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Abstract. The aim of this paper is to prove the a.e. convergence of se-
quences of the Fejér means of the Vilenkin–Fourier series of two variable
integrable functions on two dimensional bounded Vilenkin groups. That
is, let a = (a1, a2) : N → N2 such that aj(n+1) ≥ δ supk≤n aj(n) (j = 1, 2,
n ∈ N) for some δ > 0 and a1(+∞) = a2(+∞) = +∞. Then
for each integrable function f ∈ L1(G2

m) we have the a.e. relation
limn→∞ σa1(n),a2(n)f = f . It will be a straightforward and easy con-
sequence of this result the cone restricted a.e. convergence of the two-
dimensional Vilenkin–Fejér means of integrable functions which was proved
earlier by Weisz [13] and Blahota and the author [2] independently. The
trigonometric and Walsh’s analogue of the main result see Gát [6], [5]

1. Introduction

First, we give a brief introduction to the theory of the Vilenkin–Fourier
series. Denote by N the set of natural numbers, P the set of positive integers,
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That is, ψ := (ψn, n ∈ N). Let us consider the Dirichlet and Fejér kernel
functions:

Dn :=

n−1
k=0

ψk, Kn :=
1

n

n
k=1

Dk, D0,K0 := 0.

The Fourier coefficients, the n-th partial sum of the Fourier series, the n-th
(C, 1) mean of f ∈ L1(Gm):

f̂(n) :=



Gm

f(x)ψ̄n(x)dµ(x) (n ∈ N),

Snf(y) :=

n−1
k=0

f̂(k)ψk(y) =



Gm

f(x)Dn(y − x)dµ(x) (n ∈ P, S0f = 0),

σnf(y) :=
1

n

n
k=1

Skf(y) =



Gm

f(x)Kn(y − x)dµ(x) (n ∈ P, σ0f = 0).

Define the two-dimensional Dirichlet and Fejér kernel functions as

Dn(x) :=


0≤j1<n1

0≤j2<n2

ψj1(x
1)ψj2(x

2) = Dn1
(x1)Dn2

(x2),

Kn(x) :=
1

n1n2


1≤j1≤n1

1≤j2≤n2

Dn(x) = Kn1(x
1)Kn2(x

2),

where x = (x1, x2) ∈ Gm × Gm, n = (n1, n2) ∈ P2 (for n1n2 = 0 set Dn =
= Kn = 0). The Fourier coefficients, the n ∈ N2-th partial sum of the Fourier
series, the n ∈ N2-th (C, 1) mean of f ∈ L1(G2

m):

f̂(n1, n2) :=



G2
m

f(x1, x2)ψ̄n1(x
1)ψ̄n2(x

2)dµ(x1, x2) (n ∈ N2),

Sn1,n2
f(y) : =


k1<n1

k2<n2

f̂(k1, k2)ψk1
(y1)ψk2

(y2) =



G2
m

f(x)Dn(y − x)dµ(x)

(n ∈ P2, Snf = 0 for n1n2 = 0),

σn1,n2
f(y) :=

1

n1n2


1≤k1≤n1

1≤k2≤n2

Skf(y) =



G2
m

f(x)Kn(y − x)dµ(x)
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respectively. Denote m := (mk : k ∈ N) a sequence of positive integers such
that mk ≥ 2, k ∈ N and Zmk

the discrete cyclic group of order mk (Zmk
can

be identified by the set {0, 1, ...,mk −1}, the group operation by the mod mk

addition). Suppose that each (coordinate) group Zmk
has the discrete topology

and measure µk which maps every singleton of Zmk
to 1

mk
(µk(Zmk

) = 1),
k ∈ N. Let Gm be the compact Abelian group formed by the complete direct
product of Zmk

with the product of the topologies and measures (µ). Thus,
each x ∈ Gm is a sequence x = (x0, x1, ...), where xk ∈ Zmk

, k ∈ N. The group
operation on Gm is the coordinate-wise addition, i.e. for x, y ∈ Gm we have
x+ y = (xk + yk( mod mk) : k ∈ N). The inverse operation is denoted by −.
Gm is called a Vilenkin group. Gm is a compact totally disconnected group,
with normalized Haar measure µ, µ(Gm) = 1. The Vilenkin group Gm is said
to be bounded if the generating system m is a bounded one. This property of
sequence m is supposed. In this paper c denote absolute constants which may
not be the same at different occurences.

A base for the neighborhoods of Gm can be given as follows

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}

for x ∈ Gm, n ∈ P.
I := {In(x) : n ∈ N, x ∈ Gm}

is the set of intervals on Gm. Denote by en ∈ Gm the sequence the n-th
coordinate of which is 1 the rest are zeros (n ∈ N).
Denote by Lp(Gm) the usual Lebesgue spaces (.p denote the correspond-

ing norms) (1 ≤ p ≤ ∞), An the σ algebra generated by the sets In(x) (x ∈ Gm)
and let En be the conditional expectation operator with respect to An (n ∈ N).
Let M0 := 1, Mn+1 := mnMn, (n ∈ N) be the generalized powers with

respect to m. Then each n ∈ N can uniquely be expressed as n =
∞

i=0 niMi

(ni ∈ {0, 1, ...,mi − 1}). For t = (t1, t2) ∈ Gm × Gm, b = (b1, b2) ∈ N2 set the
two-dimensional dyadic rectangle

I2b (t) := Ib1(t
1)× Ib2(t

2).

For n = (n1, n2) ∈ N2 denote by En = E(n1,n2) the two-dimensional expecta-
tion operator with respect to the to An = A(n1,n2) = An1 × An2 . For n ∈ N
denote by |n| := max(j ∈ N : nj = 0), that is, M|n| ≤ n < M|n|+1. The
generalized Rademacher functions are defined as:

rn(x) := exp(2πıxn/mn) (x ∈ Gm, n ∈ N, ı =
√
−1).

The Vilenkin system is defined as the sequence of the Vilenkin functions:

ψn(x) :=

∞
k=0

(rk(x))
nk = exp(2πı

|n|
k=0

nkxk/mk) (x ∈ Gm, n ∈ N).
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A straightforward and easy consequence of Lemma 2.1 is the result of Bla-
hota, Gát and Weisz ([2, 13]) with respect to the ,,cone restricted” almost
everywhere convergence of two-dimensional Vilenkin–Fejér means of integrable
functions.

Corollary 2.1. Let β > 1 and f ∈ L1(G2
m). Then we have the a.e. relation

lim
n1,n2→∞

1/β≤n1/n2≤β

σn1,n2
f = f.

Proof. The proof of this corollary comes directly from Lemma 2.1. So, let
γ := logp β. For k, l ∈ N set

Nγ,l,k :=

(n1, n2) ∈ N2 : pk ≤ n1 < pk+1, pk−γ+l ≤ n2 < pk−γ+l+1


.

Let Nγ,l be the union of the disjoint sets Nγ,l,k. It is easy to give a sequence
a : N → N2 such that logp a1, logp a2 are monotone increasing (for
n ∈ Nγ,l,k we have logp n1 = k, logp n2 = k − γ + l) and a(N) = Nγ,l.
This by Lemma 2.1 gives that for each integrable function f

σn1,n2
f → f

a.e. provided by n ∈ Nγ,l and n1, n2 → ∞. Hence, we also have this a.e.
relation for n ∈

2γ
l=0 Nγ,l =: Nγ and n1, n2 → ∞. After then, let n ∈ N2

be such that 1/β ≤ n1/n2 ≤ β. Denote by k the natural number for which
pk ≤ n1 < pk+1. Then, pk−γ ≤ pk/β ≤ n2 < pk+1β ≤ pk+γ+1. Consequently,
n ∈ Nγ . This completes the proof of this corollary. 

Let A = (A1, A2) : N → N2 be a sequence of pairs of natural numbers,
such that monotone increasing with respect to both indices, and they do not
increase too fast. More precisely, suppose that there exists a constant C > 0
depending only on A and p such that

Aj(n) ≤ Aj(n+ 1) ≤ Aj(n) + C

for n ∈ N and j = 1, 2. (More precisely C = CA,p.)

In order to prove Lemma 2.1 we need some lemmas. The first is the following
Calderon-Zygmund type decomposition lemma. For the Calderon-Zygmund de-
composition lemma on bounded Vilenkin groups see e.g. the paper of Simon [9].
Let Aj(+∞) = +∞ (j = 1, 2) and

CA,p = psupn{A1(n+1)−A1(n)+A2(n+1)−A2(n)}.
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(n ∈ P2, σnf = 0 for n1n2 = 0). If m is bounded then Gm × Gm = G2
m is

said to be a two-dimensional bounded Vilenkin group. In this paper we discuss
two-dimensional bounded Vilenkin groups only. Set p := supi mi.

For double trigonometric Fourier series Marcinkiewicz and Zygmund [7]
proved the a.e. convergence of Fejér means of integrable functions, where the
set of indices is inside a positive cone around the identical function, that is
β−1 ≤ n1/n2 ≤ β is provided with some fixed parameter β > 1. We mention
that Jessen, Marcinkiewicz and Zygmund [1] also proved the a.e. convergence
σnf → f without any restriction on the indices (other than min {n1, n2} → ∞),
but for functions in L log+ L. For double Walsh-Fourier series (mk = 2 for all
k), Móricz, Schipp and Wade [8] proved that σnf converge to f a.e. in the
Pringsheim sense (that is, no restriction on the indices other than
min {n1, n2} → ∞ for all functions f ∈ L log+ L. In [4] Gát proved that
the theorem of Móricz, Schipp and Wade can not be improved. Namely, the
following was proved. Let γ : [0,+∞) → [0,+∞) be a measurable function
with property γ(+∞) = 0, then there exists a function f ∈ L log+ Lγ(L) such
that σnf does not converge to f a.e. as min {n1, n2} → +∞. For double
Walsh system the result of Marcinkiewicz and Zygmund was proved by Gát [3]
and Weisz [12] independently. The (bounded) Vilenkin version of this result of
Gát and Weisz is due to Weisz [13] and for more general systems to Blahota
and Gát [2]. This result on bounded Vilenkin groups will be a straightforward
consequence of the main theorem of this paper below.

2. The results

Theorem 2.1. Let a = (a1, a2) : N → N2 be a sequence with property
aj(+∞) = +∞ (j = 1, 2), i.e. aj(n) → +∞ (n → ∞). Suppose that there
exists a δ > 0 such that aj(n+1) ≥ δ supk≤n aj(n) (j = 1, 2, n ∈ N). Then for
each integrable function f ∈ L1(G2

m) we have the a.e. relation

lim
n→∞

σa(n)f = f.

This Theorem, which is the main result of this paper is an easy consequence
of the following lemma.

Lemma 2.1. Let a = (a1, a2) : N → N2 be a sequence with property
aj(+∞) = +∞ (j = 1, 2). Suppose that logp aj is monotone increasing
(j = 1, 2). Then for each integrable function f ∈ L1(G2

m) we have the a.e.
relation

lim
n→∞

σa(n)f = f.
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Thus, since Gm is bounded, that is, mn ≤ p we have

λ < MA1(n)MA2(n)



IA(n)(x)

|f(y)|dµ(y) ≤

≤ MA1(n)MA2(n)



IA(n−1)(x)

|f(y)|dµ(y) ≤

≤ CA,pMA1(n−1)MA2(n−1)



IA(n−1)(x)

|f(y)|dµ(y) ≤ CA,pλ.

Since Ωn has a finite number of elements, then we can set the notation:

Ωn =

IA(n)(xn,i) : i = 1, . . . , ln


, F :=

∞
n=0

ln
i=1

IA(n)(xn,i).

For the measure of set F we get:

µ(F ) =

∞
n=0

ln
i=1

µ(IA(n)(xn,i)) =

=
1

λ

∞
n=0

ln
i=1

λµ(IA(n)(xn,i)) =

≤ 1

λ

∞
n=0

ln
i=1



IA(n)(xn,i)

|f |dµ ≤ 1

λ



G2
m

|f |dµ = f1/λ.

Let function 1B(x) be the characteristic function of the set B ⊂ G2
m. Then,

f =
∞

n=0

ln
i=1

f1IA(n)(xn,i) + f1G2
m\F =

=

∞
n=0

ln
i=1


f −MA1(n)MA2(n)



IA(n)(xn,i)

fdµ


 1IA(n)(xn,i) + g0,1 + f1G2

m\F =:

=:

∞
n=0

ln
i=1

fn,i + g0,1 + g0,2 =:
∞

n=0

ln
i=1

fn,i + f0,

where

g0,1 :=

∞
n=0

ln
i=1


MA1(n)MA2(n)



IA(n)(xn,i)

fdµ


 1IA(n)(xn,i) and g0,2 := f1G2

m\F .
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Lemma 2.2. Let f ∈ L1(G2
m), λ > 0 and A = (A1, A2) : N → N2 as above.

Then there exists a sequence of natural numbers (kn) and xn = (xn,1, xn,2) ∈
∈ G2

m (n ∈ P) such that for the disjoint two-dimensional dyadic rectangles
Jn = IA(kn)(xn) we have functions fn ∈ L1(G2

m) (n ∈ N) satisfying the a.e.
relation f =

∞
n=0 fn and besides,

f0∞ ≤ CA,pλ, f01 ≤ f1, supp fn ⊂ Jn,



Jn

fndµ = 0 (n ∈ P).

Moreover, for the set F =
∞

n=1 Jn we have µ(F ) ≤ f1/λ.

Proof. Set the following sets of two-dimensional dyadic rectangles. (Recall
that IA(kn)(xn) = IA1(kn)(xn,1)× IA2(kn)(xn,2).)

Ω0 :=


IA(0)(x) :MA1(0)MA2(0)



IA(0)(x)

|f(y)|dµ(y) > λ, x ∈ G2
m


,

Ω1 :=


IA(1)(x) :MA1(1)MA2(1)



IA(1)(x)

|f(y)|dµ(y) > λ,

J ∈ Ω0 : IA(1)(x) ⊂ J, x ∈ G2
m


,

...

Ωn :=


IA(n)(x) :MA1(n)MA2(n)



IA(n)(x)

|f(y)|dµ(y) > λ,

J ∈
n−1
i=0

Ωi : IA(n)(x) ⊂ J, x ∈ G2
m


.

Then the elements of Ωn are disjoint rectangles of measure 1/(MA1(n)MA2(n))
(n ∈ N). Moreover, if i = j, then for all J ∈ Ωi,K ∈ Ωj we have J ∩K = ∅.

If IA(n)(x) ∈ Ωn, then since there is no J ∈
n−1

i=0 Ωi such that IA(n)(x) ⊂ J ,
then we have for i = 0, 1, . . . , n− 1

MA1(i)MA2(i)



IA(i)(x)

|f(y)|dµ(y) ≤ λ .
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m\F .
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This implies

SMA1(i),MA2(i)
|g0,2(x)| = SMA1(i),MA2(i)

|f1G2
m\F | ≤ SMA1(i),MA2(i)

|f(x)| ≤ λ.

Since functions A1 and A2 are monotone increasing, then the partial sum
operators SMA1(n),MA2(n)

form a martingale with respect to the σ-algebras

AA(n) =

IA(n)(x) : x ∈ G2

m


(n ∈ N). Therefore, by the well-known mar-

tingale convergence theorem we have that

|g0,2(x)| = limSMA1(n),MA2(n)
|g0,2(x)| ≤ lim supSMA1(n),MA2(n)

|g0,2(x)| ≤ λ

a.e. That is, |g0,1| ≤ CA,pλ, |g0,2| ≤ λ and consequently f0∞ ≤ CA,pλ.
(Recall that supp g0,1 ⊂ F and supp g0,2 ⊂ G2

m \ F .) 

Define the following two-dimensional ,,shifted partial sum” or ,,shifted ex-
pectation operator” for A = (A1, A2) : N → N2 and i = (i1, i2), s = (s1, s2) ∈
∈ N2:

EA(n),i,sf(x) :=

=MA1(n)MA2(n)



IA1(n)(x1+s1eA1(n)−i1
)×IA2(n)(x2+s2eA2(n)−i2

)

f(y)dµ(y) =

= SMA1(n),MA2(n)
f(x1 + s1eA1(n)−i1 , x2 + s2eA2(n)−i2),

where ej := (0, . . . ,

j


1, 0, 0, . . . )(j ∈ N). However, EA(n),i,sf(x) periodic with
respect to s1 and s2. That is,

EA(n),i,(s1+mA1(n)−i1
,s2)f(x) = EA(n),i,(s1,s2+mA2(n)−i2

)f(x) = EA(n),i,sf(x).

Thus, we can suppose that sj ∈

0, 1, . . .mAj(n)−ij − 1


(j = 1, 2). We can

also say that sj ≤ p (j = 1, 2). Its maximal operator

E∗
A,if := sup


|EA(n),i,sf(x)| : n ∈ N, Aj(n) ≥ ij , s ∈ N2, j = 1, 2


.

If ij > Aj(n) for j = 1 or j = 2, then let EA(n),i,sf(x) = 0 (for all s). Besides,
also for integers k1 ≤ 0 or k2 ≤ 0 with any s set Ek,i,sf(x) = 0 for every i ∈ N2

and x ∈ G2
m. Also suppose Aj(+∞) = +∞ (j = 1, 2).

The following weak type inequality will play a fundamental role in the proof
of the main theorem.

Lemma 2.3. Let A1, A2 : N → N be monotone increasing functions such
that Aj(+∞) = +∞ (j = 1, 2) and let f ∈ L1(G2

m), λ > 0. Then we have

µ

x ∈ G2

m : E
∗
A,if(x) > λ


≤ CA,p(i1 + 1)(i2 + 1)

λ
f1

for every i1, i2 ∈ N.
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Discuss the functions fn,i. supp fn,i ⊂ IA(n)(xn,i) and



IA(n)(xn,i)

fn,idµ =

=



IA(n)(xn,i)


f(t)−MA1(n)MA2(n)



IA(n)(xn,i)

f(y)dµ(y)


 dµ(t) = 0.

Moreover,

MA1(n)MA2(n)



IA(n)(xn,i)

|fn,i|dµ ≤ MA1(n)MA2(n)



IA(n)(xn,i)

|f |dµ+

+MA1(n)MA2(n)



IA(n)(xn,i)


MA1(n)MA2(n)



IA(n)(xn,i)

fdµ


dµ ≤ 2CA,pλ.

Since the rectangles IA(n)(xn,i) are disjoint, then we also have

f01 ≤


F

|f |dµ+


G2
m\F

|f |dµ = f1.

The only relation left to prove is the inequality f0∞ ≤ CA,pλ. Recall that

∞
n=0

ln
i=1


MA1(n)MA2(n)



IA(n)(xn,i)

fdµ


 1IA(n)(xn,i) + f1G2

m\F =:

=: g0,1 + g0,2.

First, discuss function g0,1.

|g0,1| ≤
∞

n=0

ln
i=1

CA,pλ1IA(n)(xn,i) = CA,pλ1∞
n=0

ln
i=1 IA(n)(xn,i)

≤ CA,pλ.

Secondly, discuss function g0,2. If x ∈ F , then g0,2(x) = f(x)1G2
m\F (x) = 0.

Finally, suppose that x /∈ F . This gives

MA1(i)MA2(i)



IA(i)(x)

|f(y)|dµ(y) ≤ λ for all i = 0, 1, . . . .
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This implies

SMA1(i),MA2(i)
|g0,2(x)| = SMA1(i),MA2(i)

|f1G2
m\F | ≤ SMA1(i),MA2(i)

|f(x)| ≤ λ.

Since functions A1 and A2 are monotone increasing, then the partial sum
operators SMA1(n),MA2(n)

form a martingale with respect to the σ-algebras

AA(n) =

IA(n)(x) : x ∈ G2

m


(n ∈ N). Therefore, by the well-known mar-

tingale convergence theorem we have that

|g0,2(x)| = limSMA1(n),MA2(n)
|g0,2(x)| ≤ lim supSMA1(n),MA2(n)

|g0,2(x)| ≤ λ

a.e. That is, |g0,1| ≤ CA,pλ, |g0,2| ≤ λ and consequently f0∞ ≤ CA,pλ.
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m \ F .) 
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=MA1(n)MA2(n)



IA1(n)(x1+s1eA1(n)−i1
)×IA2(n)(x2+s2eA2(n)−i2

)

f(y)dµ(y) =

= SMA1(n),MA2(n)
f(x1 + s1eA1(n)−i1 , x2 + s2eA2(n)−i2),

where ej := (0, . . . ,

j


1, 0, 0, . . . )(j ∈ N). However, EA(n),i,sf(x) periodic with
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EA(n),i,(s1+mA1(n)−i1
,s2)f(x) = EA(n),i,(s1,s2+mA2(n)−i2

)f(x) = EA(n),i,sf(x).

Thus, we can suppose that sj ∈

0, 1, . . .mAj(n)−ij − 1


(j = 1, 2). We can

also say that sj ≤ p (j = 1, 2). Its maximal operator

E∗
A,if := sup


|EA(n),i,sf(x)| : n ∈ N, Aj(n) ≥ ij , s ∈ N2, j = 1, 2


.

If ij > Aj(n) for j = 1 or j = 2, then let EA(n),i,sf(x) = 0 (for all s). Besides,
also for integers k1 ≤ 0 or k2 ≤ 0 with any s set Ek,i,sf(x) = 0 for every i ∈ N2

and x ∈ G2
m. Also suppose Aj(+∞) = +∞ (j = 1, 2).

The following weak type inequality will play a fundamental role in the proof
of the main theorem.

Lemma 2.3. Let A1, A2 : N → N be monotone increasing functions such
that Aj(+∞) = +∞ (j = 1, 2) and let f ∈ L1(G2

m), λ > 0. Then we have

µ

x ∈ G2

m : E
∗
A,if(x) > λ


≤ CA,p(i1 + 1)(i2 + 1)

λ
f1

for every i1, i2 ∈ N.
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If u ≤ kn, then

EA(u),i,sfn(z) = SMA1(u),MA2(u)
fn(z1 + s1eA1(u)−i1 , z2 + s2eA2(u)−i2)

=



G2
m

fn(y1, y2)DMA1(u)
(z1 + s1eA1(u)−i1 − y1)×

×DMA2(u)
(z2 + s2eA2(u)−i2 − y2)dµ(y)

=



IA1(kn)(xn,1)×IA2(kn)(xn,2)

fn(y1, y2)DMA1(u)
(z1 + s1eA1(u)−i1 − xn,1)×

×DMA2(u)
(z2 + s2eA2(u)−i2 − xn,2)dµ(y) = 0,

since 

IA1(kn)(xn,1)×IA2(kn)(xn,2)

fn(y1, y2)dµ(y) = 0.

On the other hand, if u > kn, then yj ∈ IAj(kn)(xn,j) and DMAj(u)
(zj +

+sjeAj(u)−ij − yj) = 0 implies

zj ∈ IAj(u)(yj − sjeAj(u)−ij ) ⊂ IAj(kn)(yj − sjeAj(u)−ij ) =

= IAj(kn)(xn,j − sjeAj(u)−ij ) = IAj(kn)(xn,j + (mAj(u)−ij − sj)eAj(u)−ij ) ⊂

⊂
ij

lj=0

mAj(kn)−lj
−1

s=0

IAj(kn)(xn,j + seAj(kn)−lj ) (j = 1, 2).

The relation ⊂ in the last line above is implied by the fact that for Aj(u)− ij ≥
≥ Aj(kn) we have IAj(kn)(xn,j − sjeAj(u)−ij ) = IAj(kn)(xn,j) and for Aj(u) −
−ij < Aj(kn) by u > kn we get Aj(kn) − ij ≤ Aj(u) − ij < Aj(kn) and thus
there exist lj ∈ {1, . . . , ij} , s such that

IAj(kn)(xn,j − sjeAj(u)−ij ) = IAj(kn)(xn,j + seAj(kn)−lj ).

That is, in every case DMAj(u)
(zj+sjeAj(u)−ij −yj) = 0 would give the relation

zj ∈
ij

lj=0

mAj(kn)−lj
−1

sj=0

IAj(kn)(xn,j + sjeAj(kn)−lj ) (j = 1, 2).

Thus, z = (z1, z2) would be an element of Jn,i. This contradiction implies that
EA(n),i,sfn(z) = 0 for all n, s ∈ N and z ∈ G2

m \ Jn,i. This gives E
∗
A,ifn = 0 on

the set z ∈ G2
m \ Jn,i.
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Proof. In this lemma sequences A1, A2 are monotone increasing, but in
other point of view they are arbitrary. That is, they can grow ,,very fast”.
Nevertheless, we can suppose that A : N → N2 satisfies the condition of Lemma
2.2, that is sequences Aj(n+1)−Aj(n) are nonnegative and bounded (by some
CA,p) (j = 1, 2). This can be supposed, that is, this is really not a restriction
since we can insert members within the elements of the sequence EA(n),i,sf .
For instance this can be demonstrated in the following way:

(A1(n), A2(n)), (A1(n), A2(n) + 1), . . . , (A1(n), A2(n+ 1)),

(A1(n) + 1, A2(n+ 1)), (A1(n) + 2, A2(n+ 1)), . . . , (A1(n+ 1), A2(n+ 1)).

If we denote by Ã this modified sequence, then for Ã we certainly have
0 ≤ Ãj(n+ 1)− Ãj(n) ≤ 1 (n ∈ N, j = 1, 2). Besides,

E∗
Ã,i

f ≥ E∗
A,if.

This means that if we prove the inequality

µ

E∗

Ã,i
f > λ


≤ CA,p(i1 + 1)(i2 + 1)

λ
f1,

then we also have it for A. As a result of this assumption we can suppose that
0 ≤ Aj(n+ 1)−Aj(n) ≤ logp CA,p (n ∈ N, j = 1, 2). Apply Lemma 2.2.

F =
∞

n=1

Jn =

∞
n=1

IA(kn)(xn) =

∞
n=1

�
IA1(kn)(xn,1)× IA2(kn)(xn,2)


.

Enlarge the rectangle Jn in the following way:

Jn,i :=

i2
l2=0

i1
l1=0

mA1(kn)−l1
−1

s1=0

mA2(kn)−l2
−1

s2=0

IA1(kn)(xn,1 + s1eA1(kn)−l1)×

× IA2(kn)(xn,2 + s2eA2(kn)−l2).

Also set Fi :=
∞

n=1 Jn,i. The shift invariancy of measure µ gives

µ(Fi) ≤ (i1 + 1)(i2 + 1)p2µ(F ) ≤ (i1 + 1)(i2 + 1)p2f1/λ.

In the sequel, we prove that E∗
A,ifn = 0 on the set G2

m \ Jn,i. That is, let

z ∈ G2
m \ Jn,i.
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If u ≤ kn, then

EA(u),i,sfn(z) = SMA1(u),MA2(u)
fn(z1 + s1eA1(u)−i1 , z2 + s2eA2(u)−i2)

=



G2
m

fn(y1, y2)DMA1(u)
(z1 + s1eA1(u)−i1 − y1)×

×DMA2(u)
(z2 + s2eA2(u)−i2 − y2)dµ(y)

=



IA1(kn)(xn,1)×IA2(kn)(xn,2)

fn(y1, y2)DMA1(u)
(z1 + s1eA1(u)−i1 − xn,1)×

×DMA2(u)
(z2 + s2eA2(u)−i2 − xn,2)dµ(y) = 0,

since 

IA1(kn)(xn,1)×IA2(kn)(xn,2)

fn(y1, y2)dµ(y) = 0.

On the other hand, if u > kn, then yj ∈ IAj(kn)(xn,j) and DMAj(u)
(zj +

+sjeAj(u)−ij − yj) = 0 implies

zj ∈ IAj(u)(yj − sjeAj(u)−ij ) ⊂ IAj(kn)(yj − sjeAj(u)−ij ) =

= IAj(kn)(xn,j − sjeAj(u)−ij ) = IAj(kn)(xn,j + (mAj(u)−ij − sj)eAj(u)−ij ) ⊂

⊂
ij

lj=0

mAj(kn)−lj
−1

s=0

IAj(kn)(xn,j + seAj(kn)−lj ) (j = 1, 2).

The relation ⊂ in the last line above is implied by the fact that for Aj(u)− ij ≥
≥ Aj(kn) we have IAj(kn)(xn,j − sjeAj(u)−ij ) = IAj(kn)(xn,j) and for Aj(u) −
−ij < Aj(kn) by u > kn we get Aj(kn) − ij ≤ Aj(u) − ij < Aj(kn) and thus
there exist lj ∈ {1, . . . , ij} , s such that

IAj(kn)(xn,j − sjeAj(u)−ij ) = IAj(kn)(xn,j + seAj(kn)−lj ).

That is, in every case DMAj(u)
(zj+sjeAj(u)−ij −yj) = 0 would give the relation

zj ∈
ij

lj=0

mAj(kn)−lj
−1

sj=0

IAj(kn)(xn,j + sjeAj(kn)−lj ) (j = 1, 2).

Thus, z = (z1, z2) would be an element of Jn,i. This contradiction implies that
EA(n),i,sfn(z) = 0 for all n, s ∈ N and z ∈ G2

m \ Jn,i. This gives E
∗
A,ifn = 0 on

the set z ∈ G2
m \ Jn,i.
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Since Mν/n ≤ Mν/MA ≤ 2ν−A, the we have

|Kn(x)| ≤ Cp

A
j=0

j
ν=0

2ν−A
mν−1
s=0

DMj (x+ seν) =

= Cp

A
k=0

A−k
i=0

2−k−i

mA−k−i−1
s=0

DMA−k
(x+ seA−k−i)

as we used the variable change k = A− j, i = j − ν = A− k − ν. This implies
for the two dimensional Vilenkin–Fejér means σa(n)f

|σa1(n),a1(n)f | ≤

≤ Cp

A1(n)
k1=0

A2(n)
k2=0

A1(n)−k1
i1=0

A2(n)−k2
i2=0

mA1(n)−k1−i1
−1

s1=0

mA2(n)−k2−i2
−1

s2=0

2−k1−k2−i1−i2×

× E(A1(n)−k1,A2(n)−k2),(i1,i2),(s1,s2)|f |,

where sequence A− k is (A1(n)− k1, A2(n)− k2).

Recall the definition of EA,i,s. More precisely, the fact that for A1(n)−k1 ≤
≤ 0 or A2(n) − k2 ≤ 0 or A1(n) − k1 < i1 or A2(n) − k2 < i2 we have
EA−k,i,sf(x) = 0 for each x ∈ G2

m. Also recall that

CA,p = psupn{A1(n+1)−A1(n)+A2(n+1)−A2(n)}.

(A1(0) = A2(0) = 0 may be supposed.) That is, for every fixed k ∈ N2 the
equality CA−k,p = CA,p can be supposed and by Lemma 2.3

µ

E∗

A−k,i|f | > λ

≤ CA,p(i1+1)(i2+1)|f |1/λ = CA,p(i1+1)(i2+1)f1/λ.

Set
σ∗
Af := sup

n
|σa1(n),a2(n)f |.

Then
σ∗
Af ≤ Cp


k1,k2∈N


i1,i2∈N

2−k1−k2−i1−i2E∗
A−k,i|f |.

We get that the operator σ∗
A is of weak type (1, 1) in the following way:

µ {σ∗
Af > λ} ≤ µ


Cp


k1,k2∈N


i1,i2∈N

2−k1−k2−i1−i2E∗
A−k,i|f | > λ


 ≤

≤ µ


 

k1,k2∈N


i1,i2∈N


2−k1−k2−i1−i2E∗

A−k,i|f | >
Cpλ

(k1k2i1i2 + 1)2


 ≤
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After then, we prove that operator E∗
A,i is of type (∞,∞). More precisely,

we prove E∗
A,ig∞ ≤ g∞ for each g ∈ L∞(G2

m). This is quite simple to
verify. This property of E∗

A,i by the inequality f0∞ ≤ CA,pλ gives

µ

E∗

A,if0 > CA,pλ

= 0.

Consequently, by the σ-sublinearity of operator E∗
A,i we have

µ

E∗

A,if > 2CA,pλ

≤ µ


E∗

A,if0 > CA,pλ

+ µ


E∗

A,i

 ∞
n=1

fn


> CA,pλ


≤

≤ µ(Fi) + µ


x ∈ G2

m \ Fi : E
∗
A,i

 ∞
n=1

fn


(x) > CA,pλ


≤

≤ (i1 + 1)(i2 + 1)

λ
p2f1 +

1

CA,pλ



G2
m\Fi

E∗
A,i

 ∞
n=1

fn


dµ ≤

≤ (i1 + 1)(i2 + 1)

λ
p2f1 +

1

CA,pλ

∞
n=1



G2
m\Fi

E∗
A,ifndµ ≤

≤ (i1 + 1)(i2 + 1)

λ
p2f1 +

1

CA,pλ

∞
n=1



G2
m\Jn,i

E∗
A,ifndµ =

=
(i1 + 1)(i2 + 1)

λ
p2f1.

This completes the proof of Lemma 2.3. 

Proof of Lemma 2.1. Let Aj(n) := logp aj(n) (n ∈ N, j = 1, 2). That is,

pAj(n) ≤ aj(n) < pAj(n)+1. Since sequences logp aj are monotone increasing
for both j = 1, 2, then the condition of Lemma 2.3 are satisfied.

In the paper of Simon and Pál [11] one can find the the following estimation
for the one-dimensional Vilenkin Fejér kernel functions for MA ≤ n < MA+1:

|nKn(x)| ≤ Cp

A
ν=0

Mν

A
i=ν


DMi(x) +

mν−1
s=0

DMi(x+ seν)


≤

≤ Cp

A
ν=0

Mν

A
i=ν

mν−1
s=0

DMi(x+ seν).
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Since Mν/n ≤ Mν/MA ≤ 2ν−A, the we have

|Kn(x)| ≤ Cp

A
j=0

j
ν=0

2ν−A
mν−1
s=0

DMj (x+ seν) =

= Cp

A
k=0

A−k
i=0

2−k−i

mA−k−i−1
s=0

DMA−k
(x+ seA−k−i)

as we used the variable change k = A− j, i = j − ν = A− k − ν. This implies
for the two dimensional Vilenkin–Fejér means σa(n)f

|σa1(n),a1(n)f | ≤

≤ Cp

A1(n)
k1=0

A2(n)
k2=0

A1(n)−k1
i1=0

A2(n)−k2
i2=0

mA1(n)−k1−i1
−1

s1=0

mA2(n)−k2−i2
−1

s2=0

2−k1−k2−i1−i2×

× E(A1(n)−k1,A2(n)−k2),(i1,i2),(s1,s2)|f |,

where sequence A− k is (A1(n)− k1, A2(n)− k2).

Recall the definition of EA,i,s. More precisely, the fact that for A1(n)−k1 ≤
≤ 0 or A2(n) − k2 ≤ 0 or A1(n) − k1 < i1 or A2(n) − k2 < i2 we have
EA−k,i,sf(x) = 0 for each x ∈ G2

m. Also recall that

CA,p = psupn{A1(n+1)−A1(n)+A2(n+1)−A2(n)}.

(A1(0) = A2(0) = 0 may be supposed.) That is, for every fixed k ∈ N2 the
equality CA−k,p = CA,p can be supposed and by Lemma 2.3

µ

E∗

A−k,i|f | > λ

≤ CA,p(i1+1)(i2+1)|f |1/λ = CA,p(i1+1)(i2+1)f1/λ.

Set
σ∗
Af := sup

n
|σa1(n),a2(n)f |.

Then
σ∗
Af ≤ Cp


k1,k2∈N


i1,i2∈N

2−k1−k2−i1−i2E∗
A−k,i|f |.

We get that the operator σ∗
A is of weak type (1, 1) in the following way:

µ {σ∗
Af > λ} ≤ µ


Cp


k1,k2∈N


i1,i2∈N

2−k1−k2−i1−i2E∗
A−k,i|f | > λ


 ≤

≤ µ


 

k1,k2∈N


i1,i2∈N


2−k1−k2−i1−i2E∗

A−k,i|f | >
Cpλ

(k1k2i1i2 + 1)2


 ≤
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≤


k1,k2∈N


i1,i2∈N

µ


2−k1−k2−i1−i2E∗

A−k,i|f | >
Cpλ

(k1k2i1i2 + 1)2


≤

≤ CA,p


k1,k2∈N


i1,i2∈N

(k1k2i1i2 + 1)
2(i1 + 1)(i2 + 1)

λ2k1+k2+i1+i2
f1 ≤

≤ CA,pf1/λ.
That is, we proved that the maximal operator σ∗

A is of weak type (1, 1). Since
for each Vilenkin polynomial P we have the everywhere relation

lim
n→∞

σa1(n),a2(n)P = P,

then by the standard density argument (see this principal for instance [10]) the
proof of Lemma 2.1 is complete. 

Finally, we have to prove Theorem 2.1. That is, the main result of this
paper. The proof comes from Lemma 2.1 with some easy calculations.

Proof of Theorem 2.1. Let L be a positive integer discussed later. For
l, ν = 0, 1, . . . , L− 1 let some disjoint subsets of N be defined as:

Bl,ν =


n ∈ N : (a1(n), a2(n)) ∈

∞
s,t=0

[psL+l, psL+l+1)× [ptL+ν , ptL+ν+1)


.

It is clear that these sets are pairwise disjoint and their union is N. Denote
the elements of Bl,ν by nl,ν

1 < nl,ν
2 < . . . . We prove that logp aj(n

l,ν
k ) ≤

≤ logp aj(n
l,ν
k+1) for every k ∈ N, l, ν ∈ {0, 1, . . . L− 1} and j = 1, 2. On the

contrary, suppose that logp aj(n
l,ν
k+1) < logp aj(n

l,ν
k ) for some k, l, ν and j.

Then the definition of Bl,ν gives that logp aj(n
l,ν
k+1) ≤ logp aj(n

l,ν
k ) − L.

Thus,

1

p
aj(n

l,ν
k+1) ≤ plogp aj(n

l,ν
k+1) ≤ plogp aj(n

l,ν
k )−L ≤ 1

pL
aj(n

l,ν
k ).

Since, nl,ν
k+1 > nl,ν

k , then we have aj(n
l,ν
k+1) ≥ δaj(n

l,ν
k ) and consequently, also

have δ ≤ p1−L. This is obviously not possible for an L large enough. That is,
we proved that logp aj(n

l,ν
k ) is monotone increasing with respect to k ∈ N.

Lemma 2.1 gives the a.e. convergence

lim
k→∞

σa(nl,ν
k )f = f

for each integrable function f and l, ν = 0, 1, . . . , L− 1. Merging the L2 pieces
of subsequences of σa(n)f the proof of Theorem 2.1 is complete. 
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Abstract. Let X1, X2, . . . be independent, identically distributed (i.i.d.)
random variables with partial sums Sn, n ≥ 1. The now classical Baum–
Katz problem concerns finding necessary and sufficient moment conditions
for the convergence of

∞
n=1 n

(r/p)−2P (|Sn| ≥ εn1/p) for fixed ε > 0. A
now equally classical paper by Heyde in 1975 initiated what has later been
called precise asymptotics, namely asymptotics for the same sum (for the
case r = 2 and p = 1) when, instead, ε  0. In a predecessor of this
paper we extended a result due to Klesov (1994), in which he determined
the convergence rate in Heyde’s theorem, to the case r ≥ 2, 0 < p < 2.
The present companion paper is devoted to the case when the summands
belong to the normal domain of attraction of a stable distribution with
index α ∈ (1, 2], in particular to the analog related to Spitzer’s 1956-
theorem.

1. Introduction

The point of departure of this note is the following part of the main result
in Baum and Katz [1].

Key words and phrases: Law of large numbers, Baum–Katz, precise asymptotics, convergence
rates.
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