ON THE CORRELATION ENTROPY OF DISCRETE NANOELECTRONIC SYSTEMS

Klaus Michael Indlekofer (Rüsselsheim, Germany) José María Castelo Ares (Rüsselsheim, Germany)

Dedicated to Professor Karl-Heinz Indlekofer on the occasion of his 70th birthday

Communicated by Imre Kátai

(Received December 18, 2012; accepted December 29, 2012)

Abstract. In this paper, we discuss the correlation entropy of discrete nanoelectronic systems, based on a quantum-statistical description in the many-body Fockspace. Considering examples of typical system preparations, mathematical properties of the correlation entropy are analyzed and interpreted in physical terms.

1. Introduction

In the following, we consider a discrete nanoelectronic system, that is, a system of spin $\frac{1}{2}$ Fermions with discrete energy spectrum. The fundamentals of a quantum-statistical many-body description of such systems, as outlined in this introduction, can be found e.g. in Refs.[1, 2].

For simplicity, we assume that all vector spaces are finite dimensional. A generalization of the discussed results to infinite dimensional spaces is possible.

Key words and phrases: Correlation entropy, nanoelectronic systems.

The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement no. 265073.

The single-particle space is isomorphic to \mathbb{C}^n . $n \in \mathbb{N}$ corresponds to the total number of single-electron basis states (e.g. sites with spin) in a nanoelectronic system. The resulting many-body vector space has the structure of a Fockspace, which is the direct sum of all spaces with particle numbers from 0 (vaccum) to n. The Fockspace is isomorphic to \mathbb{C}^{2^n} and thus has dimension 2^n .

A special basis of the Fockspace is the set of all Slaterdeterminants, which correspond to states with well-defined occupation (0 or 1) of single-particle basis states (for a chosen single-particle basis). Therefore, a Slaterdeterminant can be uniquely identified by a bitvector of n bits $\in \{0, 1\}$. The latter corresponds to an integer number $I = 0, \ldots, 2^n - 1$ in binary representation.

In this paper, we employ the Dirac notation $|v\rangle$ for vectors. For example, $|v\rangle\langle v|$ denotes the projection operator to the subspace spanned by a normalized $|v\rangle$.

The annihilation and creation operators of an electron in single-particle state $|v_i\rangle$ are denoted by c_i and c_i^{\dagger} , respectively. The operators c_i , c_j^{\dagger} obey anti-commutation relations for Fermions. If $|D_I\rangle$ denotes a Slaterdeterminant with respect to an ON (ortho-normalized) single-particle basis which contains $|v_i\rangle$, we obtain

(1.1)
$$c_i^{\dagger} |D_I\rangle = \begin{cases} (-1)^{N_{>i}(I)} |D_{I+2^i}\rangle & \text{for } bit_i(I) = 0 \\ 0 & \text{else} \end{cases}$$

where $bit_i(I)$ returns the *i*-th bit (0 or 1) of the integer I and

(1.2)
$$N_{>i}(I) := \sum_{j=i+1}^{n-1} bit_j(I)$$

counts the bits in I above bit position i. As a physical interpretation, c_i^{\dagger} thus adds one particle in state i to a Slaterdeterminant. Analogously, c_i removes a particle.

A normalized Fockspace vector $|V\rangle$ describes a pure many-body state of the system. Since the set of Slaterdeterminants (built from any ON basis of single-particle states) forms an ON basis of the Fockspace, we can write

(1.3)
$$|V\rangle = \sum_{I=0}^{2^n - 1} V_I |D_I\rangle$$

with $V_I \in \mathbb{C}$. A Fockspace vector that cannot be written as a Slaterderterminant with respect to any single-particle basis is called a "correlated" many-body state. (Please note that a Slaterdeterminant with respect to a given basis 1 may be written in terms of a superposition of multiple Slaterdeterminants with respect to a different single-particle basis 2. Therefore, more than one Slaterdeterminant in an expansion of the form given above does not imply the property "correlated".)

The statistical preparation of the many-body system is described by the self-adjoint many-body statistical operator

(1.4)
$$\hat{\rho} = \sum_{J=0}^{2^n - 1} w_J |\rho_J\rangle \langle \rho_J|,$$

where $|\rho_J\rangle$ is the *J*-th ON eigenvector of $\hat{\rho}$ with corresponding real eigenvalues $0 \leq w_J \leq 1$ and $Tr(\hat{\rho}) \equiv \sum_J w_J = 1$. (Note that $|\rho_J\rangle$ need not be a Slaterdeterminant.)

If there exists a Fockspace vector $|V\rangle$ such that $\hat{\rho} = |V\rangle\langle V|$, the preparation (or state) is called "pure", otherwise "mixed".

The expectation value of the particle number reads as

(1.5)
$$\bar{N} = Tr\left(\hat{\rho}\ \hat{N}\right).$$

where

(1.6)
$$\hat{N} = \sum_{i=0}^{n-1} c_i^{\dagger} c_i$$

is the self-adjoint particle number operator (with integer eigenvalues $0, 1, \ldots, n-1$).

The (von Neumann) entropy S in bit is defined as

(1.7)
$$S = -Tr\left(\hat{\rho} \operatorname{ld}\hat{\rho}\right) = -\sum_{J=0}^{2^n-1} w_J \operatorname{ld} w_J,$$

where ld is the logarithm to base 2, defined in a spectral representation of a self-adjoint operator. (Here, "0 ld 0" is interpreted as 0.) By definition, $S \ge 0$ in general. As can be seen, S > 0 for all mixed states, i.e. where there exists a w_J which is neither 0 nor 1. For all pure states, we have S = 0.

In the following sections, the so-called correlation entropy [4, 5, 6, 7, 8] is discussed with respect to its relevance for typical many-body preparations of nanoelectronic systems.

2. Correlation entropy of many-body systems

The self-adjoint "single-particle density-matrix" ρ_1 (also called "oneparticle density-matrix") [1, 2, 3] for a given many-body $\hat{\rho}$ is defined as

(2.1)
$$\rho_{1ij} = Tr\left(\hat{\rho} \ c_j^{\dagger} c_i\right) \quad (i, j = 0, \dots, n-1)$$

in the single-particle basis corresponding to the set of c_i operators. ρ_1 can be used to calculate expectation values of single-particle observables [1].

Single-particle eigenvectors of ρ_1 are called "natural orbitals" [2, 3]. The eigenvalues of ρ_1 are real and within the interval [0, 1]. They need not be integers and can be interpreted as average occupation numbers of natural orbitals for the given preparation. (For the case of a single Slaterdeterminant, ρ_1 would have only eigenvalues 0 and 1.) Furthermore, the expectation value of the particle number is given by

(2.2)
$$\bar{N} = Tr(\rho_1).$$

In turn, the following quantity can be defined

$$(2.3) S_1 := -Tr\left(\rho_1 \operatorname{ld} \rho_1\right)$$

which is referred to as the "correlation entropy" (or "single-particle entropy") [4, 5, 6, 7, 8] in bit. As can be shown, $S_1 \ge 0$ in general. Furthermore, S_1 is invariant under unitary transformations of the chosen single-particle basis.

In the following, we consider preparation examples, comparing the two quantities S and S_1 .

2.1. Pure entangled two electron system

In this section, we consider an example of a nanosystem, containing two entangled electrons. The system is assumed to be in the following pure manybody state

(2.4)
$$\hat{\rho}_{\alpha} := |V_{\alpha}\rangle \langle V_{\alpha}|$$
 with $|V_{\alpha}\rangle := \left(\cos \alpha \ c_{1}^{\dagger}c_{0}^{\dagger} + \sin \alpha \ c_{3}^{\dagger}c_{2}^{\dagger}\right)|vac\rangle,$

where $|vac\rangle$ is the vacuum state (normalized Slaterdeterminant with 0 particles) and $\alpha \in \mathbb{R}$ is a parameter. Here, we consider single-particle states with indices 0, 1, 2, 3. In the considered many-body state, the two electrons are entangled in the sense that finding an electron in state 0 (2) implies that the other electron must be found in state 1 (3). As can be shown, $|V_{\alpha}\rangle$ is normalized. For all $\alpha = z \frac{\pi}{2}$ with $z \in \mathbb{Z}$, the state is a Slater determinant. Otherwise, it is correlated.

Since the state is pure, we have an entropy S = 0 (see above), independent of α .

With respect to single-particle states with indices 0, 1, 2, 3, we obtain the following single-particle density matrix

(2.5)
$$\rho_1 = \begin{pmatrix} \cos^2 \alpha & 0 & 0 & 0 \\ 0 & \cos^2 \alpha & 0 & 0 \\ 0 & 0 & \sin^2 \alpha & 0 \\ 0 & 0 & 0 & \sin^2 \alpha \end{pmatrix}$$

Since ρ_1 is diagonal, the chosen single-particle basis states are also natural orbitals.

Consequently, the correlation entropy follows as

(2.6)
$$S_1 = -2\left[\left(\cos^2\alpha\right)\operatorname{ld}\left(\cos^2\alpha\right) + \left(\sin^2\alpha\right)\operatorname{ld}\left(\sin^2\alpha\right)\right].$$

 S_1 as a function of α has the following properties:

(i)
$$\forall \alpha \in \mathbb{R} : 0 \leq S_1(\alpha) \leq 2$$

(ii)
$$\forall \alpha \in \mathbb{R}$$
: $S_1(\alpha + \frac{\pi}{2}) = S_1(\alpha)$

- (iii) $\forall \alpha \in \mathbb{R}$: $S_1(\frac{\pi}{4} + \alpha) = S_1(\frac{\pi}{4} \alpha)$
- (iv) $\forall z \in \mathbb{Z}$: $S_1\left(z\frac{\pi}{2}\right) = 0$, corresponding to a single Slater determinant
- (v) $\forall z \in \mathbb{Z}$: $S_1\left(\frac{\pi}{4} + z\frac{\pi}{2}\right) = 2$, corresponding to a fully entangled twoelectron state

Figure 1. visualizes S_1 as a function of α within the first period $\left[0, \frac{\pi}{2}\right]$.

For those α , which correspond to a correlated many-body state, we have $S_1 > 0$. In this sense, S_1 can be considered as a measure of "deviation from a single Slaterdeterminant" or "degree of correlation" for a given pure many-body state.

2.2. General ensemble of Slaterdeterminants

Let us consider the case of an ensemble of Slaterdeterminants, that is, we can write

(2.7)
$$\hat{\rho}_{Sl} := \sum_{I=0}^{2^n - 1} w_I |D_I\rangle \langle D_I|,$$

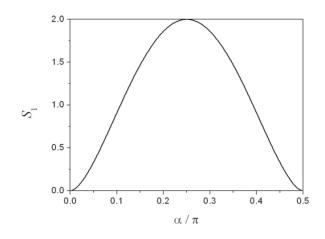


Figure 1: Correlation entropy $S_1(\alpha)$ for the considered two-electron model system.

where $|D_I\rangle$ are Slaterdeterminants with respect to a particular ON singleparticle basis and $w_I \in [0, 1]$ with $\sum_I w_I = 1$.

Thus, the entropy of the system reads as

(2.8)
$$S = -\sum_{I=0}^{2^n - 1} w_I \mathrm{ld} w_I.$$

Furthermore, we obtain

(2.9)
$$\rho_{1ij} = \delta_{ij} \sum_{I=0}^{2^n - 1} w_I bit_i(I),$$

where $bit_i(I)$ is the occupation number (0 or 1) of single-particle state *i* in Slaterdeterminant $|D_I\rangle$. Note that ρ_1 is diagonal with respect to the single-particle basis from which the Slaterdeterminants are built. Therefore, the chosen single-particle basis states are also natural orbitals.

In turn, we readily obtain for the correlation entropy

(2.10)
$$S_1 = -\sum_{i=0}^{n-1} \left(\sum_{I=0}^{2^n-1} w_I bit_i(I) \right) \operatorname{ld} \left(\sum_{J=0}^{2^n-1} w_J bit_i(J) \right).$$

2.3. Mixed uniform ensemble of Slaterdeterminants

As a special case, we now assume a uniform probability distribution among $M \ge 1$ Slaterdeterminants with $N \ge 1$ particles each and disjoint single-particle states (with $n \ge MN$), that is

(2.11)
$$\hat{\rho}_{MSl} := \frac{1}{M} \sum_{k=0}^{M-1} |D_{I_k}\rangle \langle D_{I_k}|,$$

where

(2.12)
$$|D_{I_k}\rangle := c_{kN+N-1}^{\dagger} c_{kN+N-2}^{\dagger} \cdots c_{kN}^{\dagger} |vac\rangle.$$

For the entropy we thus obtain

(2.13)
$$S = -\sum_{k=0}^{M-1} \frac{1}{M} \mathrm{ld} \frac{1}{M} = \mathrm{ld} M.$$

As can be shown, the single-particle density-matrix reads as

(2.14)
$$\rho_{1ij} = \begin{cases} \delta_{ij} \frac{1}{M} & \text{for } i, j < MN \\ 0 & \text{else} \end{cases}$$

Consequently, the correlation entropy follows as

(2.15)
$$S_1 = -\sum_{i=0}^{MN-1} \frac{1}{M} \mathrm{ld} \frac{1}{M} = N \mathrm{ld} M = NS.$$

As can be seen from this example of an obviously non-correlated preparation with $S_1 > 0$, the quantity S_1 is not necessarily a measure of correlation, since it also depends on the "degree of mixture". For S_1 to be used as a measure of correlation, we must restrict ourselves to pure states.

2.4. Pure uniform amplitude state

In this section, we consider the case of a pure state of a system with $M \ge 1$ uniform amplitudes and $N \ge 1$ particles (with $n \ge MN$). The system is assumed to be in the following pure many-body state

$$\hat{\rho}_M := |V_M\rangle \langle V_M|$$

with

(2.17)
$$|V_M\rangle := \frac{1}{\sqrt{M}} \sum_{k=0}^{M-1} |D_{I_k}\rangle,$$

where $|D_{I_k}\rangle$ is defined in Eq.(2.12) in the example above. All amplitudes are $\frac{1}{\sqrt{M}}$, i.e. uniformly distributed. $|V_M\rangle$ is normalized.

As can be shown, the single-particle density-matrix ρ_1 is identical to Eq.(2.14) in the example above. Consequently, the correlation entropy is the same as in Eq.(2.15): $S_1 = N \text{ld}M$. Since we consider a pure state, however, we now have S = 0. This means, that even for S = 0 and a fixed particle number N, the correlation entropy S_1 can grow beyond any limit (for $M \to \infty$ as a "super-correlated" state). One has to compare this result with the example of a uniform ensemble of M Slaterdeterminants above, where we obtained the same S_1 but S = ldM.

In the considered example, the quantity $\frac{S_1}{N}$ can be interpreted as the number of bits that are required for counting the number of involved Slaterdeterminants. In other words, $2^{\frac{S_1}{N}}$ corresponds to the number of "relevant" Slaterdeterminants in the given many-body state $|V_M\rangle$.

3. Modified correlation entropy

As shown in the examples above, the correlation entropy S_1 can be used as a measure of correlation in the case of a pure state. However, S_1 can become $\neq 0$ for mixed preparations of non-correlated states (Slaterdeterminants). For a general preparation (mixed or pure), thus, a universal measure of correlation should be considered instead of S_1 .

For example, one could define a quantity like (compare with Ref.[9])

$$\Delta S := \tilde{S} - S,$$

where

(3.2)
$$\tilde{S} := -\sum_{I=0}^{2^n-1} \tilde{w}_I \mathrm{ld} \tilde{w}_I.$$

Here, the projection weights \tilde{w}_I are defined as

(3.3)
$$\tilde{w}_I := Tr(\hat{\rho} \mid D_I \rangle \langle D_I \mid) \ge 0,$$

where $|\tilde{D}_I\rangle$ are the ON Slater determinants built from an "optimal" singleparticle ON basis (e.g. to minimize \tilde{S}). In the following, we take (suitably chosen) natural orbitals, i.e. eigenvectors of ρ_1 for the given $\hat{\rho}$.

As can be readily shown, $\Delta S = 0$ for all preparations of Slaterdeterminants, and $\Delta S > 0$ for all correlated pure many-body states. As a disadvantage, however, ΔS requires the knowledge of the Fockspace operator $\hat{\rho}$, whereas S_1 can be obtained from the single-particle matrix ρ_1 .

In the following, we consider ΔS for the examples which were discussed in the previous section.

3.1. Pure entangled two electron system

As shown above, single-particle states 0,1,2,3 are natural orbitals. From the resulting Slaterdeterminants $|\tilde{D}_I\rangle$, only two weights \tilde{w}_I can be non-vanishing:

(3.4)
$$\tilde{w}_{2^0+2^1} = \cos^2 \alpha$$
 and $\tilde{w}_{2^2+2^3} = \sin^2 \alpha$.

Consequently, we obtain (with S = 0)

(3.5)
$$\Delta S = -\left[\left(\cos^2 \alpha\right) \operatorname{ld}\left(\cos^2 \alpha\right) + \left(\sin^2 \alpha\right) \operatorname{ld}\left(\sin^2 \alpha\right)\right].$$

In comparison to Eq.(2.6), we therefore have $\Delta S = \frac{S_1}{2}$ in this example.

3.2. Mixed uniform ensemble of Slaterdeterminants

In this case, the chosen single-particle basis states are natural orbitals. The resulting Slaterdeterminants are therefore $|\tilde{D}_I\rangle = |D_I\rangle$ as defined in Eq.(2.12). Only the following M weights are non-vanishing:

(3.6)
$$\tilde{w}_{I_k} = w_{I_k} = \frac{1}{M}$$
 with $I_k = \sum_{i=kN}^{kN+N-1} 2^i$ $(k = 0, \dots, M-1).$

Hence, we obtain $\tilde{S} = S$ and therefore $\Delta S = 0$, which is the expected result. In comparison, Eq.(2.15) yielded $S_1 > 0$ (for $N \ge 1$ and M > 1).

3.3. Pure uniform amplitude state

As shown above, single-particle states i = 0, ..., NM - 1 are natural orbitals. From the resulting Slaterdeterminants $|\tilde{D}_I\rangle$, only the following M

weights are non-vanishing:

(3.7)
$$\tilde{w}_{I_k} = \left|\frac{1}{\sqrt{M}}\right|^2 = \frac{1}{M}$$
 with $I_k = \sum_{i=kN}^{kN+N-1} 2^i$ $(k = 0, \dots, M-1).$

Consequently, we obtain (with S = 0)

(3.8)
$$\Delta S = -\sum_{k=0}^{M-1} \frac{1}{M} \mathrm{ld} \frac{1}{M} = \mathrm{ld} M.$$

Since $S_1 = N \text{ld}M$ (see above), we therefore have $\Delta S = \frac{S_1}{N}$ in the discussed example. Due to this relation between ΔS and S_1 in this example, ΔS can be considered as a modification of S_1 .

4. Conclusion

We have discussed the correlation entropy S_1 of discrete nanoelectronic systems for typical examples of quantum statistical preparations. Under certain conditions, S_1 can be interpreted as a measure for the degree of correlation in a given pure many-body state. We have shown that S_1 can grow beyond any limit, even for a pure state with fixed particle number. Finally, a modified correlation entropy has been considered which overcomes the shortcomings of S_1 for mixed preparations.

References

- see for example: Nolting, W. and Brewer, W. D., Fundamentals of Many-Body Physics, Springer, 2009.
- [2] see for example: Szabo, A. and Ostlund, N. S., Modern quantum chemistry: Introduction to advanced electronic structure theory, Dover Publictions Inc., 1996.
- [3] Löwdin, P. O., Phys. Rev., 97 (1955), 1474–1489.
- [4] Ziesche, P., Int. J. Quant. Chem., 56 (1995), 363–369.
- [5] Esquivel, R. O., Rodriguez, A. L., Sagar, R. P., Hô, M., and Smith, V. H., Phys. Rev. A, 54 (1996), 259–265.

- [6] Ziesche, P., Gunnarsson, O., John, W., and Beck, H., Phys. Rev. B, 55 (1997), 10270–10277.
- [7] Gersdorf, P., John, W., Perdew, J. P., and Ziesche, P., Int. J. Quantum Chem., 61 (1997), 935–941.
- [8] Indlekofer, K. M., Nemeth, R., and Knoch, J., Phys. Rev. B, 77 (2008), 125436–125446.
- [9] Gottlieb, A. D. and Mauser, N. J., Phys. Rev. Lett., 95 (2005), 123003–123006.

Klaus Michael Indlekofer

Institute of Microtechnologies (IMtech), RheinMain University of Applied Sciences Am Brückweg 26 D-65428 Rüsselsheim, Germany michael.indlekofer@hs-rm.de

José María Castelo Ares

RheinMain University of Applied Sciences Am Brückweg 26 D-65428 Rüsselsheim, Germany jose.casteloares@hs-rm.de