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Abstract. We complete the isomorphic classification for weighted spaces
H,(G) of holomorphic functions on the upper half plane G with respect
to standard weights v which are of at most moderate growth. We show
that there are only two isomorphism classes for the corresponding Banach
spaces H,(G), namely lo and Hs. We prove that H,(G) is isomorphic
to Hs if and only if v grows slowly. In particular H,(G) is isomorphic to
H. if v is bounded.

1. Introduction

Let O C C be an open subset and v : O — [0, 00[ a given function. Then
we consider, for f: O — C, the weighted sup-norm

[ f]lo = sup | f(2)]v(z)
z€0
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and the space
H,(O) ={f: O — C holomorphic : ||f|l, < oo}

In our paper we are concerned with the unit disc D = {z € C : |z| < 1} and
the upper half plane
G={weC: Imw >0}

We want to investigate how far the spaces H, (D) and H,(G) are related to
classical Banach spaces.

Actually the isomorphic classification of H, (D) is well-known for weights
v on D which satisfy v(z) = v(|z]), z € D, v(t) < v(s) if 0 < s <t <1 and
lim; 1 v(t) = 0. Then, depending on v, H, (D) is either isomorphic to I, or to
H., the space of all bounded holomorphic functions on D endowed with the
sup-norm ([7]).

In particular, if v is of moderate decay, i.e. if

v(l—27")

—_— <
heno(1— 21y =%

then H, (D) is isomorphic to I if and only if v is ‘normal’, i.e. if

1—27n—m
inf sup u

meN peN ’U(l — 2—n) <1 ([57 6})

On G we study now the following class of weights.

Definition 1.1. (i) Let v : G —]0, 0] be continuous such that v(w) =
=i Im w), w € G, v(is) <wv(it) if 0 < s <t and lim;_,ov(it) = 0. Then v is
called a standard weight.

(ii) A standard weight v on G satisfies condition (x) if

U(2k+1i) _
Sup ————— < 00
kez v(2%)

(i) A standard weight v satisfies condition (xx) if

v(2F4)
inf sup ——— 2 < 1
neN pey v(2FF)

Examples. vy (it) = t, t > 0, for some o > 0, va(it) = min(¢*, 1), ¢ > 0,

_ 1—In(t)™®, 0<t<1,

define standard weights on G which satisfy (). Only vy satisfies (¥x).

Condition (%) means that v(it) is at most moderately growing while a weight
with (%) grows at least moderately. The following lemma is easily seen ([1]).
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Lemma 1.2. Let v be a standard weight on G. Then

(i) v satisfies (x) if and only if there are ¢ > 0 and B > 0 with

<

<

. B
t t
((Zs)) <c (s) whenever 0 < s <t.

In this case we can take ¢ = a* and B =Ina/In2 where

a = sup v(28+10) /u(2%4).
keZ

(ii) v satisfies (%x) if and only if there are d > 0 and v > 0 with

v(it)
v(is)

t ’y

>d () whenever 0 < s <t.
s

The aim of this note is to complete the isomorphic classification of H,, (G) for

standard weights satisfying (x). We show that there are only two isomorphism
classes for H,(G). We obtain

Theorem 1.3. Let v be a standard weight on G with (x). Then

(i) Hy(G) is isomorphic to ls if and only if v satisfies (x).
(ii) Hy,(G) is isomorphic to Hoo if and only if v does not satisfy (xx).

(1) was shown in [1]. We prove (ii) in the following sections.

Corollary 1.4. Let v be a bounded standard weight on G with (x). Then
H,(G) is isomorphic to Hy.

Proof. If v is bounded then it cannot satisfy (xx). Hence 1.4. follows from
Theorem 1.3. |

The preceding theorem for standard weights v on G cannot be inferred
directly from the corresponding result for radial weights on D. If v is a standard
weight on G and we consider a conformal map o : D — G then u(z) = v(«a(z))
is a weight on . Moreover H, (D) is isometrically isomorphic to H,(G). But
v o « is not radial and does not satisfy the other requirements for u. For
weights on D of the form v o o, v a standard weight on G, nothing is known
about H(voa) (D).
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2. H,(G) is complemented in H,

Theorem 2.1. Let v be a standard weight on G satisfying (x). Then H,(G)
is isomorphic to a complemented subspace of Ho

To prove Theorem 2.1. we need to recall some facts from [1]. At first,
consider a holomorphic function f on I, say f(z) = > ,°, apz®. Put

(2.1) Zakz + Z 2n+1 a2t

k=2741

Moreover, for r > 0, put Moo (f,7) = supj,—, [ f(2)|. It is well-known (see e.g.
[6]) that

(2.2) Mo (Rpf, 1) <3Mx(f,r) forall r and n.
Clearly, we have
(23) Ry Ry, = Rmin(m,n) it m 7é n.

Consider a radial weight « on D, i.e. u satisfies u(z) = u(|z|), z € D. Moreover,
assume u(s) > u(t) if 0 < s <t <1 and lim;_,; u(¢) = 0. Finally suppose

1—2n
(2.4) a := sup =271 < 0.

Then we use induction to find integers mg =0 < my < mg < ... such that

9~ Mk+1
- u(l—2 ) -

25) 1 1
‘ 20— u(l—2-mk) 2

We have (see [1])

Proposition 2.2. Put |||f||| = supy Moo (R, — Rm,,_,) fs Du(l —27™F).
Then there is a universal constant b > 0 depending only on a such that

1
o6 I < 1I£llw < OIIFNIl - for all f € Hy(D).

(Actually, b = 32a + 4a Zji1 27al exp(—2771).)
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Corollary 2.3. Let f : D — C be holomorphic such that ||| f|]| < co. Then
f e H,D).

Proof. Fix n. Then (2.2) and (2.3) imply sup,, |||R.f||| < 3|||f]||- Since
R, f is a polynomial it is an element of H, (D). Hence (2.2) yields

sup || Ry f{lu < 3b[[|f]]|-

On the other hand, (R, f) converges to f pointwise on D. Hence we have
£l < $up, || R Il < c0. This implies f € H,(D). U

Let, for n € N, A,, be the space of all complex polynomials of degree < n
endowed with the norm M (-,1). It is well-known that H., is isomorphic to

(o1 ®An)(sc) (see [8]).

Proposition 2.4. There is an isomorphism

T: Hu(D) — (Z @A2mk+2)(oo)
k=1

and a projection

P (Z EBAka+2)(OO) — THU(ID))
k=1

with ||P|| < 2-10%ab and ||T|| - ||T~"|] < 96b.

Proof. This is essentially the argument of the proof of Lemma 3.3. of [6].

Let By = Agmy+2 be endowed with the norm M (-, 1)u(1l — 27™*k). Then
Y = (3,1 ®Brk) (o) s isometrically isomorphic to (Y-, ®Agmy+2) (o). We
work with Y instead of (3,7 @Aymy+2)(o0). Define T : H, (D) — Y by T'f =
= ((Rm, — Rm,_,)f ). Then, by Proposition 2.2., ||T|| - ||T~|| < 96b. More-
over, define S : Y — H,(D) by S(gx) = > peq(Rmyt1 — Rmy_,—1)gk where
g € By, for all k. (Put R_; = 0). S makes sense, S(g;) is the Taylor series of
a holomorphic function on D. Indeed, we have

omp+2

(Rmkﬂ - Rmk_rl)gk = Z ajzj

j=omr—1-1

where

Al

I
‘O‘j|§m

< u(0)2"|[|£1ll-
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Hence this Taylor series converges pointwise on . We obtain, with (2.3),

115(g)l[l < sup Moo ( (B = Bomy ) (Bt = oy 1) 90+

H(Romp 141 — By _5—1)9k—1 + (Bimg 41 — Bng—1)gk+1 ), Du(l —277)

< 36sup(Moo(gr—1,1) + Moo 9k, 1) + Moo (gr1, 1))u(l —27™) <
< 36sup(Moo(gr—_1, Du(l —27me 1) 4

k

+ Moo (gr, u(l —27™%) + aMeo (gr41, Du(l — 2771 ) <
< 108al|(gr)l]-

Hence, in view of Corollary 2.3., S(gx) € H,(D). With (2.3) we see that
STf = f Then P =TS is a projection with ||P|| < 108a-96b < 2-10%ab. N

2.5. Proof of Theorem 2.1. Let

1
|Z|z , zeD, neN.
1+ ]z]

Uun(2) = v (n

Then H,(G) is isometrically isomorphic to a complemented subspace of Z :=
=00 ®H,, (D))(oo) ([1], Corollary 1.5.). Put

U (1 —277)
2.6 = sup ————————
(2:6) an ?25 Up (1 —273-1)

and find integers 0 = my, 0 < My,1 < Mp2 < ... with

L _ (1 =27t
2, — tp(1— 2 k)

(2.7) <

1
5
If v satisfies (x) then sup,, a,, < oo ([1], Lemma 4.1.). According to Proposi-
tion 2.4., there are isomorphisms T,, : H, A (D) — (Zk @AQTHMHQ)(OO) =Y,
and projections P, : Y, — T,H,, (D) where ||T,|| - ||T;,!|| and ||P,|| depend
only on a,. Since sup,, a, < oo we see that there is an isomorphism 7' : Z :=
= (3, ®Hu, (]D)))(OO) - >, EBYn)(DO) =: Y and a bounded projection
P :Y — Z. Hence there is an isomorphism 7" : H,(G) — Y and a bounded
projection P :Y — TH,(G). We have Y = (an EBAQm"’k+2>( . According

(oo}

to [6], Lemma 2.2., Y is isomorphic to (3,7, @An)(oo) and hence to H,,. W
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3. H. is complemented in H,(G)

Theorem 3.1. Let v be a standard weight on G satisfying (x) but not (xx).
Then H,(G) contains a complemented subspace which is isomorphic to Hu.

Theorem 3.1. together with Theorem 2.1. and Pelczynski’s decomposition
method prove that H,(G) is isomorphic to He, if v satisfies (x) but not (xx)
since Ho is isomorphic to (Heo @ Hoo @ . ..) (o ([8]). The converse of Theorem
1.3.(ii) follows from Theorem 1.3.(i).

To prove Theorem 3.1. we consider at first polynomials on D.

Lemma 3.2. Let 0 < nj < ng < ns+2 < ng < ny be integers and consider

X = span{z®"' 1 22 Zznzﬂfl}
Y = span{z®"°+ 202 22n4+171}.
For anyr >0 and f € X, g €Y we have
(3.1) (Rny—Rng)f =0=(Rp,—Ry,)g

and

%maX(Moo(f,T)vMoo(g,r)) < Moo(f + 9,7) < 2max (Moo (f,7), Moo (g, 7)) -

Proof. (3.1) follows from the definition of the operators R,,. The lower in-

equality follows from the fact that (Rn,+1 — Rn,—1)(f + ¢9) = f and
(Ru,+1 — Rns—1)(f + g) = g. The upper inequality is a consequence of the
triangle inequality. [ |

We need the following Lemma from [6].

Lemma 3.3. Let X and Y be as in Lemma 3.2. Fixz some constant ¢ > 0.
Consider the norm M (-, 1)c on X and on'Y. Let

m = min(Z”Z*m*l’ 2n47n371).
Then there is an isometry i : Ay, — (X @ Y)s and a projection Q : (X &
BY ) (o0) = i(Am) with ||Q|| <2 such that

(3.2) ((Bny=Bn, ) f, (Bny,—Rny)g ) = (f,9)

whenever (f,g) € i(An) C (X ®Y)o. (We regard (X @Y ) as the space of
all pairs (f,g) with f € X and g €Y).
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Then we obtain

Proposition 3.4. Let v be a standard weight on G satisfying (x) but not
(xx). Then there is a universal constant d > 0 such that for every j > 0 there
exists an integer m > j, an isomorphism T : Ay, — H,(G) and a projection
P:H,(G) = TA, with ||P|| < d and ||T|| - ||T~|| < d.

Proof. Put v,(w) = v(nw), w € G, n € N. Then (S, f)(w) = f(nw),
w € G, defines an isometry between H,(G) and H, (G). Moreover, put

1—|z].
up(z) =v|n i), =ze€D.
@ =v (v )

Then u,, is a radial weight on D. We consider again a,, with (2.6) and m,,
with (2.7). (%) implies a := sup,, a,, < co. Since v does not satisfy (xx) we have

(3.3) sup sup(my, y—"mp g—1) = 00
n k

( [1], Lemma 4.1.)

By [1], Propositions 3.1 and 3.2., there is a universal constant ¢ > 0, depend-
ing only on a, an (into-)isomorphism 7,, : H,, (D) — H,,(G) and a projection
P, : H,, (G) — T,H,, (D) with ||T,|| - ||T;; || < c and ||P,|| < c.

Now let j > 0. By (3.3) we find n and &k and integers m, 1 < n1 <
<ng <ng+2 < n3 <ng < myysuch that m := min(2”2_"1_1,2”4_”3_1) > j.
Using Proposition 2.2. with u,, and Lemmas 3.2. and 3.3. we see that there is
an isomorphism 7 : A,, — H,, (D) and a projection @ : (Ry, — Rny + Ry, —
Ry, )H,, (D) — i(A,,) with ||Q|| < 2 satisfying (3.2). We have ||i[| - |[i71]| <
< 96b. (3.1) and (3.2) imply that Q(R,, — Rns + Rn, — Rn,) is a projection
from H,, (D) onto i(4,,). Put T = S, 'Ti and P = S, 'T,,Q(R,,, — Rpn, +
+R,, — Ry, )T, P,S,,. Then P is a projection from H,(G) onto T A,, and we
have ||T)| - ||T~|| < 96bc, ||P|| < 24 - 96bc?. [ ]

Now, for a standard weight v on G we introduce
(Hy)o(G) ={f € Hy(G) : |f(w)|v(w) vanishes at infinity}.

(Here | f(w)|v(w) vanishes at infinity if for every € > 0 there is a compact subset
K C G such that |f(w)|v(w) <eforwe G\ K.)

It is well known ([2, 3]) that H, (G) is isometrically isomorphic to (Hy,)o(G)**
and the canonical embedding of (H,)o(G) into (H,)o(G)** corresponds to the
embedding of (H,)o(G) into H,(G).

Lemma 3.5. Let E C H,(G) be a finite dimensional subspace and
P : H,(G) = E a projection. Then, for every e > 0, there is an isomorphism
T:FE — (Hy)o(G) and a projection Q : (Hy,)o(G) — TE with ||Q|| < (1+¢€)||P||
and |[T]| - |[TH)| < 1+e.
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Proof. Put X = (H,)o(G) and identify X** with H,(G). Let i : X —
— X** be the canonical embedding. Then * : X** — X* is the map with
(i*z***) () = ™ (ix), 2™ € X, v € X. Put F = i*P*X***. By the
principle of local reflexivity ( [4], p.53,) we find T : E — X with ||T||- |77} <
<1+eande(f)=f(Te) foree Eand f € F. Put Q = TPi. Let 2* € X*
and z € X. Then we obtain (¢*P*T*)(z*) € F and hence z*(T'PiT Pix) =
= 2*(T'Pix). This follows since we have P**{** P = P taking into account that
dim E < oco. Therefore, @ is the desired projection. |

Lemma 3.6. Let B; C (Hy,)o(G), j = 1,2, be two finite dimensional
subspaces and assume that P; : (Hy,)o(G) — Bj, j = 1,2, are bounded and
linear and Py is a projection. Then, for every ¢ > 0, there is an isometry
T : By — (Hy)o(G) and a linear map @Q : (H,)o(G) — By + T' By such that

(1=e) max(|[f{[o, |lgllw) < If+Tgllo < (14€) max([[f[lo, [lg]lo), f € Bi,g € Ba,

Q[ < (1 + €) max([[Pr[, | P2[[) and

(Q—id)|(5,+1y)l| < (1+€)[[(Pr—id) s, ||+emax([| 1], || P2l]);, f € B1,g € Ba.

Proof. Fix 0 < ¢ < 1. Since B; C (H,)o(G) are finite dimensional we find
compact subsets K; C G such that |f(w)|v(w) < €||f]], for all w € G\ K;
and f € B;, j=1,2. Forany z € R and f € H,(G) put (T, f)(w) = f(z+w),
w € G. Since v is a standard weight, T}, is an isometry (H,)o(G) — (Hy)o(G).
Let ¢ € (H,)o(G)*. In view of the Riesz representation theorem there is a
regular Borel measure p on G with |p|(G) < oo such that

o(f) = / £ (w)o(w)dp(w).
G

Hence lim, 4 ©(T, f) = 0. Since Pr (H,)o(G)* are finite dimensional we find
x € R so large that K1 N (x + K2) =0 = Ko N (—x + K1) and |p1(Teg)| <
llgllo for g € Ba, o1 € Pi(Ho)o(@)" and |oa(T_of)| < ¢||fll, for f € B,
w2 € Py(H,)o(G)*. Hence ||P1Toglls < €||gllo for g € By and ||PyT—y f||s <
< €| fllv for f € Bi.

Put T =T,|p, and Q = P; + T, P,T_,. Then we obtain
(1 — ) max(|[fl]o, llgllo) < I1f + Tgllo < (1+ €) max([|£ll, [Ig]lv)
for f € By and g € By. Using this we see that

1+¢€

10l < (155 ) w172
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Finally, we have, for f € By and g € Bs,

NQ(f +Tog) — (f + Tug)lle = ||Pif — f+ PiTog + ToPoT— o f|| <
< ([P —id)| B, || + 2€" max(|| P[], || Pe])) -
-max (|| f]|v, [lg]lv) <
< ([[(Py = id)| , || + 2¢' max(|| Pr[], [| P2 [])) -
f + Tegll
1—¢

If ¢ is small enough we obtain the estimates of the assertion of Lemma 3.6. H

Proof of Theorem 3.1. Use Proposition 3.4. and Lemma 3.5. to find
integers 0 < k1 < ko < ..., isomorphisms T, : Ay, — (H,)o(G) and projections
Py, : (Hy)o(G) — T, Ag, with [|T,|| - |7t < d and ||P,|| < d where d > 0 is
a universal constant.

Then use Lemma 3.6. and induction to find an isomorphic copy X C
C (Hy)o(G) of (3,21 @Ak, )(0) and a linear bounded map Q : (H,)o(G) = X
with ||(Q —id)|x|| < 1. (Apply Lemma 3.6. successively with €, small enough
such that in particular 0 < [[)7 (1 —€,) < [[02,(1 4+ €,) < .)

Hence S = (Q|x)~! exists and is bounded. Put P = SQ. Then P is
a bounded projection from (H,)o(G) onto X. With biduality we see that
P** : H,(G) — X** is a bounded projection from H,(G) onto an isomorphic
copy of (37 @A, )(s)- This space is isomorphic to (3°,° | ®Ay)(c0) and
hence to Hy, ([6]). [ |
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