USING LARGE PRIME DIVISORS TO CONSTRUCT NORMAL NUMBERS

Jean-Marie De Koninck¹ (Québec, Canada)

Imre Kátai² (Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer on his seventieth anniversary

Communicated by Ferenc Schipp

(Received September 24, 2012; accepted October 10, 2012)

Abstract. Given an integer $q \geq 2$, a *q*-normal number is an irrational number ξ such that any preassigned sequence of ℓ digits occurs in the *q*ary expansion of ξ at the expected frequency, namely $1/q^{\ell}$. Let $\eta(x)$ be a slowly increasing function such that $\frac{\log \eta(x)}{\log x} \to 0$ as $x \to \infty$. Then, letting P(n) stand for the largest prime factor of n, set Q(n) to be the smallest prime divisor of n which is larger than $\eta(n)$, while setting Q(n) = 1 if $P(n) > \eta(n)$. Then, we show that the real number 0.Q(1)Q(2)... is a normal number in base 10. With various similar constructions, we create large families of normal numbers in any given base $q \geq 2$. Finally, we consider exponential sums involving the Q(n) function.

1. Introduction

Given an integer $q \geq 2$, a *q*-normal number, or simply a normal number, is an irrational number whose *q*-ary expansion is such that any preassigned sequence, of length $\ell \geq 1$, of base *q* digits from this expansion, occurs at the expected frequency, namely $1/q^{\ell}$.

Key words and phrases: Normal numbers, largest prime factor, smallest prime factor.

²⁰¹⁰ Mathematics Subject Classification: 11K16, 11N37, 11A41.

¹ Research supported in part by a grant from NSERC.

 $^{^2}$ Research supported by ELTE IK and by the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645).

Let $A_q := \{0, 1, \ldots, q-1\}$. Given an integer $\ell \geq 1$, an expression of the form $i_1 i_2 \ldots i_\ell$, where each $i_j \in A_q$ is called a *word* of length ℓ . We sometimes write $\lambda(\beta) = \ell$ to indicate that β is a *word* of length ℓ . The symbol Λ will denote the *empty word*. We let A_q^{ℓ} stand for the set of all words of length ℓ and A_q^* stand for the set of all the words regardless of their length.

Given a positive integer n, we write its q-ary expansion as

(1.1)
$$n = \varepsilon_0(n) + \varepsilon_1(n)q + \dots + \varepsilon_t(n)q^t,$$

where $\varepsilon_i(n) \in A_q$ for $0 \leq i \leq t$ and $\varepsilon_t(n) \neq 0$. To this representation, we associate the word

(1.2)
$$\overline{n} = \varepsilon_0(n)\varepsilon_1(n)\ldots\varepsilon_t(n) = \varepsilon_0\varepsilon_1\ldots\varepsilon_t \in A_q^{t+1}.$$

Let P(n) stand for the largest prime factor of $n \ge 2$, with P(1) = 1. In a recent paper [5], we showed that if $F \in \mathbb{Z}[x]$ is a polynomial of positive degree with F(x) > 0 for x > 0, then the real numbers

$$0.\overline{F(P(2))} \overline{F(P(3))} \dots \overline{F(P(n))} \dots$$

and

$$0.\overline{F(P(2+1))}\overline{F(P(3+1))}\ldots\overline{F(P(p+1))}\ldots$$

where p runs through the sequence of primes, are q-normal numbers.

Let $\eta(x)$ be a slowly increasing function, that is an increasing function satisfying $\lim_{x\to\infty} \frac{\eta(cx)}{\eta(x)} = 1$ for any fixed constant c > 0. Being slowly increasing, it satisfies in particular the condition $\frac{\log \eta(x)}{\log x} \to 0$ as $x \to \infty$.

We then let Q(n) be the smallest prime divisor of n which is larger than $\eta(n)$, while setting Q(n) = 1 if $P(n) > \eta(n)$. Then, we show that the real number $0.\overline{Q(1)} \overline{Q(2)} \overline{Q(3)} \dots$ is a q-normal number. With various similar constructions, we create large families of normal numbers in any given base $q \ge 2$.

Finally, we consider exponential sums involving the Q(n) function.

2. Main results

Theorem 1. Given an arbitrary basis $q \ge 2$ and for any integer n, let \overline{n} be as in (1.2). Then the number

$$\xi_1 = 0.\overline{Q(1)} \overline{Q(2)} \overline{Q(3)} \dots$$

is a q-normal number.

Let \wp stand for the set of all primes. Given an integer $q \ge 2$, let \mathcal{R} , $\wp_0, \wp_1, \ldots, \wp_{q-1}$ be disjoint sets of prime numbers such that

$$\wp = \mathcal{R} \cup \wp_0 \cup \wp_1 \cup \cdots \cup \wp_{q-1},$$

and such that, uniformly for $2 \leq v \leq u$ as $u \to \infty$,

$$\pi([u, u+v] \cap \wp_j) = \frac{1}{q}\pi([u, u+v]) + O\left(\frac{u}{\log^5 u}\right) \qquad (j=0, 1, \dots, q-1),$$

so that, in particular,

$$\pi([u, u+v] \cap \mathcal{R}) = O\left(\frac{u}{\log^5 u}\right).$$

Then, consider the function κ defined on \wp as follows:

$$\kappa(p) = \begin{cases} \ell & \text{if } p \in \wp_{\ell}, \\ \Lambda & \text{if } p \in \mathcal{R}. \end{cases}$$

With this notation, we have

Theorem 2. The number

$$\xi_2 = 0.\kappa(Q(1))\kappa(Q(2))\kappa(Q(3))\dots$$

is a q-normal number.

Remark 1. In an earlier paper [4], we used such classification of prime numbers to create normal numbers, but by simply concatenating the numbers $\kappa(1)$, $\kappa(2), \kappa(3), \ldots$

Let a be a fixed non zero integer. Then we have the following result.

Theorem 3. The number

$$\xi_3 = 0.\kappa(Q(2+a))\kappa(Q(3+a))\kappa(Q(5+a))\dots\kappa(Q(p+a))\dots,$$

where p runs through the set of primes, is a q-normal number.

Define \wp^* as the set of all the prime numbers $p \equiv 1 \pmod{4}$. Then, let $\mathcal{R}^*, \wp_0^*, \wp_1^*, \ldots, \wp_{q-1}^*$ be disjoint sets of prime numbers such that

$$\wp^* = \mathcal{R}^* \cup \wp_0^* \cup \wp_1^* \cup \dots \cup \wp_{q-1}^*,$$

and such that, uniformly for $2 \le v \le u$ as $u \to \infty$,

$$\pi([u, u+v] \cap \wp_j^*) = \frac{1}{q}\pi([u, u+v] \cap \wp^*) + O\left(\frac{u}{\log^5 u}\right) \qquad (j=0, 1, \dots, q-1),$$

so that, in particular,

$$\pi([u, u+v] \cap \mathcal{R}^*) = O\left(\frac{u}{\log^5 u}\right).$$

Then, consider the following function defined on \wp as follows

$$\nu(p) = \begin{cases} \ell & \text{if } p \in \wp_{\ell}^*, \\ \Lambda & \text{if } p \notin \bigcup_{\ell=0}^{q-1} \wp_{\ell}^* \end{cases}$$

With this notation, we have the following result.

Theorem 4. The number

$$\xi_4 = 0.\nu(Q(1))\nu((Q(2))\nu(Q(3))\dots$$

is a q-normal number.

Consider the arithmetic function $f(n) = n^2 + 1$. Then, we have the following result.

Theorem 5. The two numbers

$$\xi_5 = 0.\kappa(Q(f(1)))\kappa(Q(f(2)))\kappa(Q(f(3)))..., \\ \xi_6 = 0.\kappa(Q(f(2)))\kappa(Q(f(3)))\kappa(Q(f(5)))...\kappa(Q(f(p)))..., \\$$

where p runs through the set of primes, are q-normal numbers.

Remark 2. One can show that this last result remains true if f(n) is replaced by another non constant irreducible polynomial.

We now introduce the product function $F(n) = n(n+1)\cdots(n+q-1)$. Observe that if for some positive integer n, we have p = Q(F(n)) > q, then $p|n+\ell$ only for one $\ell \in \{0, 1, \ldots, q-1\}$, implying that ℓ is uniquely determined for all positive integers n such that Q(F(n)) > q. Thus we may define the function

$$\tau(n) = \begin{cases} \ell & \text{if } p = Q(F(n)) > q \text{ and } p|n+\ell, \\ \Lambda & \text{otherwise.} \end{cases}$$

Using this notation, we have the following result.

Theorem 6. The number

$$\xi_7 = 0.\tau(q+1)\tau(q+2)\tau(q+3)\dots$$

is a q-normal number.

We now introduce the product function $G(n) = (n+1)(n+2)\cdots(n+q)$ and further define the function

$$\rho(n) = \begin{cases} \ell & \text{if } p = Q(G(n)) > q + 1 \text{ and } p|n + \ell + 1, \\ \Lambda & \text{otherwise.} \end{cases}$$

Moreover, let $(p_j)_{j\geq 1}$ be the sequence of all primes larger than q, that is, $q < p_1 < p_2 < \cdots$ With this notation, we have the following result.

Theorem 7. The number

$$\xi_8 = 0.\rho(p_1)\rho(p_2)\rho(p_3)\dots$$

is a q-normal number.

Let α be an arbitrary irrational number. We will be using the standard notation $e(y) = \exp\{2\pi i y\}$. We then have the following.

Theorem 8. Let

$$A(x) := \sum_{n \le x} f(n) e(\alpha Q(n)),$$

where f is any given multiplicative function satisfying |f(n)| = 1 for all positive integers n. Then,

(2.1)
$$\lim_{x \to \infty} \frac{A(x)}{x} = 0.$$

3. Notation and preliminary lemmas

For each integer $n \ge 2$, let $L(n) = \left\lfloor \frac{\log n}{\log q} \right\rfloor$. Let $\beta \in A_q^{\ell}$ and n be written as in (1.1). We then let $\nu_{\beta}(\overline{n})$ stand for the number of occurrences of the word β in the q-ary expansion of the positive integer n, that is, the number of times that $\varepsilon_j(n) \dots \varepsilon_{j+\ell-1}(n) = \beta$ as j varies from 0 to $t - (\ell - 1)$.

The letters p and π will always denote prime numbers. The letter c with or without subscript always denotes a positive constant but not necessarily the same at each occurrence.

We will be using a key result obtained by Bassily and Kátai [1] and which we state here as two lemmas, a proof of which, in a more general context, can be found in our earlier paper [5]. **Lemma 1.** Let κ_u be a function of u such that $\kappa_u > 1$ for all u. Given a word $\beta \in A_a^\ell$ and setting

$$V_{\beta}(u) := \# \left\{ p \in \wp : u \le p \le 2u \text{ such that } \left| \nu_{\beta}(\overline{p}) - \frac{L(u)}{q^{\ell}} \right| > \kappa_u \sqrt{L(u)} \right\},$$

then, there exists a positive constant c such that

$$V_{\beta}(u) \le \frac{cu}{(\log u)\kappa_u^2}.$$

Lemma 2. Let κ_u be as in Lemma 1. Given $\beta_1, \beta_2 \in A_q^{\ell}$ with $\beta_1 \neq \beta_2$, set

 $\Delta_{\beta_1,\beta_2}(u) := \# \left\{ p \in \wp : u \le p \le 2u \text{ such that } |\nu_{\beta_1}(\overline{p}) - \nu_{\beta_2}(\overline{p})| > \kappa_u \sqrt{L(u)} \right\}.$

Then, for some positive constant c,

$$\Delta_{\beta_1,\beta_2}(u) \le \frac{cu}{(\log u)\kappa_u^2}.$$

4. Proof of Theorem 2

We start by proving Theorem 2 since its content will be useful for the proof of Theorem 1.

Let $I_x = [x, 2x]$ and first observe that

$$\#\{n \in I_x : \text{ there exists } p|n, \ p \in [\eta(x), \eta(2x)]\} \le$$

$$\le \sum_{\eta(x) \le p \le \eta(2x)} \left(\left\lfloor \frac{2x}{p} \right\rfloor - \left\lfloor \frac{x}{p} \right\rfloor \right) \le c x \sum_{\eta(x) \le p \le \eta(2x)} \frac{1}{p} =$$

$$= o(1) \qquad (x \to \infty).$$

This means that with the exception of o(x) integers $n \in I_x$, the number Q(n) is the smallest prime divisor of n bigger than $\eta(x)$.

Secondly, observe that we may assume that, given any fixed small $\varepsilon > 0$, we may assume that $Q(n) \leq \eta(x)^{1/\varepsilon}$. Indeed,

(4.1)
$$\#\{n \in I_x : Q(n) > \eta(x)^{1/\varepsilon}\} \ll x \prod_{\eta(x)$$

Now let $p_0, p_1, \ldots, p_{k-1}$ be any distinct primes belonging to the interval $(\eta(x), \eta(x)^{1/\varepsilon})$, and let $p_0^* < p_1^* < \cdots < p_{k-1}^*$ be the unique permutation of the primes $p_0, p_1, \ldots, p_{k-1}$, namely the one such that has all its members appear in increasing order, so that we have

$$\eta(x) < p_0^* < p_1^* < \dots < p_{k-1}^* < \eta(x)^{1/\varepsilon}.$$

Our first goal will be to estimate the size of

$$N(x|p_0, p_1, \dots, p_{k-1}) := \#\{n \le x : Q(n+j) = p_j, \ j = 0, 1, \dots, k-1\}.$$

We must therefore estimate the number of those integers $n \in I_x$ for which $p_j|n+j$ $(j=0,1,\ldots,k-1)$, while at the same time $(\pi_j, n+j) = 1$ if $\eta(x) < < \pi_j < p_j$ $(j=0,1,\ldots,k-1)$. Before moving on, let us set

$$Q_k = p_0 p_1 \cdots p_{k-1}$$
 and $T_j = \prod_{\eta(x) < \pi < p_j} \pi$ $(j = 0, 1, \dots, k-1).$

It is then easy to see that, say by using the Eratosthenian sieve (see for instance Chapter 12 in the book of De Koninck and Luca [2]), we obtain

(4.2)
$$N(x|p_0, p_1, \dots, p_{k-1}) = (1 + o(1)) \frac{x}{Q_k} \Sigma_0 \qquad (x \to \infty),$$

where

$$\Sigma_0 = \sum_{\substack{\delta_0, \dots, \delta_{k-1} \\ \delta_j | T_j \ (j=0,1,\dots,k-1) \\ (\delta_i, \delta_j) = 1 \ \text{if} \ i \neq j}} \frac{\mu(\delta_0) \cdots \mu(\delta_{k-1})}{\delta_0 \cdots \delta_{k-1}}$$

(here μ stands for the Möbius function). One can see that

$$\Sigma_{0} = \prod_{\eta(x) < \pi < p_{0}^{*}} \left(1 - \frac{k}{\pi}\right) \cdot \prod_{p_{0}^{*} < \pi < p_{1}^{*}} \left(1 - \frac{k - 1}{\pi}\right) \cdots \prod_{p_{k-2}^{*} < \pi < p_{k-1}^{*}} \left(1 - \frac{1}{\pi}\right)$$

$$= (1 + o(1)) \left(\frac{\log p_{0}^{*}}{\log \eta(x)}\right)^{-k} \left(\frac{\log p_{1}^{*}}{\log p_{0}^{*}}\right)^{-k+1} \cdots \left(\frac{\log p_{k-1}^{*}}{\log p_{k-2}^{*}}\right)^{-1}.$$
Hence, if we set $\sigma(p) := \frac{\log \eta(x)}{\log p}$, it follows from (4.3) that
$$(4.4) = \sum_{k=0}^{\infty} (1 + c(1)) = (\pi_{k}) = c(\pi_{k-1}) = (\pi_{k-1}) = 0$$

(4.4)
$$\Sigma_0 = (1+o(1))\sigma(p_0)\cdots\sigma(p_{k-1}) \qquad (x\to\infty).$$

Substituting (4.4) in (4.2), we obtain

(4.5)
$$N(x|p_0, p_1, \dots, p_{k-1}) = (1+o(1))x \prod_{j=0}^{k-1} \frac{\sigma(p_j)}{p_j} \qquad (x \to \infty),$$

an estimate which holds uniformly for $\eta(x) \leq p_j \leq \eta(x)^{1/\varepsilon}$ $(j = 0, 1, \dots, k-1)$.

We will now use a technique which we first used in [3] to study the distribution of subsets of primes in the prime factorization of integers. We first introduce the sequence

$$u_0 = \eta(x),$$
 $u_{j+1} = u_j + \frac{u_j}{\log^2 u_j}$ for each $j = 0, 1, 2, ...$

and then let T be the unique positive integer satisfying $u_{T-1} < \eta(x)^{1/\varepsilon} \le u_T$. Then, consider the intervals

$$J_0 := [u_0, u_1), \quad J_1 := [u_1, u_2), \dots, \quad J_{T-1} := [u_{T-1}, u_T).$$

Choose k arbitrary integers $j_0, \ldots, j_{k-1} \in \{0, 1, \ldots, T-1\}$, as well as k arbitrary integers i_0, \ldots, i_{k-1} from the set $\{0, 1, \ldots, q-1\}$, and consider the quantity

(4.6)
$$M\left(x \middle| \begin{array}{c} j_0, j_1, \dots, j_{k-1} \\ i_0, i_1, \dots, i_{k-1} \end{array}\right) = \sum_{p_\ell \in J_\ell \cap \wp_{i_\ell}} N(x|p_0, \dots, p_{k-1}).$$

Observe that $\frac{\sigma(p_h)}{p_h} = (1 + o(1))\frac{\sigma(u_h)}{u_h}$ as $x \to \infty$ if $p \in J_h$. It follows from this observation and using (4.5) and (4.6) that

(4.7)
$$M\left(x \mid j_0, j_1, \dots, j_{k-1} \atop i_0, i_1, \dots, i_{k-1}\right) = (1+o(1))x \sum_{p_\ell \in J_\ell \cap \wp_{i_\ell}} \prod_{j=0}^{k-1} \frac{\sigma(u_j)}{u_j}$$

Using Theorem 1 of our 1995 paper [3] in combination with (4.7), we obtain that

(4.8)
$$M\left(x \middle| \begin{array}{c} j_{0}, j_{1}, \dots, j_{k-1} \\ i_{0}, i_{1}, \dots, i_{k-1} \end{array}\right) = (1 + o(1))M\left(x \middle| \begin{array}{c} j_{0}, j_{1}, \dots, j_{k-1} \\ i'_{0}, i'_{1}, \dots, i'_{k-1} \end{array}\right)$$
$$(x \to \infty),$$

where $(i'_0, i'_1, \ldots, i'_k)$ is any arbitrary sequence of length k composed of integers from the set $\{0, \ldots, q-1\}$.

Finally, consider the expression

$$A_x := \kappa(Q(\lfloor x \rfloor)) \dots \kappa(Q(\lfloor 2x \rfloor - 1)).$$

It follows from (4.8) that, for any given word $\beta \in A_q^k$, the number of occurrences of β as a subword in the word A_x is equal to $(1 + o(1))\frac{x}{q^k}$ as $x \to \infty$, thus completing the proof of Theorem 2.

Proof of Theorem 1 5.

Let

$$B_x = \overline{Q(\lfloor x \rfloor)} \dots \overline{Q(\lfloor 2x \rfloor - 1)}.$$

Also, let $Q^*(n) = \min_{\substack{p \mid n \\ p > \eta(x)}} p$ and observe that $Q^*(n) \le Q(n)$, while if $Q^*(n) \ne Q(n)$, then $p \mid n$ if $\eta(x) .$

Moreover, let

$$B_x^* = \overline{Q^*(\lfloor x \rfloor)} \dots \overline{Q^*(\lfloor 2x \rfloor - 1)}.$$

Clearly, we have, since $\eta(x)$ was chosen to be a slowly oscillating function,

(5.1)
$$0 \le \lambda(B_x) - \lambda(B_x^*) \le cx \sum_{\eta(x)
$$(x \to \infty).$$$$

It follows from (5.1) that we now only need to estimate $\lambda(B_x^*)$. To do so, we first let δ_x be a function tending to 0 very slowly as $x \to \infty$, in a manner specified below. If $p < x^{\delta_x}$, we have

(5.2)

$$R_p(x) := \#\{n \in I_x : Q^*(n) = p\} =$$

$$= (1 + o(1))\frac{x}{p} \prod_{\eta(x) < \pi < p} \left(1 - \frac{1}{\pi}\right) =$$

$$= (1+o(1))\frac{x}{p}\frac{\log\eta(x)}{\log p} \qquad (x\to\infty),$$

while on the other hand, if $x^{\delta_x} \leq p \leq 2x$, we have

(5.3)
$$R_p(x) < c\frac{x}{p} \frac{\log \eta(x)}{\log p}$$

Now, observe that, as $x \to \infty$,

$$\lambda(B_x^*) = \sum_{\eta(x)
(5.4)
$$= (1+o(1))\frac{x}{\log q} \sum_{\eta(x)
$$= (1+o(1))x \frac{\log \eta(x)}{\log q} \log \frac{\log x}{\log \eta(x)} + O\left(x\log \eta(x)\log \frac{1}{\delta_x}\right).$$$$$$

Choosing the function δ_x in such a way that

$$\log \frac{1}{\delta_x} = o\left(\log \frac{\log x}{\log \eta(x)}\right)$$

allows us to replace (5.4) with

(5.5)
$$\lambda(B_x^*) = (1+o(1))x \frac{\log \eta(x)}{\log q} \log \frac{\log x}{\log \eta(x)} \qquad (x \to \infty).$$

Now, let $\beta_1, \beta_2 \in A_q^k$. We will now make use of Lemmas 1 and 2. For this, we first write

$$[\eta(x), x^{\delta_x}] = \bigcup_{j=0}^T I_{u_j},$$

where

if

$$I_{u_j} = [u_j, u_{j+1}),$$
 with $u_0 = \eta(x),$ $u_j = 2^j \eta(x)$ for $j = 1, 2, \dots, T+1,$

where T is defined as the unique positive integer satisfying $u_T < x^{\delta_x} \leq u_{T+1}$.

In the spirit of Lemma 1, we will say that the prime $p \in I_u$ is a bad prime

$$\max_{\beta \in A_q^\ell} \left| \nu_\beta(\overline{p}) - \frac{L(u)}{q^\ell} \right| > \kappa_u \sqrt{L(u)}$$

and a good prime if

$$\left|\nu_{\beta}(\overline{p}) - \frac{L(u)}{q^{\ell}}\right| \le \kappa_u \sqrt{L(u)}.$$

We will now separate the sum $\sum R_p(x)\lambda(p)$ running over the primes p located in the intervals $[u_j, u_{j+1})$ into two categories, namely the bad primes and the good primes.

First, using (5.2) and (5.3), we have

(5.6)
$$\sum_{\substack{p \in [u_j, u_{j+1}) \\ p \text{ bad}}} R_p(x)\lambda(p) \le c\kappa(u_j) \sum_{p \in [u_j, u_{j+1})} \frac{x \log \eta(x)}{p \log p} \ll x \frac{\log \eta(x)}{\log \eta(x) + j \log 2}.$$

On the other hand, if p is a good prime, one can easily establish that the number of occurrences of the words β_1 and β_2 in the word B_x^* are close to each other, in the sense that

(5.7)
$$\nu_{\beta_1}(B_x^*) - \nu_{\beta_2}(B_x^*) = o(\lambda(B_x^*)).$$

Hence, proceeding as in [5], it follows, considering the true size of $\lambda(B_x^*)$ given by (5.5) and in light of (5.1), (5.6) and (5.7), that the number of words $\beta \in A_q^k$ appearing in B_x is equal to $(1 + o(1))\frac{\lambda(B_x)}{q^k}$ as $x \to \infty$.

We then proceed in a same manner to obtain similar estimates successively for the intervals $I_{x/2}, I_{x/2^2}, \ldots$ Thus, repeating the argument used in [5], Theorem 1 follows immediately.

The proofs of Theorems 3 through 7 can be obtained along the same lines and will therefore be omitted.

6. Proof of Theorem 8

To prove this theorem, we will consider two cases separately.

Let us first assume that

(6.1)
$$\sum_{p} \frac{\Re(1 - f(p)p^{-i\tau})}{p} < \infty \quad \text{for some real number } \tau.$$

It can be proved (as we did in [6]) that one can assume that $\tau = 0$.

For a start, define the additive function u implicitly on prime powers by $f(p^{\beta}) = e^{iu(p^{\beta})}$. Then, for each large number D, define the multiplicative function f_D on prime powers by

$$f_D(p^{\beta}) = \begin{cases} f(p^{\beta}) & \text{if } p \le D, \\ 1 & \text{if } p > D. \end{cases}$$

In light of (6.1), we have that

(6.2)
$$\sum_{p} \frac{u^2(p)}{p} < \infty$$

Further set

$$a_D(x) = \sum_{D$$

Since

$$f(n) = f_D(n) \exp\left\{i \sum_{p^\beta \parallel n} u(p^\beta)\right\} = f_D(n) \exp\left\{i u_D(n)\right\},$$

say, then, by using the Turán–Kubilius inequality, we obtain that

$$A(x) - A_D(x) = O(xb_D(x)),$$

where

$$A_D(x) = \eta_D(x) \sum_{n \le x} f_D(n) e(\alpha Q(n)),$$

where $\eta_D(x) = e^{ia_D(x)}$.

Further define the function τ_D implicitly by the equation $f_D(n) = \sum_{d|n} \tau_D(d)$. It is clear that $\tau_D(d) = 0$ if (d, D) > 1, while $|\tau_D(p^\beta)| \le 2$ for all prime powers p^β .

We clearly have

(6.3)
$$A_D(x) = \eta_D(x) \sum_{P(d) \le D} \tau_D(d) \sum_{md \le x} e(\alpha Q(md)) = \eta_D(x) \sum_{P(d) \le D} \tau_D(d) \Sigma_d,$$

say. On the other hand,

$$\frac{1}{x} \sum_{P(d) \le D} |\tau_D(d)| \, |\Sigma_d| \le \sum_{P(d) \le D} \frac{|\tau_D(d)|}{d} \le \prod_{p \le D} \left(1 + \frac{2}{p-1}\right).$$

Therefore, for some k_D , we have

$$\frac{1}{x} \sum_{d > k_D} |\tau_D(d)| |\Sigma_d| \le \rho_D,$$

where $\rho_D \to 0$ as $D \to \infty$.

Let us now consider the sum

(6.4)
$$T_Y = \sum_{Y \le m \le 2Y} e(\alpha Q(m)).$$

Recall that Q(m) is the smallest prime divisor of m which is larger than $\eta(m)$. Now, consider the somewhat similar function $Q_1(m)$, which stands for the smallest prime divisor of m which is larger than $\eta(x)$. Recalling the argument used at the beginning of the proof of Theorem 2, we easily see that

(6.5)
$$\#\{m \in [Y, 2Y] : Q_1(m) \neq Q(m)\} = cY \log \frac{\eta(2Y)}{\eta(Y)} = o(Y) \text{ as } Y \to \infty.$$

Therefore, setting

$$T_Y^{(1)} = \sum_{Y \le m \le 2Y} e(\alpha Q_1(m)),$$

it is clear that

$$\left|T_Y - T_Y^{(1)}\right| = o(Y) \qquad (Y \to \infty).$$

Moreover, as $Y \to \infty$, we have

(6.6)
$$\#\{m \in [Y, 2Y] : Q_1(m) = p\} = (1 + o(1))\frac{Y}{p} \prod_{\eta(Y) < \pi < p} \left(1 - \frac{1}{\pi}\right) = (1 + o(1))\frac{Y}{p} \frac{\log \eta(Y)}{\log p}.$$

Similarly as we obtained (4.1), we easily prove that

(6.7)
$$\#\{m \in [Y, 2Y] : Q(m) > \eta(Y)^{1/\varepsilon}\} \ll \varepsilon Y.$$

On the other hand, using (6.4), (6.6) and (4.1), we have

(6.8)
$$T_Y = Y \sum_{\eta(Y)$$

By using the well known I.M. Vinogradov theorem [10] asserting that

$$\lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \le x} e(\alpha p) = 0,$$

we obtain from (6.8) that

(6.9)
$$\left|\frac{T_Y}{Y}\right| \le \varepsilon + o(1) \qquad (Y \to \infty).$$

Using this, we can estimate Σ_d . Indeed, we have

(6.10)
$$|\Sigma_d| \le \left| \sum_{\frac{x}{2^L d} < m < \frac{x}{d}} e(\alpha Q(dm)) \right| + \frac{x}{2^L d}.$$

Let ℓ_D be an arbitrary large number and choose L so that

$$\eta\left(\frac{x}{2^L d}\right) > \ell_D.$$

Note that for an arbitrary large L, this inequality will hold provided x is large enough. Applying (6.9), it follows from (6.10) that

(6.11)
$$|\Sigma_d| \le \frac{x}{2^L d} + c\varepsilon \frac{x}{d}.$$

Using (6.11) in (6.3), we obtain that

(6.12)
$$|A_D(x)| \le x \left(c\varepsilon + \frac{1}{2^L} \right) \prod_{p \le D} \left(1 + \frac{2}{p-1} \right) + x \sum_{d > \ell_D} \frac{|\tau_D(d)|}{d}$$

Since D and L were chosen to be arbitrary numbers, it follows from (6.12) that

(6.13)
$$\lim_{x \to \infty} \frac{A_D(x)}{x} = 0.$$

Since

$$\frac{A(x)}{x} = \frac{A_D(x)}{x} + O\left(b_D(x)\right)$$

and recalling the definition of $b_D(x)$ and estimate (6.2), it follows from (6.13) that

$$\limsup_{x \to \infty} \frac{A(x)}{x} \le cb_D(x) = o(1),$$

so that if $D \to \infty$, we immediately obtain (2.1) for the first case, that is when (6.1) holds.

It remains to consider the case

(6.14)
$$\sum_{p} \frac{\Re(1 - f(p)p^{-i\tau})}{p} = \infty \quad \text{for all real numbers } \tau.$$

First, it is clear that, using (6.5), we have

(6.15)

$$E(x) := \sum_{x < n \le 2x} f(n)e(\alpha Q(n)) =$$

$$= \sum_{x < n \le 2x} f(n)e(\alpha Q_1(n)) + \sum_{\substack{x < n \le 2x \\ Q_1(n) \ne Q(n)}} f(n)e(\alpha Q(n)) =$$

$$= \sum_{x < n \le 2x} f(n)e(\alpha Q_1(n)) + o(x) =$$

$$= E_1(x) + o(x),$$

say.

In light of (6.7), we may ignore those $n \in (x, 2x]$ for which $Q_1(n) > \eta(x)^{1/\varepsilon}$, that is,

(6.16)
$$\sum_{\substack{x < n \le 2x \\ Q_1(n) > \eta(x)^{1/\varepsilon}}} f(n) e(\alpha Q_1(n)) \ll \varepsilon x.$$

Combining (6.15) and (6.16), we can write that

(6.17)
$$E(x) = \sum_{\eta(x)$$

where, setting $\Pi_p := \prod_{\eta(x) < \pi < p} \pi$,

(6.18)
$$\Sigma_p = \sum_{\substack{\frac{x}{p} < m \le \frac{2x}{p} \\ (m, \Pi_p) = 1}} f(m).$$

Now, consider the summation

$$S(x) = \sum_{n \le x} f(n).$$

In light of (6.14), it follows from a classical theorem of Halász (see [9]) that there exists a function $\varepsilon(x)$ which tends to 0 monotonically as $x \to \infty$ such that

$$\frac{|S(x)|}{x} \le \varepsilon(x),$$

which in turn implies that

(6.19)
$$\frac{|S(2x) - S(x)|}{x} \le \varepsilon(x)$$

From (6.18), we get that

(6.20)
$$\Sigma_{p} = \sum_{\substack{\frac{x}{p} < m \leq \frac{2x}{p}}} f(m) \sum_{\delta \mid (\Pi_{p}, m)} \mu(\delta) =$$
$$= \sum_{\delta \mid \Pi_{p}} \mu(\delta) \sum_{x < m\delta p \leq 2x} f(m\delta) =$$
$$= \sum_{\delta \mid \Pi_{p}} \mu(\delta) f(\delta) \left(S\left(\frac{2x}{\delta p}\right) - S\left(\frac{x}{\delta p}\right) \right) + Er_{p},$$

where Er_p is the error term coming from those terms for which $(m, \delta) > 1$.

Thus, it follows from (6.19) and (6.20) that

(6.21)
$$|\Sigma_p| \le \sum_{\delta \mid \Pi_p} \mu^2(\delta) \varepsilon \left(\frac{x}{\delta p}\right) + |Er_p| \le \frac{x}{p} \sum_{\delta \mid \Pi_p} \frac{\mu^2(\delta)}{\delta} + |Er_p|,$$

where we used the fact that since

$$\max_{\eta(x)$$

then $\varepsilon(x/\delta p) = o(x/\delta p)$ uniformly for $\eta(x) and <math>\delta |\Pi_p$.

Now, since

$$\sum_{\delta \mid \Pi_p} \frac{\mu^2(\delta)}{\delta} \le \prod_{\eta(x) < \pi < \eta(n)^{1/\varepsilon}} \left(1 + \frac{1}{\pi} \right) \le c_{\varepsilon}^1,$$

it follows from (6.21) that, as $x \to \infty$,

(6.22)
$$|\Sigma_p| \le \frac{cx}{p\varepsilon} \cdot o(1) + |Er_p|.$$

Using (6.22) in (6.17), we obtain that, as $x \to \infty$,

(6.23)
$$|E(x)| \le \frac{cx}{\varepsilon} \left(\sum_{\eta(x)$$

where

$$V(x) = \sum_{\eta(x)$$

We will now show that

(6.24)
$$V(x) = o(x) \qquad (x \to \infty).$$

Setting $J = J(x) = (\eta(x), \eta(x)^{1/\varepsilon})$ and writing those $m\delta p$ such that $(m, \delta) > 1$ as $m\delta p = \ell \kappa^2 \delta_1 p$, where κ and δ_1 are squarefree numbers whose prime factors all belong to J, we have that

(6.25)
$$V(x) \leq \sum_{\kappa \geq \eta(x)} \mu^{2}(\kappa) \sum_{\substack{x < \ell \kappa^{2} \delta_{1} p \leq 2x \\ p \in J \\ \pi \mid \delta_{1} \Rightarrow \pi \in J}} \mu^{2}(\delta_{1}) = \sum_{\kappa \geq \eta(x)} \mu^{2}(\kappa) \sum_{\substack{x < \ell \kappa^{2} \delta_{1} p \leq 2x \\ \pi \mid \delta_{1} \Rightarrow \pi \in J}} \mu^{2}(\delta_{1}) \sum_{\substack{x \geq \eta(x) \\ \kappa^{2} \delta_{1} \Rightarrow \pi \in J}} \mu^{2}(\delta_{1}) \sum_{\substack{x \geq 2 \delta_{1} p \\ \kappa^{2} \delta_{1} p \leq \ell \leq \frac{2x}{\kappa^{2} \delta_{1} p}}} 1 \leq \sum_{\kappa \geq \eta(x)} \frac{\mu^{2}(\kappa)}{\kappa^{2}} \sum_{\substack{p \in J \\ \pi \mid \delta_{1} \Rightarrow \pi \in J}} \frac{\mu^{2}(\delta_{1})}{\delta_{1} p}.$$

Since it is easily checked that

$$\sum_{\substack{p \in J}} \frac{1}{p} \leq c_1 \log \frac{1}{\varepsilon},$$
$$\sum_{\pi \mid \delta_1 \Rightarrow \pi \in J} \frac{\mu^2(\delta_1)}{\delta_1} \leq \prod_{\pi \in J} \left(1 + \frac{1}{\pi}\right) \leq \frac{c_2}{\varepsilon} \log \eta(x),$$
$$\sum_{\kappa \geq \eta(x)} \frac{1}{\kappa^2} \leq \frac{c_3}{\eta(x)},$$

then using these estimates in (6.25), we obtain that

$$V(x) \le c_4 x \frac{\log \eta(x)}{\eta(x)} \frac{1}{\varepsilon} \log \frac{1}{\varepsilon} = o(x) \qquad (x \to \infty),$$

thus proving our claim (6.24).

Substituting (6.24) in (6.23), we obtain that

$$|E(x)| \le cx\frac{1}{\varepsilon}\log\frac{1}{\varepsilon} \cdot o(1) + o(x) + O(\varepsilon x) = o(x) \qquad (x \to \infty),$$

from which it follows that given any arbitrarily small number $\xi > 0$, there is some $x_0 = x_0(\xi)$ such that

(6.26)
$$|E(X)| \le \xi X \quad \text{for all } X > x_0.$$

Therefore, given any fixed large number x and letting L be the smallest integer such that $2^L > x/2$, we have that, using (6.26) repetitively,

$$|A(x)| = \left|\sum_{a=1}^{L} E\left(\frac{x}{2^a}\right)\right| \le c\xi \sum_{a=1}^{L} \frac{x}{2^a} < c\xi x,$$

thus proving (2.1) in the second case, as requested.

This completes the proof of Theorem 8.

References

 Bassily, N.L. and I. Kátai, Distribution of consecutive digits in the q-ary expansions of some sequences of integers, *Journal of Mathematical Sciences*, 78(1) (1996), 11–17.

- [2] De Koninck, J.M. and F. Luca, Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
- [3] De Koninck, J.M. and I. Kátai, On the distribution of subsets of primes in the prime factorization of integers, Acta Arithmetica, 72(2) (1995), 169–200.
- [4] De Koninck, J.M. and I. Kátai, Construction of normal numbers by classified prime divisors of integers, *Functiones et Approximatio*, 45(2) (2011), 231–253.
- [5] De Koninck, J.M. and I. Kátai, On a problem on normal numbers raised by Igor Shparlinski, Bulletin of the Austr. Math. Soc., 84 (2011), 337–349.
- [6] De Koninck, J.M. and I. Kátai, Exponential sums involving the largest prime factor function, Acta Arithmetica, 146 (2011), 233–245.
- [7] De Koninck, J.M. and I. Kátai, Construction of normal numbers using the distribution of the k-th largest prime factor, Bull. Australian Mathematical Society, to appear.
- [8] Halász, G., Über die Mittelwerte multiplikativen zahlentheoretischer Funktionen, Acta Math. Acad. Scient. Hungar., 19 (1968), 365–404.
- [9] Halberstam, H.H. and H.E. Richert, Sieve Methods, Academic Press, London, 1974.
- [10] Vinogradov, I.M., The Method of Trigonometric Sums in the Theory of Numbers, translated, revised and annotated by A. Davenport and K.F. Roth, Interscience, New York, 1954.

J.-M. De Koninck

Départment de mathématiques et de statistique Université Laval Québec Québec G1V 0A6 Canada jmdk@mat.ulaval.ca

I. Kátai

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University Pázmány Péter sétány 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu