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Abstract. In this paper, we discuss the correlation entropy of discrete
nanoelectronic systems, based on a quantum-statistical description in the
many-body Fockspace. Considering examples of typical system prepara-
tions, mathematical properties of the correlation entropy are analyzed and
interpreted in physical terms.

1. Introduction

In the following, we consider a discrete nanoelectronic system, that is, a
system of spin % Fermions with discrete energy spectrum. The fundamentals
of a quantum-statistical many-body description of such systems, as outlined in
this introdution, can be found e.g. in Refs.[1, 2].

For simplicity, we assume that all vector spaces are finite dimensional. A
generalization of the discussed results to infinite dimensional spaces is possible.

Key words and phrases: Correlation entropy, nanoelectronic systems.
The research leading to these results has received funding from the European Union Seventh
Framework Programme under grant agreement no. 265073.

https://doi.org/10.71352/ac.39.149


https://doi.org/10.71352/ac.39.149

150 K. M. Indlekofer and J. M. Castelo

The single-particle space is isomorphic to C™. n € N corresponds to the total
number of single-electron basis states (e.g. sites with spin) in a nanoelectronic
system. The resulting many-body vector space has the structure of a Fockspace,
which is the direct sum of all spaces with particle numbers from 0 (vaccum) to
n. The Fockspace is isomorphic to C2" and thus has dimension 2".

A special basis of the Fockspace is the set of all Slaterdeterminants, which
correspond to states with well-defined occupation (0 or 1) of single-particle basis
states (for a chosen single-particle basis). Therefore, a Slaterdeterminant can
be uniquely identified by a bitvector of n bits € {0,1}. The latter corresponds
to an integer number I = 0,...,2" — 1 in binary representation.

In this paper, we employ the Dirac notation |v) for vectors. For example,
|v){v| denotes the projection operator to the subspace spanned by a normalized
|v).

The annihilation and creation operators of an electron in single-particle
state |v;) are denoted by ¢; and cz, respectively. The operators ¢;, c;f- obey
anti-commutation relations for Fermions. If |D;) denotes a Slaterdeterminant
with respect to an ON (ortho-normalized) single-particle basis which contains
|v;), we obtain

) - (=1)N=i DD o) for bit;(I) =0
1.1 c; D[ = 5
0 else

where bit;(I) returns the i-th bit (0 or 1) of the integer I and

(1.2) Noi(I) = ni bit; (1)

j=it1

counts the bits in I above bit position i. As a physical interpretation, cj thus
adds one particle in state ¢ to a Slaterdeterminant. Analogously, ¢; removes a
particle.

A normalized Fockspace vector |V) describes a pure many-body state of
the system. Since the set of Slaterdeterminants (built from any ON basis of
single-particle states) forms an ON basis of the Fockspace, we can write

(1.3) Vvy= 3 vilDy)
I=0

with V; € C. A Fockspace vector that cannot be written as a Slaterdertermi-
nant with respect to any single-particle basis is called a ” correlated” many-body
state. (Please note that a Slaterdeterminant with respect to a given basis 1
may be written in terms of a superposition of multiple Slaterdeterminants with
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respect to a different single-particle basis 2. Therefore, more than one Slaterde-
terminant in an expansion of the form given above does not imply the property
”correlated”.)

The statistical preparation of the many-body system is described by the

self-adjoint many-body statistical operator

2" —1

(1.4) p=">_ wilps)psl,

J=0

where |p;) is the J-th ON eigenvector of p with corresponding real eigenval-
ues 0 < wy < 1 and Tr(p) = >, wy = 1. (Note that |ps) need not be a
Slaterdeterminant.)

If there exists a Fockspace vector |V') such that p = |V)(V|, the preparation
(or state) is called "pure”, otherwise "mixed”.

The expectation value of the particle number reads as
(1.5) N=T1r (ﬁ N),

where

n—1

(1.6) N = Zc;rci
i=0

is the self-adjoint particle number operator (with integer eigenvalues 0,1, ...,
n—1).

The (von Neumann) entropy S in bit is defined as

(1.7) S=-Tr(pldp) = Z wyldwy,

where Id is the logarithm to base 2, defined in a spectral representation of a
self-adjoint operator. (Here, 70 1d 0”7 is interpreted as 0.) By definition, S > 0
in general. As can be seen, S > 0 for all mixed states, i.e. where there exists
a wy which is neither 0 nor 1. For all pure states, we have S = 0.

In the following sections, the so-called correlation entropy [4, 5, 6, 7, 8] is
discussed with respect to its relevance for typical many-body preparations of
nanoelectronic systems.
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2. Correlation entropy of many-body systems

2

The self-adjoint ”single-particle density-matrix” p; (also called ”one-
particle density-matrix”) [1, 2, 3] for a given many-body p is defined as

(A o
(2.1) pri; =1r (p cjci> (4,7=0,...,n—1)

in the single-particle basis corresponding to the set of ¢; operators. p; can be
used to calculate expectation values of single-particle observables [1].

Single-particle eigenvectors of p; are called "natural orbitals” [2, 3]. The
eigenvalues of p; are real and within the interval [0,1]. They need not be
integers and can be interpreted as average occupation numbers of natural or-
bitals for the given preparation. (For the case of a single Slaterdeterminant, p;
would have only eigenvalues 0 and 1.) Furthermore, the expectation value of
the particle number is given by

(2.2) N =Tr(p1).
In turn, the following quantity can be defined
(2.3) Sy :==Tr(p1 1dpy)

which is referred to as the ”correlation entropy” (or ”single-particle entropy”)
[4, 5, 6, 7, 8] in bit. As can be shown, S; > 0 in general. Furthermore, S is
invariant under unitary transformations of the chosen single-particle basis.

In the following, we consider preparation examples, comparing the two
quantities S and S;.

2.1. Pure entangled two electron system

In this section, we consider an example of a nanosystem, containing two
entangled electrons. The system is assumed to be in the following pure many-
body state

(2.4) Po = Vo) (Vo| with |V,,) = (cosa clel +sina cgcg) lvac),

where |vac) is the vacuum state (normalized Slaterdeterminant with 0 particles)
and o € R is a parameter. Here, we consider single-particle states with indices
0,1,2,3. In the considered many-body state, the two electrons are entangled in
the sense that finding an electron in state 0 (2) implies that the other electron
must be found in state 1 (3). As can be shown, |V,) is normalized.
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For all a = 25 with z € Z, the state is a Slaterdeterminant. Otherwise, it
is correlated.

Since the state is pure, we have an entropy S = 0 (see above), independent
of a.

With respect to single-particle states with indices 0,1,2,3, we obtain the
following single-particle density matrix

cos? o 0 0 0

0 cos? a 0 0

(2.5) pr= 0 0 sin? o 0
0 0 0 sin® a

Since p; is diagonal, the chosen single-particle basis states are also natural
orbitals.

Consequently, the correlation entropy follows as
(2.6) S1 = —2[(cos® @) 1d (cos® @) + (sin® ) 1d (sin® o) ] .
S1 as a function of « has the following properties:
(i) VaeR: 0<5i(a) <2
(ii) Vo e R:  Si(a+ )= Si(a)
(iii) Va e R:  S1(§ +a)=S1(§ — o)
(iv) Vz€Z: S (zg) = 0, corresponding to a single Slaterdeterminant
)

V)VzeZ: S (% —l—zg) = 2, corresponding to a fully entangled two-
electron state

Figure 1. visualizes S; as a function of a within the first period [O, 2]

For those a, which correspond to a correlated many-body state, we have
S1 > 0. In this sense, S7 can be considered as a measure of ”deviation from a
single Slaterdeterminant” or ”degree of correlation” for a given pure many-body
state.

2.2. General ensemble of Slaterdeterminants

Let us consider the case of an ensemble of Slaterdeterminants, that is, we
can write

2" —1

(2.7) psi = Z wr|Dr) (D,
=0
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Figure 1: Correlation entropy Si(«a) for the considered two-electron model system.

where |Dj) are Slaterdeterminants with respect to a particular ON single-
particle basis and wr € [0, 1] with >, w; = 1.

Thus, the entropy of the system reads as

2" —1
(2.8) S=-> wildw,.
1=0
Furthermore, we obtain
2" —1
(29) plij = (Sij Z ’LU[bZ'ti(I)7
1=0

where bit;(I) is the occupation number (0 or 1) of single-particle state i in Sla-
terdeterminant |Dy). Note that p; is diagonal with respect to the single-particle
basis from which the Slaterdeterminants are built. Therefore, the chosen single-
particle basis states are also natural orbitals.

In turn, we readily obtain for the correlation entropy

i=0 I=0

(2.10) Sl = —i <z_: w]biﬁi(1)> 1d <z_: wjbiti(J)> .
J=0
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2.3. Mixed uniform ensemble of Slaterdeterminants

As a special case, we now assume a uniform probability distribution among
M > 1 Slaterdeterminants with N > 1 particles each and disjoint single-particle
states (with n > M N), that is

M—-1

(2.11) prsi = % Z D1, )(Dr,. |,
k=0
where
(2.12) |Dr,) = C£N+N7102N+N72 T CIEN|UG’C>‘
For the entropy we thus obtain
M-
(2.13) S=-> 1ldg = 1dM.

k=0
As can be shown, the single-particle density-matrix reads as
dijiy  for ij<MN

(2.14) Prij =
0 else

Consequently, the correlation entropy follows as

MN -1 1 1
2.15 Si=— —ld— = N1dM = NS.
(2.15) 1 ; 171997

As can be seen from this example of an obviously non-correlated preparation
with S; > 0, the quantity S is not necessarily a measure of correlation, since
it also depends on the ”degree of mixture”. For S7 to be used as a measure of
correlation, we must restrict ourselves to pure states.

2.4. Pure uniform amplitude state

In this section, we consider the case of a pure state of a system with M > 1
uniform amplitudes and N > 1 particles (with n > MN). The system is
assumed to be in the following pure many-body state

(2.16) Py = [Var) (V|
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with

1 M—-1
(2.17) Vi) = NaT; kZ:O D1}

where |Dy, ) is defined in Eq.(2.12) in the example above. All amplitudes are
ﬁ, i.e. uniformly distributed. |V3/) is normalized.

As can be shown, the single-particle density-matrix p; is identical to
Eq.(2.14) in the example above. Consequently, the correlation entropy is the
same as in Eq.(2.15): S; = NIdM. Since we consider a pure state, however, we
now have S = 0. This means, that even for S = 0 and a fixed particle number
N, the correlation entropy S; can grow beyond any limit (for M — oo as a
”super-correlated” state). One has to compare this result with the example
of a uniform ensemble of M Slaterdeterminants above, where we obtained the
same S; but S = 1dM.

In the considered example, the quantity % can be interpreted as the num-
ber of bits that are required for counting the number of involved Slaterdeter-
minants. In other words, 2% corresponds to the number of "relevant” Slater-
determinants in the given many-body state |Vj).

3. Modified correlation entropy

As shown in the examples above, the correlation entropy S; can be used as
a measure of correlation in the case of a pure state. However, S; can become
# 0 for mixed preparations of non-correlated states (Slaterdeterminants). For
a general preparation (mixed or pure), thus, a universal measure of correlation
should be considered instead of Sj.

For example, one could define a quantity like (compare with Ref.[9])

(3.1) AS:=8§ -5,
where
B 2" —1
(3.2) Si=— Y dlddiy.
1=0

Here, the projection weights w; are defined as

(3.3) wr = Tr(p |Dr){Drl) > 0,
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where |D;) are the ON Slaterdeterminants built from an ”optimal” single-
particle ON basis (e.g. to minimize S). In the following, we take (suitably
chosen) natural orbitals, i.e. eigenvectors of p; for the given p.

As can be readily shown, AS = 0 for all preparations of Slaterdeterminants,
and AS > 0 for all correlated pure many-body states. As a disadvantage,
however, AS requires the knowledge of the Fockspace operator p, whereas Sy
can be obtained from the single-particle matrix p;.

In the following, we consider AS for the examples which were discussed in
the previous section.

3.1. Pure entangled two electron system

As shown above, single-particle states 0,1,2,3 are natural orbitals. From the
resulting Slaterdeterminants |D;), only two weights w; can be non-vanishing:

(3.4) W04 = cos®a and g2y 98 = sin? o

Consequently, we obtain (with S = 0)
(3.5) AS = — [(cos® @) 1d (cos® ) + (sin* a) 1d (sin® @) ] .

In comparison to Eq.(2.6), we therefore have AS = % in this example.

3.2. Mixed uniform ensemble of Slaterdeterminants

In this case, the chosen single-particle basis states are natural orbitals. The
resulting Slaterdeterminants are therefore |[D;) = |Dy) as defined in Eq.(2.12).
Only the following M weights are non-vanishing:

kKN+N—-1

1 .
(36)  wp =wi = with L= > 20 (k=0,...,M-1).
i=kN

Hence, we obtain S = S and therefore AS = 0, which is the expected result.
In comparison, Eq.(2.15) yielded S; > 0 (for N > 1 and M > 1).

3.3. Pure uniform amplitude state

As shown above, single-particle states i = 0,..., NM — 1 are natural or-
bitals. From the resulting Slaterdeterminants |D;), only the following M
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weights are non-vanishing:

1 kEN+N-—1 ‘
(3.7) g, = =7 With Ip= > 2 (k=0,...,M—1).
i=kN

Consequently, we obtain (with S = 0)

(3.8) Z —ld— 1dM.

k=0

Since S; = NIdM (see above), we therefore have AS = % in the discussed
example. Due to this relation between AS and S; in this example, AS can be
considered as a modification of S;.

4. Conclusion

We have discussed the correlation entropy S7 of discrete nanoelectronic
systems for typical examples of quantum statistical preparations. Under certain
conditions, S; can be interpreted as a measure for the degree of correlation in
a given pure many-body state. We have shown that S; can grow beyond any
limit, even for a pure state with fixed particle number. Finally, a modified
correlation entropy has been considered which overcomes the shortcomings of
S1 for mixed preparations.
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