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Abstract. The aim of this paper is to prove the a.e. convergence of se-
quences of the Fejér means of the Vilenkin—Fourier series of two variable
integrable functions on two dimensional bounded Vilenkin groups. That
is, let @ = (a1, a2) : N — N? such that aj(n+1) > §sup,., a;(n) (j = 1,2,
n € N) for some § > 0 and ai(+o0) = az(+00) = +oo. Then
for each integrable function f € L'(G2,) we have the a.e. relation
limy 00 0oy (n),aan)f = f. It will be a straightforward and easy con-
sequence of this result the cone restricted a.e. convergence of the two-
dimensional Vilenkin—Fejér means of integrable functions which was proved
earlier by Weisz [13] and Blahota and the author [2] independently. The
trigonometric and Walsh’s analogue of the main result see G4t [6], [5]

1. Introduction

First, we give a brief introduction to the theory of the Vilenkin-Fourier
series. Denote by N the set of natural numbers, P the set of positive integers,

Key words and phrases: Bounded Vilenkin system, two-dimensional Fejér means, subse-
quence, almost everywhere convergence.
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respectively. Denote m := (my, : k € N) a sequence of positive integers such
that my > 2, k € N and Z,,, the discrete cyclic group of order my (Z,,, can
be identified by the set {0,1,...,my — 1}, the group operation by the mod my
addition). Suppose that each (coordinate) group Z,,, has the discrete topology
and measure pj which maps every singleton of Z,,, to mik (1 (Zm,) = 1),
k € N. Let G,, be the compact Abelian group formed by the complete direct
product of Z,,, with the product of the topologies and measures (p). Thus,
each x € G, is a sequence x = (xg, 1, ...), where x € Z,,, , k € N. The group
operation on G,, is the coordinate-wise addition, i.e. for x,y € G,, we have
x4y = (xr +yr( mod my) : k € N). The inverse operation is denoted by —.
G, is called a Vilenkin group. G, is a compact totally disconnected group,
with normalized Haar measure p, u(G,,) = 1. The Vilenkin group G,, is said
to be bounded if the generating system m is a bounded one. This property of
sequence m is supposed. In this paper ¢ denote absolute constants which may
not be the same at different occurences.

A base for the neighborhoods of G,, can be given as follows
In(z) := Gy, In(z):={y=(yi,i €N) € Gy :y; =x;fori <n}
for v € Gy, n € P.
Z:={I,(z):neNuxzeG,}
is the set of intervals on G,,. Denote by e, € G,, the sequence the n-th

coordinate of which is 1 the rest are zeros (n € N).

Denote by LP(G,,) the usual Lebesgue spaces (||.||, denote the correspond-
ing norms) (1 < p < o0), A, the o algebra generated by the sets I,,(z) (z € G,,)
and let F,, be the conditional expectation operator with respect to A, (n € N).

Let My := 1, My11 := m,M,,(n € N) be the generalized powers with
respect to m. Then each n € N can uniquely be expressed as n = Z;’io n; M;
(n; €{0,1,...,m; — 1}). For t = (t1,#?) € G, X Gy, b = (b1, b2) € N? set the
two-dimensional dyadic rectangle

I3 (t) := I, (1Y) x T, (t?).

For n = (n1,n2) € N? denote by E, = E(n, n,) the two-dimensional expecta-
tion operator with respect to the to A, = An, n,) = An, X Ap,. For n € N
denote by |n| := max(j € N : n; # 0), that is, M},,; < n < M,41. The
generalized Rademacher functions are defined as:

rn(x) == exp(2mzy, /my)  (x € G, n € Njo =/ —1).
The Vilenkin system is defined as the sequence of the Vilenkin functions:

Y (x) = 1_[(7“;€(zlc))"’c = exp(2manxk/mk) (x € G, n €N).

k=0 k=0
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That is, ¥ := (¢,,n € N). Let us consider the Dirichlet and Fejér kernel

functions:
n—1 n
1
D, = , K, = — Dy, Dy, Ko :=0.
kz_;)l/}k n; ks Do, Ko

The Fourier coefficients, the n-th partial sum of the Fourier series, the n-th
(C,1) mean of f € LY(G,,):

n) = / F(@)dn(@)dulz) (n € N),
G

n—1

Suf(y) =3 fk / J(@)Daly - 2)du(2) (n € P, Sof = 0),
k=0 Gm
7 f(0) = % / F@) Ky = 2)du(z) (n € P, o0f = 0),
k=

Define the two-dimensional Dirichlet and Fejér kernel functions as

Z ,(/).71 w]z ) - Dn1 (xl)Dnz (12)7

0<j1<n1
0<j2<n2

K, () '7n Z Dy ( (I)Km(xz)v
M2y =

1<j2<n2

where x = (2!,2?) € Gy X Gy n = (n1,n2) € P? (for niny = 0 set D,, =

= K,, = 0). The Fourier coefficients, the n € N2-th partial sum of the Fourier
series, the n € N%-th (C,1) mean of f € L'(G2)):

flnr,ma) / £t 22) B, (2 oy (2%)dpa(zt, 22) (n € N2),

Sumsd )i = Y Fuska)tn (000, 62) = [ F@Duly — 0)du(a)

k1<ni
k2 <n2 "

(n € P2, S, f =0 for nyny = 0),

)= 3 Sl )= [ H@ Ky - 2)duta)

1<ks<ns "
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(n € P?2,o,f = 0 for nyny = 0). If m is bounded then G,, x G,, = G2, is
said to be a two-dimensional bounded Vilenkin group. In this paper we discuss
two-dimensional bounded Vilenkin groups only. Set p := sup, m;.

For double trigonometric Fourier series Marcinkiewicz and Zygmund [7]
proved the a.e. convergence of Fejér means of integrable functions, where the
set of indices is inside a positive cone around the identical function, that is
B~ < ny/ny < B is provided with some fixed parameter 3 > 1. We mention
that Jessen, Marcinkiewicz and Zygmund [1] also proved the a.e. convergence
onf — f without any restriction on the indices (other than min {ny,ns} — o),
but for functions in Llog™ L. For double Walsh-Fourier series (my = 2 for all
k), Moricz, Schipp and Wade [8] proved that o, f converge to f a.e. in the
Pringsheim sense (that is, no restriction on the indices other than
min {ny,n2} — oo for all functions f € Llog™ L. In [4] G&t proved that
the theorem of Moricz, Schipp and Wade can not be improved. Namely, the
following was proved. Let 7 : [0,+00) — [0,400) be a measurable function
with property v(4+o00) = 0, then there exists a function f € Llog™ Ly(L) such
that o, f does not converge to f a.e. as min{ni,ns} — +oo. For double
Walsh system the result of Marcinkiewicz and Zygmund was proved by Gét [3]
and Weisz [12] independently. The (bounded) Vilenkin version of this result of
Gat and Weisz is due to Weisz [13] and for more general systems to Blahota
and Gat [2]. This result on bounded Vilenkin groups will be a straightforward
consequence of the main theorem of this paper below.

2. The results

Theorem 2.1. Let a = (aj,az) : N — N2 be a sequence with property
a;j(+00) = +o0 (j = 1,2), i.e. aj(n) = 400 (n — o0). Suppose that there
exists a 0 > 0 such that aj(n+1) > dsup,<,, a;(n) (j = 1,2, n € N). Then for
each integrable function f € L*(G?,) we have the a.e. relation

lim Ua(n)f = f

n—roo

This Theorem, which is the main result of this paper is an easy consequence
of the following lemma.

Lemma 2.1. Let a = (aj,a2) : N — N? be a sequence with property
aj(+o00) = 400 (j = 1,2). Suppose that |log,a;] is monotone increasing
(j = 1,2). Then for each integrable function f € L'(G2)) we have the a.e.
relation

lim Ua(n)f = f
n—oo
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A straightforward and easy consequence of Lemma 2.1 is the result of Bla-
hota, Gat and Weisz ([2, 13]) with respect to the ,,cone restricted” almost
everywhere convergence of two-dimensional Vilenkin-Fejér means of integrable
functions.

Corollary 2.1. Let 3 > 1 and f € L*(G?2,). Then we have the a.e. relation

nl}}gni)oo O—nlvn2f:f'

1/8<n1/n2<p

Proof. The proof of this corollary comes directly from Lemma 2.1. So, let
7 := [log, B]. For k,l € N set

N’y,l,k — {(nl,nQ) c N2 :pk‘ S ny < pk‘+17pk*')/+l S Ny < pk*7+l+1} .

Let N, ; be the union of the disjoint sets N, ;5. It is easy to give a sequence
a : N — N? such that [log,ai],[log,as] are monotone increasing (for
n € Ny, we have |log,ni| = k,|log,n2] = k —~ +1) and a(N) = N, .
This by Lemma 2.1 gives that for each integrable function f

Onynaf = f

a.e. provided by n € N,; and ni,ns — oo. Hence, we also have this a.e.
relation for n € Ulzlo Ny, =: N, and ni,ny — oo. After then, let n € N?
be such that 1/ < ny/ne < §. Denote by k the natural number for which
pF < ny < pF*tL Then, pF=7 < p¥/B < ny < pFT13 < pF+7+1. Consequently,
n € N,. This completes the proof of this corollary. |

Let A = (A;,42) : N — N? be a sequence of pairs of natural numbers,
such that monotone increasing with respect to both indices, and they do not
increase too fast. More precisely, suppose that there exists a constant C' > 0
depending only on A and p such that

for n € N and j = 1,2. (More precisely C' = C4 p.)

In order to prove Lemma 2.1 we need some lemmas. The first is the following
Calderon-Zygmund type decomposition lemma. For the Calderon-Zygmund de-
composition lemma on bounded Vilenkin groups see e.g. the paper of Simon [9].
Let Aj(+00) = 400 (j =1,2) and

CA b= psupn{A1(n+1)—A1(n)+A2(n+1)—A2(n)}.
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Lemma 2.2. Let f € L*(G%),A >0 and A = (A1, A3) : N — N? as above.
Then there exists a sequence of natural numbers (k,) and x, = (Tp1,Tn2) €
€ G2, (n € P) such that for the disjoint two-dimensional dyadic rectangles
Jn = Lagk,)(zn) we have functions f, € L'(GZ) (n € N) satisfying the a.e.
relation f =Y fn and besides,

lollso < Caphs ol < 1f11  SUPD fn C Jo, / fudu =0 (n € P).
Jn

Moreover, for the set F =~ J,, we have pu(F) < | fll1/A.

Proof. Set the following sets of two-dimensional dyadic rectangles. (Recall
that Ly, (@n) = La; (k) (Tn,1) X Lag(,) (€n,2)-)

Qo := {IA(O) () + Ma, 0)Ma,(0) / |fW)lduy) > A,z € Gil}>

Taqo)(2)
0, - {1A<1)<x> MawMay [ 15Wlduty) > A
Tay(z)

EJ € Q: IA(l)(ﬂC) c Jx e ng}a

Ta(n)(x)

n—1
BJ e U Qi Iyy(z) C Jx € an}.
=0

Then the elements of €2, are disjoint rectangles of measure 1/(Ma, (n)Ma,(n))
(n € N). Moreover, if i # j, then for all J € Q;, K € Q; we have J N K = ().

0
If Ta(n)(2) € Qp, then since there isno J € Uf;ol Q; such that 4, (x) C J,
then we have for i =0,1,...,n—1

My, iy M a, 3 / If(y)ldu(y) < A.

Tay(x)
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Thus, since G, is bounded, that is, m,, < p we have

A< My, (nyMa, ) / |f(y)ldu(y) <

TA(n) ()
Ta(n—1)(z)
< CapMa, (n—1)yMay(n-1) / |f()ldu(y) < CapA.

IA(nfl)(x)

Since €2,, has a finite number of elements, then we can set the notation:

0o ln
Qn = {IA(n)(xn,z) = ].,. .. ,ln}, F = U U IA(n)(mn,z)

n=01i=1

For the measure of set F' we get:

F)= Z Zn 1(Lagny (@n,i))

n=0 i=1

oo ln
B % D MlTamy (@) =

n=0 i=1

;zz [ W< [ 1fldu= 11
= )

IA(n)(In i)

Let function 15(z) be the characteristic function of the set B C G?

. Then,
SR

f= Z Z S @) T flazF =
n=0i=1

o I
=> > | F~ MaywyMaywy / fd | Ly @a) + 900 + flazp =

n=0 i=1

Ta(n)(Tn,i)
0o ln 0o ln
= Z an,i t 90,1+ go2 =: Z an,i + fo,
n=0i=1 n=0i=1
where
oo ln
go1:=) May () Mayn) / fau | Ly (o) and go2 = flaz \p-
n=0 i=1

Ta(n)(@n,i)
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Discuss the functions f,, ;. supp fn,i C Ia(n)(2n,:) and

fnidp =

Ta(n)(Tn,i)

- / F(8) = Mo, oy My / Fw)du(y) | du(t) =o0.

Ta(ny(%n,i) Ta(n)(@n,i)

Moreover,

M 4, ()M ay (n) / | frildie < My, ()M g ) / | fldp+

Ta(n)(@n,i) Ta(n)(Tn,i)

My () Mas () / My (n) Mas(n) / fdp|dp < 2CapA.

Ta(n)(®n,i) Ta(n)(®n,i)

Since the rectangles I 4(,)(#y,;) are disjoint, then we also have

Hfolllé/ Fldp+ / Fldu = [1£]l.

F G2 \F

m

The only relation left to prove is the inequality || follco < CapA. Recall that

n

Z Ma, (nyMa,(n) / fdp [ 11, 0@ T flezF =

—0i=1
n=ue Ta(n)(@n,i)

=:9go,1 + Jo0,2-

First, discuss function g, 1.

S I
190.1] < Z ZCA»PAlfA(m(wn,i) = CapAl e jin Ta(n)(Tn,i) < Caph.

: n=0 Ji=1
n=0 i=1

Secondly, discuss function go 2. If x € F, then go2(x) = f(2)1lgz \r(z) = 0.
Finally, suppose that = ¢ F. This gives

M, (iyM ay (i / |f(y)ldu(y) <A forall i=0,1,....

Taey(x)
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This implies

f@)] <A

Since functions A; and A; are monotone increasing, then the partial sum
operators SMAl(n)uMAz(n) form a martingale with respect to the oc-algebras
Aamy = {Iagm)(@) iz € GZ,} (n € N). Therefore, by the well-known mar-
tingale convergence theorem we have that

SMay iy Mayiy [902() | = Shia, ) May o | f ez \Fl < Shay ) Mg i)

190,2(2)| = Bm Shry ), Ma, (o 190,2(2)| < Hmsup Sar, (0 0M4, 00 190,2(2)] < A

a.e. That is, |go1] < CapA |go2| < A and consequently ||folloc < CapA.
(Recall that supp go.1 C F and supp go2 C GZ, \ F.)

Define the following two-dimensional ,,shifted partial sum” or ,,shifted ex-
pectation operator” for A = (A1, As) : N — N? and i = (i1,42), s = (51,82) €
€ N2

EA(n),i,sf(m) =

= Ma, (nyMa,(n) / f(y)du(y) =
Tay(ny(@1+s1€a; (n)—ig )X Lagn) (T2+82€45(n)—iy)
= SMa, (ny, My J (T1 F S1€4, (n)—iy s T2 + 52645 (n)—in):
J
where ¢; := (0,..., I,O,O7 ...)(j € N). However, E(,),.f(z) periodic with
respect to s; and so. That is,

EA(m) is(s14may )iy 520 () = B () i,(s1,504mag i) (£) = Ean),is f ().

Thus, we can suppose that s; € {0, L.ooma;my—i; — 1} (j = 1,2). We can
also say that s; < p (j = 1,2). Its maximal operator

Ej';,if := sup {|EA(n)7i7sf(x)| neNAj(n) >ij,se N% j = 1,2} .

If i; > Aj(n) for j =1 or j =2, then let E4,);f(x) =0 (for all s). Besides,
also for integers k1 < 0 or ko < 0 with any s set Ey; s f(z) = 0 for every i € N?
and z € GZ. Also suppose A;(+00) = 40 (j = 1,2).

The following weak type inequality will play a fundamental role in the proof
of the main theorem.

Lemma 2.3. Let A1, As : N — N be monotone increasing functions such
that Aj(+00) = +oo (j = 1,2) and let f € L'(G2,),\ > 0. Then we have

Capliz +1)(i2 +1)
A

p{z e G2t B f(x) > A} < £l

for every iq,is € N.
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Proof. In this lemma sequences A, As are monotone increasing, but in
other point of view they are arbitrary. That is, they can grow ,,very fast”.
Nevertheless, we can suppose that A : N — N2 satisfies the condition of Lemma
2.2, that is sequences A;(n+1) — A;(n) are nonnegative and bounded (by some
C’Aﬁp) (j = 1,2). This can be supposed, that is, this is really not a restriction
since we can insert members within the elements of the sequence E 4, i f-
For instance this can be demonstrated in the following way:

(A1(n), A2(n)), (A1(n), A2(n) +1),..., (A1(n), A2(n + 1)),
(Ai(n) +1, Az(n + 1)), (A1(n) +2, Az(n+1)) s (Ar(n+1), Ag(n + 1)).

If we denote by A this modified sequence, then for A we certainly have

<Aj(n+1)—Aj(n) <1 (neN,j=1,2). Besides,
By f > EhLf.
This means that if we prove the inequality

Caplir+1)(i2+1)
A

w{E3f >} < 11l

then we also have it for A. As a result of this assumption we can suppose that
0<Aj(n+1)—Aj(n) <log,Ca, (n€N,j=1,2). Apply Lemma 2.2.

= U U Taek,)(2n) U (LA, () (@n1) X Lay () (@n,2)) -

n=1 n=1
Enlarge the rectangle J,, in the following way:

i1 AL (k) —11 T1 MAy(kp)—15—1

U U U U IAl(kn)(x”vl + SleAl(kn)*h)X

lo=01,=0 51=0 s2=0

X T4y (k) (Tn,2 + 52€ 45 (k) —12)-

Also set F; :=J>7 | Jni- The shift invariancy of measure u gives

n=1

p(Fy) < (iy + 1) (iz + 1)p*u(F) < (ix + 1) (i2 + Dp®|| fll1/.

In the sequel, we prove that E7 ;f, = 0 on the set G2, \ Jni. That is, let
A ng \ Jnﬂ
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If u < k,, then

Ea(),is fn(2) = SMa, (), Mayuy Fr(21 + S1€4, (u)—irs 22 + 2845 (u)—i5)
= / Tn(W1,y2) Dy, ) (21 + S1€4, (0)—iy — Y1) X
G7.
X Dty (22 + 8264, (u)—iy — Y2)dpu(y)
= / fa(y1,92) Dy, o (21 + S1€45 (0)—iy — Tnj1) X

Tay (ken) (@n, 1) X Ay (k) (Tn,2)

X Dty (22 + 8264, (u)—in — Tn,2)dp(y) =0,

since
Tn(y1,y2)dp(y) = 0.

Tay (ken) (@0, 1) X T4y (k) (Tn,2)

On the other hand, if u > ky, then y; € Ia;&,)(zn;) and DMA].W(ZJ‘ +
+8j€a;(u)—i; — Yj) # 0 implies

% € Lay () (Y5 = 85€4,(w-i;) € La;(6) (Ui — Si€a;()—i;) =

= fA-(k (T = Sj€a;w—i;) = La; (o) @ng + (Ma;)—i; — 5j)€a;)—i;) C

M A (kn)—1; 1
c U U Zayten @ng +sea,ie)-1,) G=1,2).
l =0 s=0

The relation C in the last line above is implied by the fact that for A;(u)—i; >
> Aj(kn) we have 14, (k,)(Tnj — Sj€a;(u)—i;) = 14, (k,)(Tn,;) and for A;(u) —
—ij < A](kn) by u >k, we get A](kn) — ij < AJ(U) — ij < A](kn) and thus
there exist [; € {1,...,4;},s such that

Ly 0en) (g = S3€4;0)=i5) = L5 (00 (Tnj + €4, 0)-1,)-

That is, in every case Dy, (2j+5j€4;(u)—i; —Y;) 7 0 would give the relation
ju . :

MA;(kn)—1;—1
Zj € U U It @ns +s5ea,00-1,) (G =1,2).
1;=0 s;=0

Thus, z = (21, z2) would be an element of J,, ;. This contradiction implies that
Ea(n),i,sfn(2) =0 for all n,s € Nand z € G, \ J,.;. This gives E ;f, = 0 on
the set 2 € G2, \ J,, ;.
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After then, we prove that operator £7 ; is of type (00, 00). More precisely,
we prove ||E% gllee < [lglloe for each g € L>°(G?7,). This is quite simple to
verify. This property of E7 ; by the inequality || follcc < CapA gives

u{Efo> Caph} =0.

Consequently, by the o-sublinearity of operator E7 ; we have

" {ELf > QC'A’p)\} <u {EZ,ifo > CA,p/\} + {Ej:‘,Z (Z fn> > CA4,)\} <

n=1

<u(F)+u{x€G \ Fy: Em(an) z) > Cap) }<

< (i1 +1)(i2 +1)

1 oo
2 E* ) » d <
G2n,\Fi =
(i1 4+ 1)(i2+1) 4 R / .
L AN I NS B fdp <
= A ||f||1 + Ca )\ A,zf H =
1G2 \F;
(i1 + 1)(i2 + 1) /
< 0= B i fudp =
a2\,
i1+ 1) (i +1
: <—A()p2||f||1.
This completes the proof of Lemma 2.3. |

Proof of Lemma 2.1. Let Aj(n) := [log,a;(n)| (n € N,j =1,2). That is,
i) < a;(n) < pAiMF1 Since sequences |log, a;] are monotone increasing
for both j = 1,2, then the condition of Lemma 2.3 are satisfied.

In the paper of Simon and P4l [11] one can find the the following estimation
for the one-dimensional Vilenkin Fejér kernel functions for M4 <n < Ma41:

InKn(x)| <C, ZM Z <DMi(m)+mi DMi(:U—&-se,,)) <

i=v

A my,—1

<C ZM Z Z DM $—|—36V)

i=v s=0
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Since M, /n < M, /M < 2"~4 the we have

my,—1
) <C 222” A Z D, (z + se,) =
0v=0
]A A—k ma—j—i—1
=Gy ZZQ e Z ‘DMA—k(x+seA—k‘—i)
=0 i=0 s=0

as we used the variable change k = A — j,i = j — v = A — k — v. This implies
for the two dimensional Vilenkin-Fejér means o, f

‘O'a1(n),a1(n)f| <

ko MAL (n)—ky—ip —L MAy(n)—kg—ig—1

(n)—
< Cp Z Z Z 9—k1—ka—i1—ia g

51:0 82:O

X E(Ay (n)— k1,42 (n) —k2),(i1,i2),(s1,52) | |
where sequence A — k is (A1(n) — k1, Az(n) — k2).
Recall the definition of E 4 ; s. More precisely, the fact that for A;(n) —k <

< 0 or As(n) — ke < OorAl( ) — k1 < i1 or As(n) — ko < iy we have
Ea_k,isf(x) =0 for each z € GZ. Also recall that

m*

CA p= psupn{A1(n+l)—A1(n)+A2(n+1)—A2(n)}.

(A1(0) = A3(0) = 0 may be supposed.) That is, for every fixed k € N? the
equality Ca_j,, = Ca,p can be supposed and by Lemma 2.3
PAEA kil /I > A} < Caplin + 1) (@2 + DIIFl1/A = Caplin+ 1) G2+ D fll1/A

Set
O-.»*4f ‘= sup |aa1(n)7a2(n)f|'

BISC X3 rhicem

k1,k2€Niq,iseN

Then

We get that the operator o’ is of weak type (1, 1) in the following way:

plodf >N <udC, > > 27T >

k1,k2€Niq,io€N

IN

o CpA
—k1—ko—1i1—12 % p
= # {2 o EAik’i|f| - (kleiliQ + 1)2 } =

k1,k2€N1,i2€N
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o Cp
27k17k277,177,2E* ) P <
Z Z ,LL{ A*k,z|f| > (kleiliQ I 1)2} >

k1,k2€ENq,i5€N

(k1k +1 +1)(22 + 1
<CAp Z Z 1katqio ) (Zl, ')(ZQ )”f”l <

\2k1+ka+i1+iz
k1,k2€Niq,io€N

< Capllfll/A

That is, we proved that the maximal operator ¢ is of weak type (1,1). Since
for each Vilenkin polynomial P we have the everywhere relation

nh—{go Ual(n),aQ(n)P = Pa

then by the standard density argument (see this principal for instance [10]) the
proof of Lemma 2.1 is complete. |

Finally, we have to prove Theorem 2.1. That is, the main result of this
paper. The proof comes from Lemma 2.1 with some easy calculations.

Proof of Theorem 2.1. Let L be a positive integer discussed later. For
l,Lv=0,1,...,L — 1 let some disjoint subsets of N be defined as:

Bl,l/ —_ {n cN: (CL ( 6 U 5L+l 5L+l+l) ~ [ptL+V7ptL+l/+1)} )

s,t=0

It is clear that these sets are pairwise disjoint and their union is N. Denote
the elements of By, by n}” < nk” < .... We prove that [log, a;(nk”)] <
< [log, aj(nﬁc’il)J for every k € N,l,v € {0,1,...L—1} and j = 1,2. On the
contrary, suppose that [log, a; (niil)J < |log, a; (nk )] for some k, l, v and ]
Then the definition of B;, gives that [log, a; (nk+1)J < |log, a]—( )] —
Thus,

10, (nﬁcil) < pUng aj(nic’il)J < pUng aj(n;’")j —L < iLa (nZV)
p p

Since, ";:-1 > nl”, then we have a; (nffj_l) > daj(nk”) and consequently, also
have § < p'~%. This is obviously not possible for an L large enough. That is,
we proved that |log, a; (ni”)J is monotone increasing with respect to k € N.
Lemma 2.1 gives the a.e. convergence

hm 0Oy, u)f f

for each integrable function f and I,v = 0,1,..., L — 1. Merging the L? pieces
of subsequences of o4, f the proof of Theorem 2.1 is complete. |
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