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Abstract. We complete the isomorphic classification for weighted spaces
Hv(G) of holomorphic functions on the upper half plane G with respect
to standard weights v which are of at most moderate growth. We show
that there are only two isomorphism classes for the corresponding Banach
spaces Hv(G), namely l∞ and H∞. We prove that Hv(G) is isomorphic
to H∞ if and only if v grows slowly. In particular Hv(G) is isomorphic to
H∞ if v is bounded.

1. Introduction

Let O ⊂ C be an open subset and v : O → [0,∞[ a given function. Then
we consider, for f : O → C, the weighted sup-norm

||f ||v = sup
z∈O

|f(z)|v(z)
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Lemma 1.2. Let v be a standard weight on G. Then

(i) v satisfies () if and only if there are c > 0 and β > 0 with

v(it)

v(is)
≤ c


t

s

β

whenever 0 < s ≤ t.

In this case we can take c = a2 and β = ln a/ ln 2 where

a = sup
k∈Z

v(2k+1i)/v(2ki).

(ii) v satisfies () if and only if there are d > 0 and γ > 0 with

v(it)

v(is)
≥ d


t

s

γ

whenever 0 < s ≤ t.

The aim of this note is to complete the isomorphic classification ofHv(G) for
standard weights satisfying (). We show that there are only two isomorphism
classes for Hv(G). We obtain

Theorem 1.3. Let v be a standard weight on G with (). Then

(i) Hv(G) is isomorphic to l∞ if and only if v satisfies ().

(ii) Hv(G) is isomorphic to H∞ if and only if v does not satisfy ().

(i) was shown in [1]. We prove (ii) in the following sections.

Corollary 1.4. Let v be a bounded standard weight on G with (). Then
Hv(G) is isomorphic to H∞.

Proof. If v is bounded then it cannot satisfy (). Hence 1.4. follows from
Theorem 1.3. 

The preceding theorem for standard weights v on G cannot be inferred
directly from the corresponding result for radial weights on D. If v is a standard
weight on G and we consider a conformal map α : D → G then u(z) = v(α(z))
is a weight on D. Moreover Hu(D) is isometrically isomorphic to Hv(G). But
v ◦ α is not radial and does not satisfy the other requirements for u. For
weights on D of the form v ◦ α, v a standard weight on G, nothing is known
about H(v◦α)(D).
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and the space

Hv(O) = {f : O → C holomorphic : ||f ||v < ∞}

In our paper we are concerned with the unit disc D = {z ∈ C : |z| < 1} and
the upper half plane

G = {w ∈ C : Im w > 0}.
We want to investigate how far the spaces Hv(D) and Hv(G) are related to
classical Banach spaces.

Actually the isomorphic classification of Hv(D) is well-known for weights
v on D which satisfy v(z) = v(|z|), z ∈ D, v(t) ≤ v(s) if 0 ≤ s ≤ t < 1 and
limt→1 v(t) = 0. Then, depending on v, Hv(D) is either isomorphic to l∞ or to
H∞, the space of all bounded holomorphic functions on D endowed with the
sup-norm ([7]).

In particular, if v is of moderate decay, i.e. if

sup
n∈N

v(1− 2−n)

v(1− 2−n−1)
< ∞

then Hv(D) is isomorphic to l∞ if and only if v is ‘normal’, i.e. if

inf
m∈N

sup
n∈N

v(1− 2−n−m)

v(1− 2−n)
< 1 ([5, 6]).

On G we study now the following class of weights.

Definition 1.1. (i) Let v : G →]0,∞[ be continuous such that v(w) =
= v(i Im w), w ∈ G, v(is) ≤ v(it) if 0 < s ≤ t and limt→0 v(it) = 0. Then v is
called a standard weight.

(ii) A standard weight v on G satisfies condition () if

sup
k∈Z

v(2k+1i)

v(2ki)
< ∞.

(iii) A standard weight v satisfies condition () if

inf
n∈N

sup
k∈Z

v(2ki)

v(2k+ni)
< 1.

Examples. v1(it) = tα, t > 0, for some α > 0, v2(it) = min(tα, 1), t > 0,

v3(it) = { (1− ln(t))−α, 0 < t ≤ 1,
t, t > 1,

define standard weights on G which satisfy (). Only v1 satisfies ().

Condition () means that v(it) is at most moderately growing while a weight
with () grows at least moderately. The following lemma is easily seen ([1]).
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Corollary 2.3. Let f : D → C be holomorphic such that |||f ||| < ∞. Then
f ∈ Hu(D).

Proof. Fix n. Then (2.2) and (2.3) imply supn |||Rnf ||| ≤ 3|||f |||. Since
Rnf is a polynomial it is an element of Hu(D). Hence (2.2) yields

sup
n

||Rnf ||u ≤ 3b|||f |||.

On the other hand, (Rnf) converges to f pointwise on D. Hence we have
||f ||u ≤ supn ||Rnf ||u < ∞. This implies f ∈ Hu(D). 

Let, for n ∈ N, An be the space of all complex polynomials of degree ≤ n
endowed with the norm M∞(·, 1). It is well-known that H∞ is isomorphic to
(
∞

n=1 ⊕An)(∞) (see [8]).

Proposition 2.4. There is an isomorphism

T : Hu(D)→ (

∞
k=1

⊕A2mk+2)(∞)

and a projection

P : (

∞
k=1

⊕A2mk+2)(∞) → THu(D)

with ||P || ≤ 2 · 104ab and ||T || · ||T−1|| ≤ 96b.

Proof. This is essentially the argument of the proof of Lemma 3.3. of [6].

Let Bk = A2mk+2 be endowed with the norm M∞(·, 1)u(1 − 2−mk). Then
Y := (

∞
k=1 ⊕Bk)(∞) is isometrically isomorphic to (

∞
k=1 ⊕A2mk+2)(∞). We

work with Y instead of (
∞

k=1 ⊕A2mk+2)(∞). Define T : Hu(D) → Y by Tf =
= ( (Rmk

− Rmk−1
)f ). Then, by Proposition 2.2., ||T || · ||T−1|| ≤ 96b. More-

over, define S : Y → Hu(D) by S(gk) =
∞

k=1(Rmk+1 − Rmk−1−1)gk where
gk ∈ Bk for all k. (Put R−1 = 0). S makes sense, S(gk) is the Taylor series of
a holomorphic function on D. Indeed, we have

(Rmk+1 −Rmk−1−1)gk =

2mk+2

j=2mk−1−1

αjz
j

where

|αj | ≤
|||f |||

u(1− 2−mk)
≤ u(0)2k|||f |||.
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2. Hv(G) is complemented in H∞

Theorem 2.1. Let v be a standard weight on G satisfying (). Then Hv(G)
is isomorphic to a complemented subspace of H∞.

To prove Theorem 2.1. we need to recall some facts from [1]. At first,
consider a holomorphic function f on D, say f(z) =

∞
k=0 αkz

k. Put

(2.1) (Rnf)(z) =

2n
k=0

αkz
k+

2n+1
k=2n+1

2n+1 − k

2n
αkz

k.

Moreover, for r > 0, put M∞(f, r) = sup|z|=r |f(z)|. It is well-known (see e.g.
[6]) that

(2.2) M∞(Rnf, r) ≤ 3M∞(f, r) for all r and n.

Clearly, we have

(2.3) RnRm = Rmin(m,n) if m = n.

Consider a radial weight u on D, i.e. u satisfies u(z) = u(|z|), z ∈ D. Moreover,
assume u(s) ≥ u(t) if 0 ≤ s ≤ t < 1 and limt→1 u(t) = 0. Finally suppose

(2.4) a := sup
n∈N

u(1− 2−n)

u(1− 2−n−1)
< ∞.

Then we use induction to find integers m0 = 0 < m1 < m2 < . . . such that

(2.5)
1

2a
≤ u(1− 2−mk+1)

u(1− 2−mk)
≤ 1

2
.

We have (see [1])

Proposition 2.2. Put |||f ||| = supk M∞((Rmk
−Rmk−1

)f, 1)u(1− 2−mk).
Then there is a universal constant b > 0 depending only on a such that

1

96
|||f ||| ≤ ||f ||u ≤ b|||f ||| for all f ∈ Hu(D).

(Actually, b = 32a+ 4a
∞

j=1 2
jaj exp(−2j−1).)



129

Isomorphic classification 129

Corollary 2.3. Let f : D → C be holomorphic such that |||f ||| < ∞. Then
f ∈ Hu(D).

Proof. Fix n. Then (2.2) and (2.3) imply supn |||Rnf ||| ≤ 3|||f |||. Since
Rnf is a polynomial it is an element of Hu(D). Hence (2.2) yields

sup
n

||Rnf ||u ≤ 3b|||f |||.

On the other hand, (Rnf) converges to f pointwise on D. Hence we have
||f ||u ≤ supn ||Rnf ||u < ∞. This implies f ∈ Hu(D). 

Let, for n ∈ N, An be the space of all complex polynomials of degree ≤ n
endowed with the norm M∞(·, 1). It is well-known that H∞ is isomorphic to
(
∞

n=1 ⊕An)(∞) (see [8]).

Proposition 2.4. There is an isomorphism

T : Hu(D)→ (

∞
k=1

⊕A2mk+2)(∞)

and a projection

P : (

∞
k=1

⊕A2mk+2)(∞) → THu(D)

with ||P || ≤ 2 · 104ab and ||T || · ||T−1|| ≤ 96b.

Proof. This is essentially the argument of the proof of Lemma 3.3. of [6].

Let Bk = A2mk+2 be endowed with the norm M∞(·, 1)u(1 − 2−mk). Then
Y := (

∞
k=1 ⊕Bk)(∞) is isometrically isomorphic to (

∞
k=1 ⊕A2mk+2)(∞). We

work with Y instead of (
∞

k=1 ⊕A2mk+2)(∞). Define T : Hu(D) → Y by Tf =
= ( (Rmk

− Rmk−1
)f ). Then, by Proposition 2.2., ||T || · ||T−1|| ≤ 96b. More-

over, define S : Y → Hu(D) by S(gk) =
∞

k=1(Rmk+1 − Rmk−1−1)gk where
gk ∈ Bk for all k. (Put R−1 = 0). S makes sense, S(gk) is the Taylor series of
a holomorphic function on D. Indeed, we have

(Rmk+1 −Rmk−1−1)gk =

2mk+2

j=2mk−1−1

αjz
j

where

|αj | ≤
|||f |||

u(1− 2−mk)
≤ u(0)2k|||f |||.



130

Isomorphic classification 131

3. H∞ is complemented in Hv(G)

Theorem 3.1. Let v be a standard weight on G satisfying () but not ().
Then Hv(G) contains a complemented subspace which is isomorphic to H∞.

Theorem 3.1. together with Theorem 2.1. and Pelczynski’s decomposition
method prove that Hv(G) is isomorphic to H∞ if v satisfies () but not ()
sinceH∞ is isomorphic to (H∞ ⊕H∞ ⊕ . . .)(∞) ( [8]). The converse of Theorem

1.3.(ii) follows from Theorem 1.3.(i).

To prove Theorem 3.1. we consider at first polynomials on D.

Lemma 3.2. Let 0 ≤ n1 < n2 < n2+2 < n3 < n4 be integers and consider

X = span{z2
n1+1, z2

n1+2, . . . , z2
n2+1−1},

Y = span{z2
n3+1, z2

n3+2, . . . , z2
n4+1−1}.

For any r > 0 and f ∈ X, g ∈ Y we have

(3.1) (Rn4
−Rn3

)f = 0 = (Rn2
−Rn1

)g

and

1

6
max (M∞(f, r),M∞(g, r)) ≤ M∞(f + g, r) ≤ 2max (M∞(f, r),M∞(g, r)) .

Proof. (3.1) follows from the definition of the operators Rn. The lower in-
equality follows from the fact that (Rn2+1 − Rn1−1)(f + g) = f and
(Rn4+1 − Rn3−1)(f + g) = g. The upper inequality is a consequence of the
triangle inequality. 

We need the following Lemma from [6].

Lemma 3.3. Let X and Y be as in Lemma 3.2. Fix some constant c > 0.
Consider the norm M∞(·, 1)c on X and on Y . Let

m = min(2n2−n1−1, 2n4−n3−1).

Then there is an isometry i : Am → (X ⊕ Y )∞ and a projection Q : (X ⊕
⊕Y )(∞) → i(Am) with ||Q|| ≤ 2 such that

(3.2) ( (Rn2
−Rn1

)f, (Rn4
−Rn3

)g ) = (f, g)

whenever (f, g) ∈ i(Am) ⊂ (X ⊕ Y )∞. (We regard (X ⊕ Y )∞ as the space of
all pairs (f, g) with f ∈ X and g ∈ Y ).
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Hence this Taylor series converges pointwise on D. We obtain, with (2.3),

|||S(gk)||| ≤ sup
k

M∞( (Rmk
−Rmk−1

)((Rmk+1 −Rmk−1−1)gk+

+(Rmk−1+1 −Rmk−2−1)gk−1 + (Rmk+1+1 −Rmk−1)gk+1 ), 1)u(1− 2−mk)

≤ 36 sup
k
(M∞(gk−1, 1) +M∞(gk, 1) +M∞(gk+1, 1))u(1− 2−mk) ≤

≤ 36 sup
k
(M∞(gk−1, 1)u(1− 2−mk+1) +

+M∞(gk, 1)u(1− 2−mk) + aM∞(gk+1, 1)u(1− 2−mk+1) ≤
≤ 108a||(gk)||.

Hence, in view of Corollary 2.3., S(gk) ∈ Hu(D). With (2.3) we see that
STf = f Then P = TS is a projection with ||P || ≤ 108a · 96b ≤ 2 · 104ab. 

2.5. Proof of Theorem 2.1. Let

un(z) = v


n
1− |z|
1 + |z|

i


, z ∈ D, n ∈ N.

Then Hv(G) is isometrically isomorphic to a complemented subspace of Z :=
:= (

∞
n=1 ⊕Hun

(D))
(∞)

([1], Corollary 1.5.). Put

(2.6) an = sup
j∈N

un(1− 2−j)

un(1− 2−j−1)

and find integers 0 = mn,0 < mn,1 < mn,2 < . . . with

(2.7)
1

2an
≤ un(1− 2−mn,k+1)

un(1− 2−mn,k)
≤ 1

2
.

If v satisfies () then supn an < ∞ ([1], Lemma 4.1.). According to Proposi-
tion 2.4., there are isomorphisms Tn : Hun

(D) →
�

k ⊕A2mn,k+2


(∞)

=: Yn

and projections Pn : Yn → TnHun
(D) where ||Tn|| · ||T−1

n || and ||Pn|| depend
only on an. Since supn an < ∞ we see that there is an isomorphism T̃ : Z :=
:= (


n ⊕Hun(D))(∞)

→ (


n ⊕Yn)(∞)
=: Y and a bounded projection

P̃ : Y → Z. Hence there is an isomorphism T : Hv(G) → Y and a bounded

projection P : Y → THv(G). We have Y =


n,k ⊕A2mn,k+2


(∞)

. According

to [6], Lemma 2.2., Y is isomorphic to (
∞

n=1 ⊕An)(∞)
and hence to H∞. 
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Proof. Put X = (Hv)0(G) and identify X∗∗ with Hv(G). Let i : X →
→ X∗∗ be the canonical embedding. Then i∗ : X∗∗∗ → X∗ is the map with
(i∗x∗∗∗)(x) = x∗∗∗(ix), x∗∗∗ ∈ X∗∗∗, x ∈ X. Put F = i∗P ∗X∗∗∗. By the
principle of local reflexivity ( [4], p.53,) we find T : E → X with ||T || · ||T−1|| ≤
≤ 1 +  and e(f) = f(Te) for e ∈ E and f ∈ F . Put Q = TPi. Let x∗ ∈ X∗

and x ∈ X. Then we obtain (i∗P ∗T ∗)(x∗) ∈ F and hence x∗(TPiTPix) =
= x∗(TPix). This follows since we have P ∗∗i∗∗P = P taking into account that
dim E < ∞. Therefore, Q is the desired projection. 

Lemma 3.6. Let Bj ⊂ (Hv)0(G), j = 1, 2, be two finite dimensional
subspaces and assume that Pj : (Hv)0(G) → Bj, j = 1, 2, are bounded and
linear and P2 is a projection. Then, for every  > 0, there is an isometry
T : B2 → (Hv)0(G) and a linear map Q : (Hv)0(G)→ B1 + TB2 such that

(1−)max(||f ||v, ||g||v) ≤ ||f+Tg||v ≤ (1+)max(||f ||v, ||g||v), f ∈ B1, g ∈ B2,

||Q|| ≤ (1 + )max(||P1||, ||P2||) and

||(Q−id)|(B1+TB2)|| ≤ (1+)||(P1−id)|B1
||+max(||P1||, ||P2||), f ∈ B1, g ∈ B2.

Proof. Fix 0 <  < 1. Since Bj ⊂ (Hv)0(G) are finite dimensional we find
compact subsets Kj ⊂ G such that |f(w)|v(w) ≤ ||f ||v for all w ∈ G \ Kj

and f ∈ Bj , j = 1, 2. For any x ∈ R and f ∈ Hv(G) put (Txf)(w) = f(x+w),
w ∈ G. Since v is a standard weight, Tx is an isometry (Hv)0(G)→ (Hv)0(G).
Let ϕ ∈ (Hv)0(G)∗. In view of the Riesz representation theorem there is a
regular Borel measure µ on G with |µ|(G) < ∞ such that

ϕ(f) =



G

f(w)v(w)dµ(w).

Hence limx→±∞ ϕ(Txf) = 0. Since P ∗
j (Hv)0(G)∗ are finite dimensional we find

x ∈ R so large that K1 ∩ (x + K2) = ∅ = K2 ∩ (−x + K1) and |ϕ1(Txg)| ≤
||g||v for g ∈ B2, ϕ1 ∈ P ∗

1 (Hv)0(G)∗ and |ϕ2(T−xf)| ≤ ||f ||v for f ∈ B1,
ϕ2 ∈ P ∗

2 (Hv)0(G)∗. Hence ||P1Txg||v ≤ ||g||v for g ∈ B2 and ||P2T−xf ||v ≤
≤ ||f ||v for f ∈ B1.

Put T = Tx|B2 and Q = P1 + TxP2T−x. Then we obtain

(1− )max(||f ||v, ||g||v) ≤ ||f + Tg||v ≤ (1 + )max(||f ||v, ||g||v)

for f ∈ B1 and g ∈ B2. Using this we see that

||Q|| ≤

1 + 

1− 


max(||P1||, ||P2||).
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Then we obtain

Proposition 3.4. Let v be a standard weight on G satisfying () but not
(). Then there is a universal constant d > 0 such that for every j > 0 there
exists an integer m > j, an isomorphism T : Am → Hv(G) and a projection
P : Hv(G)→ TAm with ||P || ≤ d and ||T || · ||T−1|| ≤ d.

Proof. Put vn(w) = v(nw), w ∈ G, n ∈ N. Then (Snf)(w) = f(nw),
w ∈ G, defines an isometry between Hv(G) and Hvn(G). Moreover, put

un(z) = v


n
1− |z|
1 + |z|

i


, z ∈ D.

Then un is a radial weight on D. We consider again an with (2.6) and mn,k

with (2.7). () implies a := supn an < ∞. Since v does not satisfy () we have

(3.3) sup
n
sup
k
(mn,k−mn,k−1) =∞

( [1], Lemma 4.1.)

By [1], Propositions 3.1 and 3.2., there is a universal constant c > 0, depend-
ing only on a, an (into-)isomorphism Tn : Hun

(D)→ Hvn(G) and a projection
Pn : Hvn(G)→ TnHun(D) with ||Tn|| · ||T−1

n || ≤ c and ||Pn|| ≤ c.

Now let j > 0. By (3.3) we find n and k and integers mn,k−1 < n1 <
< n2 < n2+2 < n3 < n4 < mn,k such that m := min(2n2−n1−1, 2n4−n3−1) > j.
Using Proposition 2.2. with un and Lemmas 3.2. and 3.3. we see that there is
an isomorphism i : Am → Hun

(D) and a projection Q : (Rn4
− Rn3

+ Rn2
−

Rn1
)Hun

(D) → i(Am) with ||Q|| ≤ 2 satisfying (3.2). We have ||i|| · ||i−1|| ≤
≤ 96b. (3.1) and (3.2) imply that Q(Rn4 − Rn3 + Rn2 − Rn1) is a projection
from Hun(D) onto i(Am). Put T = S−1

n Tni and P = S−1
n TnQ(Rn4 − Rn3 +

+Rn2
−Rn1

)T−1
n PnSn. Then P is a projection from Hv(G) onto TAm and we

have ||T || · ||T−1|| ≤ 96bc, ||P || ≤ 24 · 96bc2. 

Now, for a standard weight v on G we introduce

(Hv)0(G) = {f ∈ Hv(G) : |f(w)|v(w) vanishes at infinity}.

(Here |f(w)|v(w) vanishes at infinity if for every  > 0 there is a compact subset
K ⊂ G such that |f(w)|v(w) ≤  for w ∈ G \K.)

It is well known ([2, 3]) thatHv(G) is isometrically isomorphic to (Hv)0(G)∗∗
and the canonical embedding of (Hv)0(G) into (Hv)0(G)∗∗ corresponds to the
embedding of (Hv)0(G) into Hv(G).

Lemma 3.5. Let E ⊂ Hv(G) be a finite dimensional subspace and
P : Hv(G) → E a projection. Then, for every  > 0, there is an isomorphism
T : E → (Hv)0(G) and a projection Q : (Hv)0(G)→ TE with ||Q|| ≤ (1+)||P ||
and ||T || · ||T−1|| ≤ 1 + .
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Proof. Put X = (Hv)0(G) and identify X∗∗ with Hv(G). Let i : X →
→ X∗∗ be the canonical embedding. Then i∗ : X∗∗∗ → X∗ is the map with
(i∗x∗∗∗)(x) = x∗∗∗(ix), x∗∗∗ ∈ X∗∗∗, x ∈ X. Put F = i∗P ∗X∗∗∗. By the
principle of local reflexivity ( [4], p.53,) we find T : E → X with ||T || · ||T−1|| ≤
≤ 1 +  and e(f) = f(Te) for e ∈ E and f ∈ F . Put Q = TPi. Let x∗ ∈ X∗

and x ∈ X. Then we obtain (i∗P ∗T ∗)(x∗) ∈ F and hence x∗(TPiTPix) =
= x∗(TPix). This follows since we have P ∗∗i∗∗P = P taking into account that
dim E < ∞. Therefore, Q is the desired projection. 

Lemma 3.6. Let Bj ⊂ (Hv)0(G), j = 1, 2, be two finite dimensional
subspaces and assume that Pj : (Hv)0(G) → Bj, j = 1, 2, are bounded and
linear and P2 is a projection. Then, for every  > 0, there is an isometry
T : B2 → (Hv)0(G) and a linear map Q : (Hv)0(G)→ B1 + TB2 such that

(1−)max(||f ||v, ||g||v) ≤ ||f+Tg||v ≤ (1+)max(||f ||v, ||g||v), f ∈ B1, g ∈ B2,

||Q|| ≤ (1 + )max(||P1||, ||P2||) and

||(Q−id)|(B1+TB2)|| ≤ (1+)||(P1−id)|B1
||+max(||P1||, ||P2||), f ∈ B1, g ∈ B2.

Proof. Fix 0 <  < 1. Since Bj ⊂ (Hv)0(G) are finite dimensional we find
compact subsets Kj ⊂ G such that |f(w)|v(w) ≤ ||f ||v for all w ∈ G \ Kj

and f ∈ Bj , j = 1, 2. For any x ∈ R and f ∈ Hv(G) put (Txf)(w) = f(x+w),
w ∈ G. Since v is a standard weight, Tx is an isometry (Hv)0(G)→ (Hv)0(G).
Let ϕ ∈ (Hv)0(G)∗. In view of the Riesz representation theorem there is a
regular Borel measure µ on G with |µ|(G) < ∞ such that

ϕ(f) =



G

f(w)v(w)dµ(w).

Hence limx→±∞ ϕ(Txf) = 0. Since P ∗
j (Hv)0(G)∗ are finite dimensional we find

x ∈ R so large that K1 ∩ (x + K2) = ∅ = K2 ∩ (−x + K1) and |ϕ1(Txg)| ≤
||g||v for g ∈ B2, ϕ1 ∈ P ∗

1 (Hv)0(G)∗ and |ϕ2(T−xf)| ≤ ||f ||v for f ∈ B1,
ϕ2 ∈ P ∗

2 (Hv)0(G)∗. Hence ||P1Txg||v ≤ ||g||v for g ∈ B2 and ||P2T−xf ||v ≤
≤ ||f ||v for f ∈ B1.

Put T = Tx|B2 and Q = P1 + TxP2T−x. Then we obtain

(1− )max(||f ||v, ||g||v) ≤ ||f + Tg||v ≤ (1 + )max(||f ||v, ||g||v)

for f ∈ B1 and g ∈ B2. Using this we see that

||Q|| ≤

1 + 

1− 


max(||P1||, ||P2||).
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Finally, we have, for f ∈ B1 and g ∈ B2,

||Q(f + Txg)− (f + Txg)||v = ||P1f − f + P1Txg + TxP2T−xf ||v ≤
≤ (||(P1 − id)|B1 ||+ 2max(||P1||, ||P2||)) ·

·max(||f ||v, ||g||v) ≤
≤ (||(P1 − id)|B1 ||+ 2max(||P1||, ||P2||)) ·

· ||f + Txg||v
1− 

.

If  is small enough we obtain the estimates of the assertion of Lemma 3.6. 

Proof of Theorem 3.1. Use Proposition 3.4. and Lemma 3.5. to find
integers 0 < k1 < k2 < . . ., isomorphisms Tn : Akn

→ (Hv)0(G) and projections
Pn : (Hv)0(G) → TnAkn

with ||Tn|| · ||T−1
n || ≤ d and ||Pn|| ≤ d where d > 0 is

a universal constant.

Then use Lemma 3.6. and induction to find an isomorphic copy X ⊂
⊂ (Hv)0(G) of (

∞
n=1 ⊕Akn)(0) and a linear bounded map Q : (Hv)0(G) → X

with ||(Q− id)|X || < 1. (Apply Lemma 3.6. successively with n small enough
such that in particular 0 <

∞
n=1(1− n) <

∞
n=1(1 + n) < ∞.)

Hence S := (Q|X)−1 exists and is bounded. Put P = SQ. Then P is
a bounded projection from (Hv)0(G) onto X. With biduality we see that
P ∗∗ : Hv(G) → X∗∗ is a bounded projection from Hv(G) onto an isomorphic
copy of (

∞
n=1 ⊕Akn

)(∞). This space is isomorphic to (
∞

n=1 ⊕An)(∞) and
hence to H∞ ([6]). 
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Abstract. On the basis of integral representations of Poisson and bi-
nomial distribution functions via complete and incomplete Euler Γ- and
B-functions, we introduce and discuss continuous counterparts of the Pois-
son and binomial distributions. The former turns out to be closely related
to classical Volterra functions as well. Under usual condition Np → λ, we
also prove that the sequence of continuous binomial distributions converges
weakly to the continuous Poisson one. At the end, we discuss a relationship
between the continuous Poisson distribution and the Γ-process.

1. Introduction

In various applied research papers, many authors extensively use what they
call a “continuous Poisson distribution” and a “continuous binomial distribu-
tion”, providing these terms with very different, not always correct meanings.

Key words and phrases: Poisson distribution, binomial distribution, continuous counterparts,
Volterra functions, Gamma process.
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