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Abstract. On the basis of integral representations of Poisson and bi-
nomial distribution functions via complete and incomplete Euler Γ- and
B-functions, we introduce and discuss continuous counterparts of the Pois-
son and binomial distributions. The former turns out to be closely related
to classical Volterra functions as well. Under usual condition Np → λ, we
also prove that the sequence of continuous binomial distributions converges
weakly to the continuous Poisson one. At the end, we discuss a relationship
between the continuous Poisson distribution and the Γ-process.

1. Introduction

In various applied research papers, many authors extensively use what they
call a “continuous Poisson distribution” and a “continuous binomial distribu-
tion”, providing these terms with very different, not always correct meanings.
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Volterra functions, Gamma process.
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B(x, y, p)
def
=

1

p

tx−1(1− t)y−1 dt, x, y > 0, 0 ≤ p ≤ 1.

(incomplete B-function)

In particular, we have for the usual (complete) Γ- and B-functions:

Γ(x) = Γ(x, 0), B(x, y) = B(x, y, 0), x, y > 0.

Denote by πλ, λ > 0, the classical Poisson distribution, i.e. a discrete

probability measure on the set N ∪ {0} given by πλ
�
{k}


= e−λ λk

k! . Also
denote by βN,p, N ∈ N, p ∈ [0, 1], the classical binomial distribution, i.e.
a discrete probability measure on the set {0, . . . , N} given by βN,p

�
{k}


=

=
�
N
k


pk(1− p)N−k.

It is well-known that the distribution function Fλ of the Poisson measure
πλ admits a representation in terms of functions Γ(·, λ) and Γ(·):

Fλ(x)
def
= πλ

�
(−∞, x)


=



0, x ≤ 0,

e−λ
x−1
k=0

λk

k!
, x > 0,

=

=





0, x ≤ 0,

Γ
�
x, λ



Γ
�
x

 , x > 0.

(1)

A similar representation via B-functions holds true for the distribution function
FN,p of the binomial measure βN,p:

(2)

FN,p(x)
def
= βN,p

�
(−∞, x)


=




0, x ≤ 0,
x−1
k=0

�
N
k


pk(1− p)N−k, 0 < x ≤ N,

1, x > N,

=




0, x ≤ 0,

B
�
x, N + 1− x, p



B
�
x, N + 1− x

 , 0 < x ≤ N,

1, x > N.

Representations (1) and (2) can be attributed to a sort of “probabilistic
folklore” (see e.g. [11], where they are given as problems). The proofs are a
simple exercise in integration by parts.
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For example, by the “continuous Poisson distribution”, some authors ([8], [13])
understand an absolutely continuous distribution with the density of the form

fλ(x) = Cλ
e−λλx

Γ(x+ 1)
, x ≥ 0,

where Cλ is a normalizing constant. Some others use to this end the Γ-
distribution ([1], [6]) or even simply the exponential distribution ([14]).

From the strictly formal point of view, the above distributions can not
be regarded as genuine continuous analogues of the classical Poisson law, since
these distributions have probabilistically little in common with this law. In this
paper, we make an attempt to introduce continuous counterparts of Poisson
and binomial distributions in a more natural way, on the basis of integral
representations of Poisson and binomial distribution functions via complete
and incomplete Euler Γ- and B-functions, and examine some properties of these
counterparts.

Note that these distributions appeared in various forms (although without
any detailed exposition) in the papers of G. Marsaglia [10], H. Stern [12], as
well as in the solution of problem 3.4.1.22 in the book of D. Knuth [9]. In
paper [10] and book [9] they were employed for the computer simulation of the
classical Poisson and binomial distributions. In report [12], it is noted that
the continuous Poisson distribution is closely related to the distribution of the
time when Γ-process jumps over a fixed level. This relation will be discussed
in detail at the end of the paper.

In the present work, we proceed with the research started in paper [7].

2. Notation and preliminaries

Recall the standard notation which will be used in what follows: for x ∈ R
set

x def
= max{k ∈ Z : k ≤ x}, x def

= min{k ∈ Z : k ≥ x}.

Besides, we will need incomplete Euler Γ- and B-functions:

Γ(x, λ)
def
=

∞

λ

e−ttx−1 dt, x > 0, λ ≥ 0,

(incomplete Γ-function)
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Assertions (i) and (iv) hold, since the numerators are bounded as x → +0
while the denominators increase to infinity. Similarly, B(x,N+1−x)−B(x,N+
+1 − x, p) is bounded as x → N + 1 − 0 while B(x,N + 1 − x) increases to
infinity, which yields (v). (ii) follows from the fact that Γ(x) − Γ(x, λ) has an
asymptotic order x−1λx as x → +∞, in other words is o

�
Γ(x)


.

Finally, assertions (iii) and (vi) result from the following relations:

f̃λ(x)
def
= F̃ 

λ(x) = Γ−2(x)

 ∞

λ

∞

0

e−(s+t)(st)x−1 ln
s

t
ds dt


=

= Γ−2(x)

 ∞

λ

λ

0

e−(s+t)(st)x−1 ln
s

t
ds dt


> 0,

x > 0,

(5)

f̃N,p(x)
def
= F̃ 

N,p(x) =

= B−2(x,N + 1− x)·

·
 1

p

1

0

(st)x−1(1− s)N−x(1− t)N−x ln
s(1− t)

t(1− s)
ds dt


=

= B−2(x,N + 1− x)·

·
 1

p

p

0

(st)x−1(1− s)N−x(1− t)N−x ln
s(1− t)

t(1− s)
ds dt


> 0,

0 < x < N + 1.

(6)

Note that we changed ∞ for λ and 1 for p in the upper limits of the inner
integrals due to antisymmetry of the integrands with respect to the argument
pair (s, t).

The result can be summarized in the next statement. Here R+ stands for
[0,∞).

Theorem 3.1. The distribution functions F̃λ and F̃N,p given by (3) and (4)
define absolutely continuous (with respect to the Lebesgue measure) probability
distributions on the measurable space

�
R+,B

�
R+


. Their densities are of

form (5) and (6).
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3. Continuous analogues of Poisson and binomial distributions

Taking representations (1) and (2) into account, the following definitions
appear to be quite natural.

Definition 3.1. By continuous Poisson distribution with parameter λ > 0
we will mean the probability measure π̃λ supported by [0,∞) with distribution
function of the form

(3) F̃λ(x) =




0, x ≤ 0,
Γ(x, λ)

Γ(x)
, x > 0.

Definition 3.2. By continuous binomial distribution with parameters
N > 0, p ∈ (0, 1) we will mean the probability measure β̃N,p supported by
[0, N + 1] with distribution function of the form

(4) F̃N,p(x) =





0, x ≤ 0,
B(x,N + 1− x, p)

B(x,N + 1− x)
, 0 < x ≤ N + 1,

1, x > N + 1.

Note that in Definition 3.2 parameter N may take non-integer values; we
continue to denote it with N only by tradition.

We should first check whether the distributions introduced by Definitions 3.1
and 3.2 are well defined. To this end, we show that the following assertions
hold true:

(i) lim
x→+0

Γ(x, λ)

Γ(x)
= 0;

(ii) lim
x→+∞

Γ(x, λ)

Γ(x)
= 1;

(iii) the function
Γ(x, λ)

Γ(x)
increases in x on the interval [0,∞);

(iv) lim
x→+0

B(x,N + 1− x, p)

B(x,N + 1− x)
= 0;

(v) lim
x→N+1−0

B(x,N + 1− x, p)

B(x,N + 1− x)
= 1;

(vi) the function
B(x,N + 1− x, p)

B(x,N + 1− x)
increases in x on the segment [0, N + 1].
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(See e.g. [3]; anyway, this can be deduced by a simple calculation.) Thus, (8)
yields

(9) m̂k(s) =
k!

s lnk(1 + s)
, Re s > 0.

The previous relation makes it possible to find the double Laplace transform
(Laplace–Stieltjes with respect to measure and Laplace with respect to λ) of
the distribution family (π̃λ, λ > 0). Let ξλ, λ > 0, denote a random variable
distributed by the continuous Poisson law with parameter λ. Then, for Re s > 0
we have

(10)

ϕ̂(p, s)
def
=

∞

0

e−sλEe−pξλ dλ =



(0,∞)×(0,∞)

e−px−sλ π̃λ(dx) dλ =

=
∞
k=0

(−p)k

k!

∞

0

e−sλmk(λ) dλ =

∞
k=0

(−p)km̂k(s)

k!
=
1

s

ln(1 + s)

p+ ln(1 + s)
.

We now resume all the above in the next statement.

Theorem 4.1. The moments of the continuous Poisson distribution π̃λ are
given by formula (7). In terms of Laplace transform they can be expressed as
(9). The double Laplace transform of the distribution family (π̃λ, λ > 0) is of
form (10).

5. Convergence of continuous binomial distributions

The classical Poisson theorem (sometimes also called the law of rare events)
asserts that under the condition Np → λ the sequence of binomial distributions
with parameters N, p weakly converges to the Poisson one with parameter
λ. In this section, we show that this remains true also for their continuous
counterparts.

Theorem 5.1. Let
�
β̃N(k),p(k), k ∈ N


be a sequence of continuous binomial

distributions. If N(k) → ∞ and p(k) → 0 as k → ∞ in such a way that

N(k)p(k)→ λ then β̃N(k),p(k)
w−→ π̃λ.

We break the proof up into three lemmas.
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4. Volterra functions and the moments of the continuous Poisson
distribution

In this section, we study the moments of the continuous Poisson distribu-
tion. They turn out to be closely related to classical Volterra functions, which
play a role in integral transforms.

We first give the corresponding definitions (see e.g. [2] or [3]). In the most
general form, the Volterra µ-function is defined by

µ(t, α, β) =

∞

0

tx+αxβ

Γ(β + 1)Γ(x+ α+ 1)
dx, Reβ > −1.

In particular, by setting α = β = 0 we come to a simpler and more known
Volterra ν-function: ν(t) =

∞
0

tx

Γ(x+1) dx.

For a fixed k ∈ N, consider the k-order moment function of the continuous
Poisson distribution:

mk(λ)
def
=

∞

0

xkπ̃λ(dx), λ > 0.

Then we have

mk(λ) = k

∞

0

xk−1(1− F̃λ(x)) dx = k

∞

0

xk−1
�
Γ(x)− Γ(x, λ)


Γ(x)

dx.

By the definition of complete and incomplete Γ-functions and Fubini theorem

(7) mk(λ) = k

λ

0

e−t

 ∞

0

xk−1tx−1

Γ(x)
dx


dt = k!

λ

0

e−tµ(t,−1, k − 1) dt.

The moments of the continuous Poisson distribution look particularly nice
in terms of Laplace transform in λ. Again by Fubini theorem we have

(8) m̂k(s)
def
=

∞

0

e−sλmk(λ) dλ =
k!

s

∞

0

e−t(s+1)µ(t,−1, k − 1) dt.

The Laplace transform µ̂ of the Volterra function µ is of the form

µ̂(s, α, β) =
1

sα+1(ln s)β+1
, Re s > 1.
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and so

(14)

|F∞(x)− Fk(x)| ≤

≤


Nε−x
n=1

P∞
�
[x+ n− 1, x+ n)


−

Nε−x
n=1

Pk

�
[x+ n− 1, x+ n)


+

+P∞
�
[x+ Nε − x,∞)


+ Pk

�
[x+ Nε − x,∞)


.

The absolute value on the right-hand side in (14) tends to zero as k → ∞ due
to condition (13). Since x+Nε−x ≥ Nε, we have P∞

�
[x+Nε−x,∞)


< ε.

Moreover,

lim sup
k→∞

Pk

�
[x+ Nε − x,∞)


≤ lim

k→∞
Pk

�
[Nε,∞)


= 1− lim

k→∞
Pk

�
[0, Nε)


=

= 1− P∞
�
[0, Nε)


= P∞

�
[Nε,∞)


< ε.

Letting now at first k → ∞ and then ε → 0, we obtain by (14) that

lim
k→∞

Fk(x) = F∞(x), x ≥ 0,

which was to be proved. 

Proof of Theorem 5.1 follows immediately from Lemmas 5.2 and 5.3. 

6. An application to the Γ-process

In this section, we show that the continuous Poisson distribution appears
as the distribution of the (in a proper way normalized) time when Γ-process
jumps over a fixed level.

We start with an informal explanation of this phenomenon. Consider a
sequence of independent identically exponentially distributed random variables
{τi, i ∈ N} and the sequence of their cumulative sums T = {Tn, n ∈ N}:
: Tn =

n
i=1 τi. Also set T0 = 0. It is well known that the renewal process�

X(t), t ≥ 0

constructed by the sequence T as X(t) = sup{n : Tn ≤ t} is the

classical Poisson process. The question is whether this setting can be carried
into continuous time in such a way that the continuous Poisson distribution
occurs instead of the classical one.

To answer this question we look upon the sequence T as a Lévy process in
discrete time, i.e. random sequence with independent homogeneous increments.
We can carry this process into continuous time, since the distribution of unit
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Lemma 5.1. For arbitrary x ∈ [0, N ] and y ∈ [0,∞)

β̃N,p

�
[x, x+ 1)


=

Γ(N + 1)

Γ(x+ 1)Γ(N − x+ 1)
· px(1− p)N−x,(11)

π̃λ
�
[y, y + 1)


=

e−λλy

Γ(y + 1)
.(12)

Proof. Performing a simple integration by parts, we have

β̃N,p

�
[x, x+ 1)


= F̃N,p(x+ 1)− F̃N,p(x) =

=
B(x+ 1, N − x, p)

B(x+ 1, N − x)
− B(x,N + 1− x, p)

B(x,N + 1− x)
=

=
px(1− p)N−x

(N − x)B(x+ 1, N − x)
,

which yields (11) by the relationship between Γ- and B-functions. (12) can be
obtained in a similar manner. 

Lemma 5.2. Under the conditions of Theorem 5.1

lim
k→∞

β̃N(k),p(k)

�
[x, x+ 1)


= π̃λ

�
[x, x+ 1)


, x ≥ 0.

The proof follows from Lemma 5.1 and elementary computations with Stir-
ling’s formula and is thus omitted.

Lemma 5.3. Let
�
Pk, k ∈ N ∪ {∞}


be a sequence of probability measures

on the measurable space
�
R+,B

�
R+


. If for each x ≥ 0

(13) lim
k→∞

Pk

�
[x, x+ 1)


= P∞

�
[x, x+ 1)


,

then the weak convergence of Pk to P∞ holds.

Lemma 5.3 actually implies that the intervals [x, x + 1), x ≥ 0, form a
convergence determining class (see e.g. [5], p. 18).

Proof. Denote by Fk the distribution function of the measure Pk. For a
fixed ε > 0 let Nε be such an integer that P∞

�
[Nε,∞)


< ε. Then, for each

k ∈ N ∪ {∞} and x ≥ 0

Fk(x) = 1−Pk

�
[x,∞)


= 1−

Nε−x
n=1

Pk

�
[x+n−1, x+n)


−Pk

�
[x+Nε−x,∞)


,
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increments (the exponential one) is infinitely divisible. What’s more, it is a
special case of the Γ-distribution. Thus we may regard the Γ-process as a
natural continuous counterpart of the sequence T .

Recall the corresponding definition (see e.g. [4], p. 54).

Definition 6.1. A Lévy process
�
T̃ (t), t ≥ 0


is called the Γ-process with

parameters α, β > 0 if its transition density has a form

ft(x) =
βαt

Γ(αt)
xαt−1e−βx, x ≥ 0.

Assertion 6.1. Let τc be a time when the process T̃ jumps over a fixed
level c. Then the random variable ατc is continuously Poisson distributed with
parameter βc.

The proof follows from the fact that the distribution function Fc of the
random variable ατc coincides with that of the continuous Poisson distribution
π̃βc:

Fc(x) = P

τc <

x

α


= P


T̃
x
α


> c


=

=

∞

c

fx/α(u) du =
βx

Γ(x)

∞

c

ux−1e−βu du =

=
Γ(x, βc)

Γ(x)
= F̃βc(x), x > 0.
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Abstract. In this paper, we discuss the correlation entropy of discrete
nanoelectronic systems, based on a quantum-statistical description in the
many-body Fockspace. Considering examples of typical system prepara-
tions, mathematical properties of the correlation entropy are analyzed and
interpreted in physical terms.

1. Introduction

In the following, we consider a discrete nanoelectronic system, that is, a
system of spin 1

2 Fermions with discrete energy spectrum. The fundamentals
of a quantum-statistical many-body description of such systems, as outlined in
this introdution, can be found e.g. in Refs.[1, 2].

For simplicity, we assume that all vector spaces are finite dimensional. A
generalization of the discussed results to infinite dimensional spaces is possible.

Key words and phrases: Correlation entropy, nanoelectronic systems.
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