Annales Univ. Sci. Budapest., Sect. Comp. 39 (2013) 45-62

USING LARGE PRIME DIVISORS
TO CONSTRUCT NORMAL NUMBERS

Jean-Marie De Koninck! (Québec, Canada)
Imre K4atai? (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer
on his seventieth anniversary

Communicated by Ferenc Schipp
(Received September 24, 2012; accepted October 10, 2012)

Abstract. Given an integer ¢ > 2, a g-normal number is an irrational
number £ such that any preassigned sequence of ¢ digits occurs in the g-
ary expansion of & at the expected frequency, namely 1/¢°. Let n(z) be a
slowly increasing function such that % — 0 as x — o0o. Then, letting
P(n) stand for the largest prime factor of n, set Q(n) to be the smallest
prime divisor of n which is larger than n(n), while setting Q(n) = 1 if
P(n) > n(n). Then, we show that the real number 0.Q(1)Q(2)... is a
normal number in base 10. With various similar constructions, we create
large families of normal numbers in any given base ¢ > 2. Finally, we
consider exponential sums involving the Q(n) function.

1. Introduction

Given an integer ¢ > 2, a g-normal number, or simply a normal number,
is an irrational number whose g-ary expansion is such that any preassigned
sequence, of length £ > 1, of base ¢ digits from this expansion, occurs at the
expected frequency, namely 1/q".
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Let A, := {0,1,...,¢ — 1}. Given an integer £ > 1, an expression of the
form 717 ...1%¢, where each i; € A, is called a word of length £. We sometimes
write A(8) = £ to indicate that § is a word of length ¢. The symbol A will
denote the empty word. We let Ag stand for the set of all words of length ¢ and
Ay stand for the set of all the words regardless of their length.

Given a positive integer n, we write its g-ary expansion as
(1.1) n=c¢co(n) +ei(n)g+---+ei(n)g,

where ¢;(n) € A, for 0 < ¢ < t and g(n) # 0. To this representation, we
associate the word

(1.2) n=¢co(n)e1(n)...ex(n) =cpe1...61 € AZ“‘

Let P(n) stand for the largest prime factor of n > 2, with P(1) = 1. In a
recent paper [5], we showed that if F' € Z[x] is a polynomial of positive degree
with F'(z) > 0 for z > 0, then the real numbers

0.F(PR)) F(P(3))...F(Pn))...

and

0.F(P(2+1)F(P(3+1))...F(P(p+1))...,
where p runs through the sequence of primes, are g-normal numbers.

Let n(z) be a slowly increasing function, that is an increasing function

cx
satisfying lim n(cz) = 1 for any fixed constant ¢ > 0. Being slowly increasing,
logn(x
it satisfies in particular the condition lgi() — 0 as x — oo.
ogx

We then let Q(n) be the smallest prime divisor of n which is larger than n(n),
while setting Q(n) = 1 if P(n) > n(n). Then, we show that the real number

0.Q(1) Q(2) Q(3) ... is a g¢-normal number. With various similar constructions,
we create large families of normal numbers in any given base ¢ > 2.

Finally, we consider exponential sums involving the Q(n) function.
2. Main results

Theorem 1. Given an arbitrary basis ¢ > 2 and for any integer n, let 7 be as
in (1.2). Then the number

6 =00M0QR)QB) ...

is a q-normal number.
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Let o stand for the set of all primes. Given an integer q > 2, let R,
©0, 91, - -, Pq—1 be disjoint sets of prime numbers such that

p=RUpoUpiU---Ugpqg_1,
and such that, uniformly for 2 < v < w as u — oo,

m([u,u+v]Np,) = éw([u,u—i—v])—i—O (logu5u) (j=0,1,...,q—1),

so that, in particular,

w([u,quv]ﬂR)O(u).

log® u
Then, consider the function x defined on p as follows:

¢ ifp € g,
A ifpeR.

K(p) =
With this notation, we have
Theorem 2. The number
&2 = 0.£(Q(1))r(Q(2))k(Q(3)) - - -
is a q-normal number.

Remark 1. In an earlier paper [4], we used such classification of prime numbers
to create normal numbers, but by simply concatenating the numbers (1),

k(2),K(3),. . ..
Let a be a fixed non zero integer. Then we have the following result.

Theorem 3. The number
& =0.6(Q2+a)k(QB+a))k(QB+a))...k(Q(p+a))...,
where p runs through the set of primes, is a q-normal number.

Define p* as the set of all the prime numbers p = 1 (mod 4). Then, let
R*, 90,971+, 9y—1 be disjoint sets of prime numbers such that

PT=R"UpyUpiU---Ugpy 4,

and such that, uniformly for 2 < v < w as u — oo,

1
w([u7u+vmp§>w([u,uﬂm*)w( - ) (G=01,....q—1),
q log” u
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so that, in particular,

w([u,u—l—v]ﬁR*):O( “ )

log” u
Then, consider the following function defined on p as follows

v(p) = ¢ ifpe gy,
P A ifpg Uz o

With this notation, we have the following result.

Theorem 4. The number

& =0 QM)r((Q(2)r(Q(3))...

is a q-normal number.

Consider the arithmetic function f(n) = n?+1. Then, we have the following
result.

Theorem 5. The two numbers

&= 0.8(QUfF(1))R(Qf(2))R(Qf(3))) -,
& = 0.R(QU(2)NQFB))RQf(5))) - k(Q(f(P)) -,

where p runs through the set of primes, are g-normal numbers.

Remark 2. One can show that this last result remains true if f(n) is replaced
by another non constant irreducible polynomial.

We now introduce the product function F(n) = n(n+1)---(n +q — 1).
Observe that if for some positive integer n, we have p = Q(F(n)) > g, then
pln+£ only for one £ € {0,1,...,¢—1}, implying that £ is uniquely determined
for all positive integers n such that Q(F(n)) > ¢. Thus we may define the
function

(n) = ¢ ifp=Q(F(n)) >qand pn+¢,
"1 A otherwise.

Using this notation, we have the following result.
Theorem 6. The number

& =071(g+1)7(q+2)7(¢+3)...

is a q-normal number.
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We now introduce the product function G(n) = (n 4+ 1)(n +2)--- (n 4+ q)
and further define the function

(n) = ¢ ifp=Q(G(n)) >q+1and pn+£¢+1,
PU =3 A otherwise.

Moreover, let (p;);>1 be the sequence of all primes larger than ¢, that is,
q < p1 < pz < --- With this notation, we have the following result.

Theorem 7. The number

& = 0.p(p1)p(p2)p(p3) - - -

is a q-normal number.

Let a be an arbitrary irrational number. We will be using the standard
notation e(y) = exp{2miy}. We then have the following.

Theorem 8. Let

Az) =Y f(n)e(aQ(n)),

n<z

where f is any given multiplicative function satisfying |f(n)| = 1 for all positive
integers n. Then,

A
(2.1) lim 2@ _ g,
r—o00 I
3. Notation and preliminary lemmas
logn

For each integer n > 2, let L(n) = J Let g € Af; and n be written

log q
as in (1.1). We then let vg(7) stand for the number of occurrences of the word
[ in the g-ary expansion of the positive integer n, that is, the number of times
that €;(n)...ej40—1(n) = B as j varies from 0 to t — (£ — 1).

The letters p and 7 will always denote prime numbers. The letter ¢ with
or without subscript always denotes a positive constant but not necessarily the
same at each occurrence.

We will be using a key result obtained by Bassily and Katai [1] and which
we state here as two lemmas, a proof of which, in a more general context, can
be found in our earlier paper [5].
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Lemma 1. Let k, be a function of u such that k, > 1 for all u. Given a word
B e Af; and setting

L(u)

Va(u) == #{pe p:u<p<2u such that |vg(p) — e’ > Ky L(u)}7
q

then, there exists a positive constant ¢ such that

cu
< —
Va(u) < (logu)k2

Lemma 2. Let Kk, be as in Lemma 1. Given (31, 32 € Ag with By # Ba, set

Ag, g, (u) == # {p € p:u<p<2u such that |vg, (D) — v3,(D)| > ku L(u)} )

Then, for some positive constant c,

cu

A < —.

4. Proof of Theorem 2

We start by proving Theorem 2 since its content will be useful for the proof
of Theorem 1.

Let I, = [z, 2z] and first observe that

#{n € I, : there exists p|n, p € [n(x),n(2x)]} <
2z T 1
< — | = |- <cx =
< 2 Q p J LDD - 2 P
n(z) <p<n(2x) n(z)<p<n(2z)
=o(1) (x — o0).

This means that with the exception of o(z) integers n € I, the number Q(n)
is the smallest prime divisor of n bigger than n(z).

Secondly, observe that we may assume that, given any fixed small € > 0,
we may assume that Q(n) < n(z)'/¢. Indeed,

(4.1) #{nel,:Qn) >nx)/ )<z H (1 - 1) < ex.

(@) <p<n(a)t/e b
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Now let pg,pi1,...,pr—1 be any distinct primes belonging to the interval
(n(z),n(z)1/¢), and let pjy < pf < --- < p}_, be the unique permutation of the
primes pg, p1, - - -,Pr—1, namely the one such that has all its members appear

in increasing order, so that we have
n(x) <py <pi < <piog <nla)V
Our first goal will be to estimate the size of
N(z|po,p1,--,pk—1) =#{n<z:Q(n+j)=p;, j=01,...,k—1}.

We must therefore estimate the number of those integers n € I, for which
pjln+j (j=0,1,...,k — 1), while at the same time (7;,n +j) = 1 if n(x) <

<mj<pj (j=0,1,...,k—1). Before moving on, let us set
Qr=pop1--pr1 and Tj= J[ = (G7=01,..k-1).
n(z)<m<p;

It is then easy to see that, say by using the Eratosthenian sieve (see for instance
Chapter 12 in the book of De Koninck and Luca [2]), we obtain

T
(4.2) N(z|posp1y- -y Pr—1) = (1—1—0(1))@20 (x — 00),

where (60) (60_1)

M 00) - - - Ok —1

E = _—

0 ) Z; 5o Op_1
0 Ok—1
6;1Tj (j=0,1,....k—1)

(67,65)=1 if i#j

(here p stands for the Mobius function). One can see that

Yo =
k k-1 1
- 1- 2. 1_ 1_ =
I IR e N | (o)
n(x)<m<p T <7 _
(4.3) 0 0 1 k—2 k—1
_ logps \ " (logpi\ T (logpi, \ 7
= (1+0(1)) . el ) -
log n(x) log pj; log pj._
1
Hence, if we set o(p) := Olgog(x), it follows from (4.3) that
p
(4.4) Yo=(1+o0(1))o(po) - o(pr—1) (x — 00).

Substituting (4.4) in (4.2), we obtain

(4.5) N(zlpo,p1,-- - pr—1) = (1 +o(1))z H U;p,j)
j=0 7

(x — 0),

an estimate which holds uniformly for n(z) < p; < n(z)"/¢ (j =0,1,...,k—1).
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We will now use a technique which we first used in [3] to study the dis-
tribution of subsets of primes in the prime factorization of integers. We first
introduce the sequence

23 for each 5 =0,1,2,...

uo = (), ujpr =+
log” u;

and then let T be the unique positive integer satisfying ur_1 < 17(36)1/E < up.
Then, consider the intervals

Jo = [uo,wa), Ji:=[ur,u2),..., Jro1:i=[ur—1,ur).
Choose k arbitrary integers jo,...,Jk—1 € {0,1,...,T — 1}, as well as k

arbitrary integers o, ...,i;—1 from the set {0,1,...,¢ — 1}, and consider the
quantity

(4.6) M (a:

Jo’ﬂv---vﬂk—l): S Nelpor..pi-).

iOvila v 7ik71
pe€JeNgi,

Observe that % =(1+ 0(1))%

h h
this observation and using (4.5) and (4.6) that

k—1
j07j17"'7jk71 J(u])
0 : =(1+o0(1))x .
20521y ylk—1 ) ( ( )) Z H uj

pe€JeNps, j=0

as x — oo if p € Jj. It follows from

(4.7) M (:17

Using Theorem 1 of our 1995 paper [3] in combination with (4.7), we obtain
that

) M (m

lodi ) = o (o

20,21y -+ 5 k-1

jOajl)' .- ajk—l
) .
7’0’7’17 e 7Zk7—1

(x — 00),

where (ig, 4}, ...,4}) is any arbitrary sequence of length k£ composed of integers
from the set {0,...,q —1}.

Finally, consider the expression

Ay = w(Q([2])) - #(Q([22] = 1)).
It follows from (4.8) that, for any given word g8 € A’;, the number of occurrences

k
completing the proof of Theorem 2. |

of B as a subword in the word A, is equal to (1 —&—0(1))E as © — oo, thus
q
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5. Proof of Theorem 1

Let

B, =QUa]) ... Q2] — ).
Also, let @*(n) = min p and observe that Q*(n) < Q(n), while if Q*(n) #

pln
p>n(z)

# Q(n), then pln if n(x) < p < n(2z).
Moreover, let

By =Q*(lz]) ... @*([2z] —1).

Clearly, we have, since n(z) was chosen to be a slowly oscillating function,

(5.1) n(x)<pen(zs) 1081 (z)
(x — 0).

1 2
0 < A(By) = \B) <ecx Z 98P < ¢1zlog 737( ;) = o(z)

It follows from (5.1) that we now only need to estimate A(BZ). To do so, we
first let §, be a function tending to 0 very slowly as x — oo, in a manner
specified below. If p < 2%, we have

Ry(z):=#{nel,:Q"(n) =p} =

—a+omE I (1_ i) -

(52) p n(z)<w<p

— (1 +o1)) 2 08 2)

T — 00),
p logp ( )

while on the other hand, if 2% < p < 2z, we have

x logn(x)
5.3 Ry(x) < c— .
(53) pla) < oL

Now, observe that, as © — oo,

AB)= Y R = S Ry f‘)g”J

n(z)<p<2x n(z)<p<2z logq

(5.4) =1+ 0(1))i Z logn() + O | zlogn(z) Z !

log g n(z)<p<2z p o <p<w
log n(x) log x 1

=(1 1 1 Ozl log — | .
(14 0(1))r 2 tog B 10 (logna)los -
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Choosing the function §, in such a way that

1 log x
log — = o1
%85, O<Og10g77(w)>

allows us to replace (5.4) with

logn(x) o log x

(5.5) A(Bz) = (1+o(1)z log q 8 log ()

(z — 00).

Now, let f1, 82 € A’;. We will now make use of Lemmas 1 and 2. For this,
we first write

(@), 2% = | L.
=0

where
Iy, = [uj,uji1), with ug = n(z), u; = 27n(x) for j=1,2,...,T+1,

where T is defined as the unique positive integer satisfying up < 2% < U4 1-

In the spirit of Lemma 1, we will say that the prime p € I, is a bad prime

if
max |vg(p) — L;ZL)‘ > Ko/ L(u)

BeAL

and a good prime if

vs(p) — —5=| < Fu/ L(u).

We will now separate the sum ) R,(z)A(p) running over the primes p lo-
cated in the intervals [u;, uj41) into two categories, namely the bad primes and
the good primes.

First, using (5.2) and (5.3), we have

xlogn(x
S R sertw) Y TEMD o
(5.6) ey pElugays1)

log 7(z)
T : .
logn(z) + jlog2

On the other hand, if p is a good prime, one can easily establish that the
number of occurrences of the words 8; and (3, in the word B; are close to each
other, in the sense that

(5.7) v, (Bz) = v, (B;) = o(A(By))-
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Hence, proceeding as in [5], it follows, considering the true size of \(BZ)
given by (5.5) and in light of (5.1), (5.6) and (5.7), that the number of words

AB
B € Al appearing in B, is equal to (14 o(1)) ( kx) as T — 00.
q
We then proceed in a same manner to obtain similar estimates successively
for the intervals I, /5, I,/22, ... Thus, repeating the argument used in [5], The-
orem 1 follows immediately. [ |

The proofs of Theorems 3 through 7 can be obtained along the same lines
and will therefore be omitted.

6. Proof of Theorem 8

To prove this theorem, we will consider two cases separately.

Let us first assume that

< oo for some real number 7.
p

It can be proved (as we did in [6]) that one can assume that 7 = 0.

For a start, define the additive function w implicitly on prime powers by
f?) = eiu®?), Then, for each large number D, define the multiplicative
function fp on prime powers by

By i
o ={{" 430

In light of (6.1), we have that

(6.2) 3 )

Further set

Since

f(n) = fp(n)exp iy u(p’) ¢ = fo(n)exp{iup(n)},

pPln
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say, then, by using the Turan—Kubilius inequality, we obtain that
A(x) = Ap(x) = O (zbp(x))

where

Ap(x) =np(x) Y fo(n)e(aQ(n)),
n<z
where np(z) = e**r(®),
Further define the function 7p implicitly by the equation fp(n) =3_;,, 7p(d).
It is clear that 7p(d) = 0 if (d, D) > 1, while |7p(p”)| < 2 for all prime powers
P’
We clearly have

(6:3) Ap(x) =np(x) Y 7p(d) Y e(aQ(md) =np(z) 7o (d)Xa,

P(d)<D md<z P(d)<D

say. On the other hand,

1 To(d :
P s Y AT (142

P(d)<D P(d)<D p<D

Therefore, for some kp, we have

1
o > Imp(d)][Ed] < pp.
d>kp
where pp — 0 as D — o0.

Let us now consider the sum

(6.4) Ty= 3 eaQm).

Y <m<2Y

Recall that Q(m) is the smallest prime divisor of m which is larger than
7n(m). Now, consider the somewhat similar function @1 (m), which stands for
the smallest prime divisor of m which is larger than n(z). Recalling the argu-
ment used at the beginning of the proof of Theorem 2, we easily see that

(6.5) #{m € [Y,2Y]:Q1(m) # Q(m)} = cY log 737((2;:)) =o(Y) asY — oo.

Therefore, setting

7= Y elaQi(m)),

Y <m<2Y
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it is clear that
‘Ty - TS)’ —oY) (Y = ).

Moreover, as Y — oo, we have

#m e 2v]s Qum) =) = o> [T (1-1) =

(6.6) p n(Y)<n<p T
Y logn(Y)
= (1+o0(1)——=L2
(1-+o() 3 <220

Similarly as we obtained (4.1), we easily prove that
(6.7) #{m e [Y,2Y]: Q(m) > n(Y)/*} < eY.
On the other hand, using (6.4), (6.6) and (4.1), we have
1 Y
(6.8) =y Y clapllogn(¥) |y,
. plogp
n(Y)<p<n(Y)'/¢
By using the well known I.M. Vinogradov theorem [10] asserting that
li 1 > e(ap) =0
im —— =
200 7'((;1;') elap ’
p<z
we obtain from (6.8) that

Ty

(6.9) =

<e+o(l) (Y — o0).

Using this, we can estimate ¥4. Indeed, we have
(6.10) Bal<] > eleQ@m) + 505
SLg <m<jg

Let £p be an arbitrary large number and choose L so that

(2Ld) > o

Note that for an arbitrary large L, this inequality will hold provided z is large
enough. Applying (6.9), it follows from (6.10) that

Jf
6.11 Yal <
( ) | d| 2Ld d
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Using (6.11) in (6.3), we obtain that

612)  |Ap(a) <a (ce—i— ;L) 11 (1 N pfl) fa Y 2@

p<D d>lp

Since D and L were chosen to be arbitrary numbers, it follows from (6.12) that

(6.13) lim ADx(I) = 0.
Since
A _ 20 16 (4 ()

and recalling the definition of bp(x) and estimate (6.2), it follows from (6.13)
that

lim sup A(;) < cbp(z) =o(1),

T—r00

so that if D — oo, we immediately obtain (2.1) for the first case, that is when
(6.1) holds.

It remains to consider the case

(6.14) Z R = fp™T) =00 for all real numbers 7.

B p

First, it is clear that, using (6.5), we have

E(@):= Y f(ne(aQ(n) =

rz<n<l2x

= Y fme@im)+ Y fln)e(aQ(n) =
(615) r<n<2x le(f;)t;é?n)

= > fm)e(aQum) +olx) =

rz<n<l2x

= Ei(x) + o(z),
say.

In light of (6.7), we may ignore those n € (z, 2x] for which Q1 (n) > n(z)/¢,
that is,

(6.16) Y. fme(a@i(n) < ew.

r<n<2x
Q1(n)>n(x)t/e
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Combining (6.15) and (6.16), we can write that

(6.17) E@= Y felap)T,+O(e),
n(z)<p<n(z)'/
where, setting II,, := H m,
n(z)<m<p
(6.18) Sp= Y f(m).
T om< 22
(p'm,l'lp):l

Now, consider the summation

In light of (6.14), it follows from a classical theorem of Haldsz (see [9]) that
there exists a function e(x) which tends to 0 monotonically as x — oo such

that |
S()]
<
pa— e(x),
which in turn implies that
27) —
(6.19) M;—S(x)‘ < e(x).

From (6.18), we get that

o= ) flm) Y @)=

x 2z
F<m<=E §|(I1p,m)

(6.20) dou@) Y f(md)=

o|1T, r<mop<2zx

g (3)-5(3) -

5|11,

where Er, is the error term coming from those terms for which (m,d) >

Thus, it follows from (6.19) and (6.20) that

xZ Xz 2
020 15l Y0 () +1Enl < 23 S ).

8|11, 8|11,



60 J.-M. De Koninck and I. Kétai

where we used the fact that since

po
max — =0 as T — 00,
n(z)<P<77(z)1/€ X
5|11,

then e(x/dp) = o(x/dp) uniformly for n(z) < p < n(z)'/* and §|TL,.

Now, since

2
O 2 (1+1>§c1,
) e T €

1Ly n(z)<m<n(n)

it follows from (6.21) that, as z — oo,

cx
(6.22) 2] < e co(1) + |Emp|.

Using (6.22) in (6.17), we obtain that, as © — oo,

623 |B@)| << S 1) o)+ Vi) + 0e),
n()<p<ni@y/c

where

V(z) = Z |Eryl.

n(x)<p<n(x)t/e

We will now show that
(6.24) V(z) = o(x) (x — 00).
Setting J = J(x) = (n(z),n(z)"/*) and writing those mdp such that (m,d) > 1

as mop = ¢r>81p, where k and §; are squarefree numbers whose prime factors
all belong to J, we have that

V)< Y @r) Y, #6) =

r>n(x) z<lr251p<2z
W\éfi{re‘]
(6.25) =D Wk D> w0 Y, 1<
w2n() nls1Swes i <SS
2
1 (k) 1*(61)
<
S I D Dl
k>n(x) peJ

w1 =>mET
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Since it is easily checked that

1 1
Z - S C1 IOg )
pEJp <
2
1 (01) 1
Z A < H (1+7T < = logn(x),
|6 =>mwed red
1 C3
> & <
2 — ?
K2>1(z) " n()

then using these estimates in (6.25), we obtain that

logn(x) 1 I
(@) = log o= o(x)

thus proving our claim (6.24).
Substituting (6.24) in (6.23), we obtain that

V(z) < cyx

|E(z)| < c:cé logé co(1) 4+ o(z) + O(ex) = o(x) (x — 0),

from which it follows that given any arbitrarily small number £ > 0, there is
some o = (&) such that

(6.26) |E(X)|<¢X for all X > .

Therefore, given any fixed large number x and letting L be the smallest integer
such that 2 > 2/2, we have that, using (6.26) repetitively,

> r(3)

thus proving (2.1) in the second case, as requested.

[A(z)| =

L
< c{Z 2% < ctx,
a=1

This completes the proof of Theorem 8. |
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