n−j) ≤ 1 if θ ≥ 1, we will include this quantity as a factor of the summands
in (3.1).

Set âj = aj if |aj | < δ and âj = 0 otherwise, and denote ǎj = aj − âj for

j ≤ n. Further, define, as in (1.4), two completely additive functions ĥ(σ) and
ȟ(σ) via âj and ǎj respectively.

We now use Lemma 2.3 with J = {j ≤ n : |ǎj | ≥ δ}, K = C, and

I =

1 ≤ j ≤ n− n0(C), |ǎj | ≥

√
δ

,
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j
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√
δ} =: c1α.
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Proof of Corollary 1.1. It suffices to apply the well known equality
ψn(n− j) = (1− j/n)θ−1

�
1+O((n− j)−1)


if 0 ≤ j ≤ n− 1 and the fact that,

in the weak law of large numbers, the centralizing sequence α(n) is uniquely
determined up to an error o(1). 

Remark 3.1. The first claim of Theorem 1.1 can be extended to general
additive functions if θ > 0. For this, one needs an extension of Lemma 2.2;
thus, it suffices to adopt technical ideas going back also to a number-theoretic
paper by A. Biró and T. Szamuely [4]. There exists an indirect possibility to
obtain the upper estimates based upon the inequality

νn,θ
�
|h(σ − a| ≥ u


 P 1∧θP

�
|X1 + · · ·+Xn ≥ u/3


+ 1{θ < 1},

where a ∈ R and u ≥ 0 are arbitrary, proved jointly with G.J. Babu by the
second author [3]. In the case θ < 1, it and an appropriate estimate for these
independent r.vs yields

L(h, νn,θ)

min
λ


j≤n

a∗2j (λ)

j

θ/(2θ+1)

+ n−θ.

The lower estimate, if θ < 1, raises much more difficulties. To overcome
them, one needs effective lower estimates for the mean values of multiplicative
functions defined on the symmetric group. The approach applied by the authors
of the present note in [9] is of little help.
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The completion of this sum over n−n0(C) < j ≤ n would contribute not more
than C2/n with some C2 > 1 for n ≥ 2n0(C). Hence if α ≤Mδ, where M ≥ 1
is arbitrary, then taking into account the first estimate in (3.1) with

√
δ instead

of δ, we had the desired claim in the form

Un(h) ≤ θ(Cδ +Mδ + C2n
−1) n−1 ∨ δ.

Since now we assume that α ≥ Mδ, where M > c−1
1 is a constant to be

chosen later. This gives νn(Sn) ≥ c1Mδ. Further we examine the values of the

additive functions when σ ∈ Sn. If σ ∈ Sj
n, then ȟ(σ) = aj , where |aj | ≥

√
δ.

So, |ȟ(σ)| ≥
√
δ for each σ ∈ Sn. Hence, if σ ∈ Sn and |h(σ) − a| < δ, then

|ĥ(σ)− a| ≥
√
δ − δ and

νn
�
|ĥ(σ)− a| ≥

√
δ − δ


≥ νn

�
σ ∈ Sn


− νn

�
|h(σ)− a| ≥ δ


≥

≥ (c1M − 1)δ.(3.2)

Denote
Sn =


σ ∈ Sn : kj(σ) = 0 ∀ j ∈ J


.

By Lemma 2.3, we also have νn(Sn) ≥ c2 > 0 if n > n0(C).

Hence and the fact that h(σ) = ĥ(σ) if σ ∈ Sn we obtain

νn(|ĥ(σ)− a| < δ) ≥ νn(σ ∈ Sn : |h(σ)− a| < δ) ≥
≥ c2 − νn(|h(σ)− a| ≥ δ) ≥ c2 − δ ≥ c2/2(3.3)

if δ < c ≤ c2/2, where, as we have agreed, the choice of c is at our disposition.

It is known (see, e.g. [11]) that, for a real random variable X, we have that
VarX ≥ 1/2p1p2d

2 if P (X ∈ A) ≥ p1, P (X ∈ B) ≥ p2, and

d = inf{|x− y| : x ∈ A, y ∈ B},

where A,B ⊂ R. This, (3.2), and (3.3) yield

Varnĥ ≥ (1/4)(c1M − 1)c2δ(
√
δ − 2δ)2 ≥ (1/16)(c1M − 1)c2δ2

if δ < c < 1/16 and n ≥ 2n0(C).

On the other hand, by Lemma 2.2 and (3.1), we have

Varnĥ ≤ 2B2
n(ĥ) ≤ 2θCδ2

which contradicts to the previous inequality if M and n are sufficiently large.
Consequently, the estimate Un(h)  n−1 ∨ δ is proved for n > 2n0(C). For
1 ≤ n ≤ 2n0(C), it is trivial.

Theorem 1.1 is proved. 
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thus, it suffices to adopt technical ideas going back also to a number-theoretic
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
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where a ∈ R and u ≥ 0 are arbitrary, proved jointly with G.J. Babu by the
second author [3]. In the case θ < 1, it and an appropriate estimate for these
independent r.vs yields

L(h, νn,θ)

min
λ


j≤n

a∗2j (λ)

j

θ/(2θ+1)

+ n−θ.

The lower estimate, if θ < 1, raises much more difficulties. To overcome
them, one needs effective lower estimates for the mean values of multiplicative
functions defined on the symmetric group. The approach applied by the authors
of the present note in [9] is of little help.
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Abstract. The sum

n≤x
n∈Nk

τ(n − 1)ω(n + 1) is investigated where τ(n) =

= number of divisors of n, ω(n) = number of prime divisors of n, Ω(n) =
= number of prime power divisors of n, Nk = {n|Ω(n) = k}.

1. Introduction

1.1. Notation

P= set of primes, p and q with and without indices always denote prime
numbers. ω (n)= number of distinct prime factors of n; Ω (n)= number of
prime power divisors of n; τ (n)= number of divisors of n; τk (n)= number
of positive integers x1, x2, . . . , xk satisfying n = x1 · · ·xk. Let p (n) be the
smallest and P (n) be the largest prime factor of n. For some integer k ≥ 1 let
Pk := {n | ω (n) = k}; Nk := {n | Ω (n) = k}, πk (x) := #{n ≤ x | n ∈ Pk},
Nk (x) := #{n ≤ x | Ω (n) = k}.
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137–151.
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Vilnius University
Vilnius
Lithuania
tania.kargina@gmail.com

eugenijus.manstavicius@mif.vu.lt


