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Abstract. Given an integer q ≥ 2, a q-normal number is an irrational
number ξ such that any preassigned sequence of  digits occurs in the q-
ary expansion of ξ at the expected frequency, namely 1/q. Let η(x) be a

slowly increasing function such that log η(x)
log x

→ 0 as x → ∞. Then, letting
P (n) stand for the largest prime factor of n, set Q(n) to be the smallest
prime divisor of n which is larger than η(n), while setting Q(n) = 1 if
P (n) > η(n). Then, we show that the real number 0.Q(1)Q(2) . . . is a
normal number in base 10. With various similar constructions, we create
large families of normal numbers in any given base q ≥ 2. Finally, we
consider exponential sums involving the Q(n) function.

1. Introduction

Given an integer q ≥ 2, a q-normal number, or simply a normal number,
is an irrational number whose q-ary expansion is such that any preassigned
sequence, of length  ≥ 1, of base q digits from this expansion, occurs at the
expected frequency, namely 1/q.
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Let ℘ stand for the set of all primes. Given an integer q ≥ 2, let R,
℘0, ℘1, . . . , ℘q−1 be disjoint sets of prime numbers such that

℘ = R∪ ℘0 ∪ ℘1 ∪ · · · ∪ ℘q−1,

and such that, uniformly for 2 ≤ v ≤ u as u→ ∞,

π([u, u+ v] ∩ ℘j) =
1

q
π([u, u+ v]) +O


u

log5 u


(j = 0, 1, . . . , q − 1),

so that, in particular,

π([u, u+ v] ∩R) = O


u

log5 u


.

Then, consider the function κ defined on ℘ as follows:

κ(p) =


 if p ∈ ℘,
Λ if p ∈ R.

With this notation, we have

Theorem 2. The number

ξ2 = 0.κ(Q(1))κ(Q(2))κ(Q(3)) . . .

is a q-normal number.

Remark 1. In an earlier paper [4], we used such classification of prime numbers
to create normal numbers, but by simply concatenating the numbers κ(1),
κ(2), κ(3), . . ..

Let a be a fixed non zero integer. Then we have the following result.

Theorem 3. The number

ξ3 = 0.κ(Q(2 + a))κ(Q(3 + a))κ(Q(5 + a)) . . . κ(Q(p+ a)) . . . ,

where p runs through the set of primes, is a q-normal number.

Define ℘∗ as the set of all the prime numbers p ≡ 1 (mod 4). Then, let
R∗, ℘∗

0, ℘
∗
1, . . . , ℘

∗
q−1 be disjoint sets of prime numbers such that

℘∗ = R∗ ∪ ℘∗
0 ∪ ℘∗

1 ∪ · · · ∪ ℘∗
q−1,

and such that, uniformly for 2 ≤ v ≤ u as u→ ∞,

π([u, u+ v] ∩ ℘∗
j ) =

1

q
π([u, u+ v] ∩ ℘∗) +O


u

log5 u


(j = 0, 1, . . . , q − 1),
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Let Aq := {0, 1, . . . , q − 1}. Given an integer  ≥ 1, an expression of the
form i1i2 . . . i, where each ij ∈ Aq is called a word of length . We sometimes
write λ(β) =  to indicate that β is a word of length . The symbol Λ will
denote the empty word. We let A

q stand for the set of all words of length  and
A∗
q stand for the set of all the words regardless of their length.

Given a positive integer n, we write its q-ary expansion as

(1.1) n = ε0(n) + ε1(n)q + · · ·+ εt(n)q
t,

where εi(n) ∈ Aq for 0 ≤ i ≤ t and εt(n) = 0. To this representation, we
associate the word

(1.2) n = ε0(n)ε1(n) . . . εt(n) = ε0ε1 . . . εt ∈ At+1
q .

Let P (n) stand for the largest prime factor of n ≥ 2, with P (1) = 1. In a
recent paper [5], we showed that if F ∈ Z[x] is a polynomial of positive degree
with F (x) > 0 for x > 0, then the real numbers

0.F (P (2))F (P (3)) . . . F (P (n)) . . .

and
0.F (P (2 + 1))F (P (3 + 1)) . . . F (P (p+ 1)) . . . ,

where p runs through the sequence of primes, are q-normal numbers.

Let η(x) be a slowly increasing function, that is an increasing function

satisfying lim
x→∞

η(cx)

η(x)
= 1 for any fixed constant c > 0. Being slowly increasing,

it satisfies in particular the condition
log η(x)

log x
→ 0 as x→ ∞.

We then letQ(n) be the smallest prime divisor of n which is larger than η(n),
while setting Q(n) = 1 if P (n) > η(n). Then, we show that the real number
0.Q(1)Q(2)Q(3) . . . is a q-normal number. With various similar constructions,
we create large families of normal numbers in any given base q ≥ 2.

Finally, we consider exponential sums involving the Q(n) function.

2. Main results

Theorem 1. Given an arbitrary basis q ≥ 2 and for any integer n, let n be as
in (1.2). Then the number

ξ1 = 0.Q(1)Q(2)Q(3) . . .

is a q-normal number.
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We now introduce the product function G(n) = (n + 1)(n + 2) · · · (n + q)
and further define the function

ρ(n) =


 if p = Q(G(n)) > q + 1 and p|n+ + 1,
Λ otherwise.

Moreover, let (pj)j≥1 be the sequence of all primes larger than q, that is,
q < p1 < p2 < · · · With this notation, we have the following result.

Theorem 7. The number

ξ8 = 0.ρ(p1)ρ(p2)ρ(p3) . . .

is a q-normal number.

Let α be an arbitrary irrational number. We will be using the standard
notation e(y) = exp{2πiy}. We then have the following.

Theorem 8. Let

A(x) :=

n≤x

f(n)e(αQ(n)),

where f is any given multiplicative function satisfying |f(n)| = 1 for all positive
integers n. Then,

(2.1) lim
x→∞

A(x)

x
= 0.

3. Notation and preliminary lemmas

For each integer n ≥ 2, let L(n) =


logn

log q


. Let β ∈ A

q and n be written

as in (1.1). We then let νβ(n) stand for the number of occurrences of the word
β in the q-ary expansion of the positive integer n, that is, the number of times
that εj(n) . . . εj+−1(n) = β as j varies from 0 to t− (− 1).

The letters p and π will always denote prime numbers. The letter c with
or without subscript always denotes a positive constant but not necessarily the
same at each occurrence.

We will be using a key result obtained by Bassily and Kátai [1] and which
we state here as two lemmas, a proof of which, in a more general context, can
be found in our earlier paper [5].
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so that, in particular,

π([u, u+ v] ∩R∗) = O


u

log5 u


.

Then, consider the following function defined on ℘ as follows

ν(p) =


 if p ∈ ℘∗

 ,

Λ if p ∈
q−1
=0 ℘

∗
 .

With this notation, we have the following result.

Theorem 4. The number

ξ4 = 0.ν(Q(1))ν((Q(2))ν(Q(3)) . . .

is a q-normal number.

Consider the arithmetic function f(n) = n2+1. Then, we have the following
result.

Theorem 5. The two numbers

ξ5 = 0.κ(Q(f(1)))κ(Q(f(2)))κ(Q(f(3))) . . . ,

ξ6 = 0.κ(Q(f(2)))κ(Q(f(3)))κ(Q(f(5))) . . . κ(Q(f(p))) . . . ,

where p runs through the set of primes, are q-normal numbers.

Remark 2. One can show that this last result remains true if f(n) is replaced
by another non constant irreducible polynomial.

We now introduce the product function F (n) = n(n + 1) · · · (n + q − 1).
Observe that if for some positive integer n, we have p = Q(F (n)) > q, then
p|n+ only for one  ∈ {0, 1, . . . , q−1}, implying that  is uniquely determined
for all positive integers n such that Q(F (n)) > q. Thus we may define the
function

τ(n) =


 if p = Q(F (n)) > q and p|n+ ,
Λ otherwise.

Using this notation, we have the following result.

Theorem 6. The number

ξ7 = 0.τ(q + 1)τ(q + 2)τ(q + 3) . . .

is a q-normal number.
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Now let p0, p1, . . . , pk−1 be any distinct primes belonging to the interval
(η(x), η(x)1/ε), and let p∗0 < p∗1 < · · · < p∗k−1 be the unique permutation of the
primes p0, p1, . . . , pk−1, namely the one such that has all its members appear
in increasing order, so that we have

η(x) < p∗0 < p∗1 < · · · < p∗k−1 < η(x)1/ε.

Our first goal will be to estimate the size of

N(x|p0, p1, . . . , pk−1) := #{n ≤ x : Q(n+ j) = pj , j = 0, 1, . . . , k − 1}.

We must therefore estimate the number of those integers n ∈ Ix for which
pj |n+ j (j = 0, 1, . . . , k − 1), while at the same time (πj , n+ j) = 1 if η(x) <
< πj < pj (j = 0, 1, . . . , k − 1). Before moving on, let us set

Qk = p0p1 · · · pk−1 and Tj =


η(x)<π<pj

π (j = 0, 1, . . . , k − 1).

It is then easy to see that, say by using the Eratosthenian sieve (see for instance
Chapter 12 in the book of De Koninck and Luca [2]), we obtain

(4.2) N(x|p0, p1, . . . , pk−1) = (1 + o(1))
x

Qk
Σ0 (x→ ∞),

where

Σ0 =


δ0,...,δk−1
δj |Tj (j=0,1,...,k−1)

(δi,δj)=1 if i =j

µ(δ0) · · ·µ(δk−1)

δ0 · · · δk−1

(here µ stands for the Möbius function). One can see that

Σ0 =

=


η(x)<π<p∗0


1− k

π


·


p∗0<π<p

∗
1


1− k − 1

π


· · ·


p∗k−2<π<p

∗
k−1


1− 1

π



= (1 + o(1))


log p∗0
log η(x)

−k 
log p∗1
log p∗0

−k+1

· · ·

log p∗k−1

log p∗k−2

−1

.

(4.3)

Hence, if we set σ(p) :=
log η(x)

log p
, it follows from (4.3) that

(4.4) Σ0 = (1 + o(1))σ(p0) · · ·σ(pk−1) (x→ ∞).

Substituting (4.4) in (4.2), we obtain

(4.5) N(x|p0, p1, . . . , pk−1) = (1 + o(1))x

k−1
j=0

σ(pj)

pj
(x→ ∞),

an estimate which holds uniformly for η(x) ≤ pj ≤ η(x)1/ε (j = 0, 1, . . . , k−1).
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Lemma 1. Let κu be a function of u such that κu > 1 for all u. Given a word
β ∈ A

q and setting

Vβ(u) := #


p ∈ ℘ : u ≤ p ≤ 2u such that

νβ(p)−
L(u)

q

 > κu

L(u)


,

then, there exists a positive constant c such that

Vβ(u) ≤
cu

(log u)κ2u
.

Lemma 2. Let κu be as in Lemma 1. Given β1, β2 ∈ A
q with β1 = β2, set

∆β1,β2
(u) := #


p ∈ ℘ : u ≤ p ≤ 2u such that |νβ1

(p)− νβ2
(p)| > κu


L(u)


.

Then, for some positive constant c,

∆β1,β2(u) ≤
cu

(log u)κ2u
.

4. Proof of Theorem 2

We start by proving Theorem 2 since its content will be useful for the proof
of Theorem 1.

Let Ix = [x, 2x] and first observe that

#{n ∈ Ix : there exists p|n, p ∈ [η(x), η(2x)]} ≤

≤


η(x)≤p≤η(2x)


2x

p


−

x

p


≤ c x


η(x)≤p≤η(2x)

1

p
=

= o(1) (x→ ∞).

This means that with the exception of o(x) integers n ∈ Ix, the number Q(n)
is the smallest prime divisor of n bigger than η(x).

Secondly, observe that we may assume that, given any fixed small ε > 0,
we may assume that Q(n) ≤ η(x)1/ε. Indeed,

(4.1) #{n ∈ Ix : Q(n) > η(x)1/ε}  x


η(x)<p≤η(x)1/ε


1− 1

p


 εx.
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5. Proof of Theorem 1

Let
Bx = Q(x) . . . Q(2x − 1).

Also, let Q∗(n) = min
p|n

p>η(x)

p and observe that Q∗(n) ≤ Q(n), while if Q∗(n) =

= Q(n), then p|n if η(x) < p < η(2x).

Moreover, let
B∗
x = Q∗(x) . . . Q∗(2x − 1).

Clearly, we have, since η(x) was chosen to be a slowly oscillating function,

(5.1)
0 ≤ λ(Bx)− λ(B∗

x) ≤ cx


η(x)<p<η(2x)

log p

log q
≤ c1x log

η(2x)

η(x)
= o(x)

(x→ ∞).

It follows from (5.1) that we now only need to estimate λ(B∗
x). To do so, we

first let δx be a function tending to 0 very slowly as x → ∞, in a manner
specified below. If p < xδx , we have

Rp(x) : = #{n ∈ Ix : Q
∗(n) = p} =

= (1 + o(1))
x

p


η(x)<π<p


1− 1

π


=

= (1 + o(1))
x

p

log η(x)

log p
(x→ ∞),

(5.2)

while on the other hand, if xδx ≤ p ≤ 2x, we have

(5.3) Rp(x) < c
x

p

log η(x)

log p
.

Now, observe that, as x→ ∞,

λ(B∗
x) =


η(x)<p≤2x

Rp(x)λ(p) =


η(x)<p≤2x

Rp(x)


log p

log q


=

(5.4) = (1 + o(1))
x

log q


η(x)<p≤2x

log η(x)

p
+O


x log η(x)


xδx<p≤x

1

p




= (1 + o(1))x
log η(x)

log q
log

log x

log η(x)
+O


x log η(x) log

1

δx


.
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We will now use a technique which we first used in [3] to study the dis-
tribution of subsets of primes in the prime factorization of integers. We first
introduce the sequence

u0 = η(x), uj+1 = uj +
uj

log2 uj
for each j = 0, 1, 2, . . .

and then let T be the unique positive integer satisfying uT−1 < η(x)1/ε ≤ uT .
Then, consider the intervals

J0 := [u0, u1), J1 := [u1, u2), . . . , JT−1 := [uT−1, uT ).

Choose k arbitrary integers j0, . . . , jk−1 ∈ {0, 1, . . . , T − 1}, as well as k
arbitrary integers i0, . . . , ik−1 from the set {0, 1, . . . , q − 1}, and consider the
quantity

(4.6) M


x


j0, j1, . . . , jk−1

i0, i1, . . . , ik−1


=


p∈J∩℘i

N(x|p0, . . . , pk−1).

Observe that
σ(ph)

ph
= (1 + o(1))

σ(uh)

uh
as x→ ∞ if p ∈ Jh. It follows from

this observation and using (4.5) and (4.6) that

(4.7) M


x


j0, j1, . . . , jk−1

i0, i1, . . . , ik−1


= (1 + o(1))x


p∈J∩℘i

k−1
j=0

σ(uj)

uj
.

Using Theorem 1 of our 1995 paper [3] in combination with (4.7), we obtain
that

(4.8)
M


x


j0, j1, . . . , jk−1

i0, i1, . . . , ik−1


= (1 + o(1))M


x


j0, j1, . . . , jk−1

i0, i

1, . . . , i


k−1



(x→ ∞),

where (i0, i

1, . . . , i


k) is any arbitrary sequence of length k composed of integers

from the set {0, . . . , q − 1}.
Finally, consider the expression

Ax := κ(Q(x)) . . . κ(Q(2x − 1)).

It follows from (4.8) that, for any given word β ∈ Ak
q , the number of occurrences

of β as a subword in the word Ax is equal to (1 + o(1))
x

qk
as x → ∞, thus

completing the proof of Theorem 2. 
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first let δx be a function tending to 0 very slowly as x → ∞, in a manner
specified below. If p < xδx , we have

Rp(x) : = #{n ∈ Ix : Q
∗(n) = p} =

= (1 + o(1))
x

p


η(x)<π<p


1− 1

π


=

= (1 + o(1))
x

p

log η(x)

log p
(x→ ∞),

(5.2)

while on the other hand, if xδx ≤ p ≤ 2x, we have

(5.3) Rp(x) < c
x

p

log η(x)

log p
.

Now, observe that, as x→ ∞,

λ(B∗
x) =


η(x)<p≤2x

Rp(x)λ(p) =


η(x)<p≤2x

Rp(x)


log p

log q


=

(5.4) = (1 + o(1))
x

log q


η(x)<p≤2x

log η(x)

p
+O


x log η(x)


xδx<p≤x

1

p




= (1 + o(1))x
log η(x)

log q
log

log x

log η(x)
+O


x log η(x) log

1

δx


.
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Hence, proceeding as in [5], it follows, considering the true size of λ(B∗
x)

given by (5.5) and in light of (5.1), (5.6) and (5.7), that the number of words

β ∈ Ak
q appearing in Bx is equal to (1 + o(1))

λ(Bx)

qk
as x→ ∞.

We then proceed in a same manner to obtain similar estimates successively
for the intervals Ix/2, Ix/22 , . . . Thus, repeating the argument used in [5], The-
orem 1 follows immediately. 

The proofs of Theorems 3 through 7 can be obtained along the same lines
and will therefore be omitted.

6. Proof of Theorem 8

To prove this theorem, we will consider two cases separately.

Let us first assume that

(6.1)

p

(1− f(p)p−iτ )

p
<∞ for some real number τ.

It can be proved (as we did in [6]) that one can assume that τ = 0.

For a start, define the additive function u implicitly on prime powers by

f(pβ) = eiu(p
β). Then, for each large number D, define the multiplicative

function fD on prime powers by

fD(p
β) =


f(pβ) if p ≤ D,
1 if p > D.

In light of (6.1), we have that

(6.2)

p

u2(p)

p
<∞.

Further set

aD(x) =


D<p≤x

u(p)

p− 1
, b2D(x) =


D<p≤x

u2(p)

p
.

Since

f(n) = fD(n) exp


i


pβn

u(pβ)


 = fD(n) exp {iuD(n)} ,
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Choosing the function δx in such a way that

log
1

δx
= o


log

log x

log η(x)



allows us to replace (5.4) with

(5.5) λ(B∗
x) = (1 + o(1))x

log η(x)

log q
log

log x

log η(x)
(x→ ∞).

Now, let β1, β2 ∈ Ak
q . We will now make use of Lemmas 1 and 2. For this,

we first write

[η(x), xδx ] =

T
j=0

Iuj
,

where

Iuj = [uj , uj+1), with u0 = η(x), uj = 2jη(x) for j = 1, 2, . . . , T+1,

where T is defined as the unique positive integer satisfying uT < xδx ≤ uT+1.

In the spirit of Lemma 1, we will say that the prime p ∈ Iu is a bad prime
if

max
β∈A

q

νβ(p)−
L(u)

q

 > κu

L(u)

and a good prime if νβ(p)−
L(u)

q

 ≤ κu

L(u).

We will now separate the sum

Rp(x)λ(p) running over the primes p lo-

cated in the intervals [uj , uj+1) into two categories, namely the bad primes and
the good primes.

First, using (5.2) and (5.3), we have


p∈[uj,uj+1)

p bad

Rp(x)λ(p) ≤ cκ(uj)


p∈[uj ,uj+1)

x log η(x)

p log p


 x
log η(x)

log η(x) + j log 2
.

(5.6)

On the other hand, if p is a good prime, one can easily establish that the
number of occurrences of the words β1 and β2 in the word B

∗
x are close to each

other, in the sense that

(5.7) νβ1
(B∗

x)− νβ2
(B∗

x) = o(λ(B∗
x)).
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Hence, proceeding as in [5], it follows, considering the true size of λ(B∗
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β ∈ Ak
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as x→ ∞.

We then proceed in a same manner to obtain similar estimates successively
for the intervals Ix/2, Ix/22 , . . . Thus, repeating the argument used in [5], The-
orem 1 follows immediately. 

The proofs of Theorems 3 through 7 can be obtained along the same lines
and will therefore be omitted.

6. Proof of Theorem 8

To prove this theorem, we will consider two cases separately.

Let us first assume that

(6.1)
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p
<∞ for some real number τ.

It can be proved (as we did in [6]) that one can assume that τ = 0.

For a start, define the additive function u implicitly on prime powers by
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β). Then, for each large number D, define the multiplicative

function fD on prime powers by

fD(p
β) =


f(pβ) if p ≤ D,
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In light of (6.1), we have that
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p
<∞.

Further set

aD(x) =
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u(p)

p− 1
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u2(p)

p
.

Since

f(n) = fD(n) exp
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pβn
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 = fD(n) exp {iuD(n)} ,
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it is clear that TY − T
(1)
Y

 = o(Y ) (Y → ∞).

Moreover, as Y → ∞, we have

#{m ∈ [Y, 2Y ] : Q1(m) = p} = (1 + o(1))
Y

p


η(Y )<π<p


1− 1

π


=

= (1 + o(1))
Y

p

log η(Y )

log p
.

(6.6)

Similarly as we obtained (4.1), we easily prove that

(6.7) #{m ∈ [Y, 2Y ] : Q(m) > η(Y )1/ε}  εY.

On the other hand, using (6.4), (6.6) and (4.1), we have

(6.8) TY = Y


η(Y )<p<η(Y )1/ε

e(αp) log η(Y )

p log p
+O(εY ).

By using the well known I.M. Vinogradov theorem [10] asserting that

lim
x→∞

1

π(x)


p≤x

e(αp) = 0,

we obtain from (6.8) that

(6.9)


TY
Y

 ≤ ε+ o(1) (Y → ∞).

Using this, we can estimate Σd. Indeed, we have

(6.10) |Σd| ≤




x

2Ld
<m< x

d

e(αQ(dm))


+

x

2Ld
.

Let D be an arbitrary large number and choose L so that

η
 x

2Ld


> D.

Note that for an arbitrary large L, this inequality will hold provided x is large
enough. Applying (6.9), it follows from (6.10) that

(6.11) |Σd| ≤
x

2Ld
+ cε

x

d
.
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say, then, by using the Turán–Kubilius inequality, we obtain that

A(x)−AD(x) = O (xbD(x)) ,

where
AD(x) = ηD(x)


n≤x

fD(n)e(αQ(n)),

where ηD(x) = eiaD(x).

Further define the function τD implicitly by the equation fD(n) =


d|n τD(d).

It is clear that τD(d) = 0 if (d,D) > 1, while |τD(pβ)| ≤ 2 for all prime powers
pβ .

We clearly have

(6.3) AD(x) = ηD(x)


P (d)≤D

τD(d)

md≤x

e(αQ(md)) = ηD(x)


P (d)≤D

τD(d)Σd,

say. On the other hand,

1

x


P (d)≤D

|τD(d)| |Σd| ≤


P (d)≤D

|τD(d)|
d

≤

p≤D


1 +

2

p− 1


.

Therefore, for some kD, we have

1

x


d>kD

|τD(d)||Σd| ≤ ρD,

where ρD → 0 as D → ∞.

Let us now consider the sum

(6.4) TY =


Y≤m≤2Y

e(αQ(m)).

Recall that Q(m) is the smallest prime divisor of m which is larger than
η(m). Now, consider the somewhat similar function Q1(m), which stands for
the smallest prime divisor of m which is larger than η(x). Recalling the argu-
ment used at the beginning of the proof of Theorem 2, we easily see that

(6.5) #{m ∈ [Y, 2Y ] : Q1(m) = Q(m)} = cY log
η(2Y )

η(Y )
= o(Y ) as Y → ∞.

Therefore, setting

T
(1)
Y =


Y≤m≤2Y

e(αQ1(m)),
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it is clear that TY − T
(1)
Y

 = o(Y ) (Y → ∞).

Moreover, as Y → ∞, we have

#{m ∈ [Y, 2Y ] : Q1(m) = p} = (1 + o(1))
Y

p


η(Y )<π<p


1− 1

π


=

= (1 + o(1))
Y

p

log η(Y )

log p
.

(6.6)

Similarly as we obtained (4.1), we easily prove that
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On the other hand, using (6.4), (6.6) and (4.1), we have

(6.8) TY = Y


η(Y )<p<η(Y )1/ε

e(αp) log η(Y )

p log p
+O(εY ).

By using the well known I.M. Vinogradov theorem [10] asserting that

lim
x→∞

1

π(x)


p≤x

e(αp) = 0,

we obtain from (6.8) that

(6.9)


TY
Y

 ≤ ε+ o(1) (Y → ∞).

Using this, we can estimate Σd. Indeed, we have

(6.10) |Σd| ≤




x

2Ld
<m< x

d

e(αQ(dm))


+

x

2Ld
.

Let D be an arbitrary large number and choose L so that

η
 x

2Ld


> D.

Note that for an arbitrary large L, this inequality will hold provided x is large
enough. Applying (6.9), it follows from (6.10) that

(6.11) |Σd| ≤
x

2Ld
+ cε

x

d
.
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Combining (6.15) and (6.16), we can write that

(6.17) E(x) =


η(x)<p<η(x)1/ε

f(p)e(αp)Σp +O(εx),

where, setting Πp :=


η(x)<π<p

π,

(6.18) Σp =


x
p

<m≤ 2x
p

(m,Πp)=1

f(m).

Now, consider the summation

S(x) =

n≤x

f(n).

In light of (6.14), it follows from a classical theorem of Halász (see [9]) that
there exists a function ε(x) which tends to 0 monotonically as x → ∞ such
that

|S(x)|
x

≤ ε(x),

which in turn implies that

(6.19)
|S(2x)− S(x)|

x
≤ ε(x).

From (6.18), we get that

Σp =


x
p<m≤ 2x

p

f(m)


δ|(Πp,m)

µ(δ) =

=

δ|Πp

µ(δ)


x<mδp≤2x

f(mδ) =

=

δ|Πp

µ(δ)f(δ)


S


2x

δp


− S


x

δp


+ Erp,

(6.20)

where Erp is the error term coming from those terms for which (m, δ) > 1.

Thus, it follows from (6.19) and (6.20) that

(6.21) |Σp| ≤

δ|Πp

µ2(δ)ε


x

δp


+ |Erp| ≤

x

p


δ|Πp

µ2(δ)

δ
+ |Erp| ,
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Using (6.11) in (6.3), we obtain that

(6.12) |AD(x)| ≤ x


cε+

1

2L

 
p≤D


1 +

2

p− 1


+ x


d>D

|τD(d)|
d

.

Since D and L were chosen to be arbitrary numbers, it follows from (6.12) that

(6.13) lim
x→∞

AD(x)

x
= 0.

Since
A(x)

x
=
AD(x)

x
+O (bD(x))

and recalling the definition of bD(x) and estimate (6.2), it follows from (6.13)
that

lim sup
x→∞

A(x)

x
≤ cbD(x) = o(1),

so that if D → ∞, we immediately obtain (2.1) for the first case, that is when
(6.1) holds.

It remains to consider the case

(6.14)

p

(1− f(p)p−iτ )

p
=∞ for all real numbers τ.

First, it is clear that, using (6.5), we have

E(x) : =


x<n≤2x

f(n)e(αQ(n)) =

=


x<n≤2x

f(n)e(αQ1(n)) +


x<n≤2x
Q1(n) =Q(n)

f(n)e(αQ(n)) =

=


x<n≤2x

f(n)e(αQ1(n)) + o(x) =

= E1(x) + o(x),

(6.15)

say.

In light of (6.7), we may ignore those n ∈ (x, 2x] for which Q1(n) > η(x)1/ε,
that is,

(6.16)


x<n≤2x

Q1(n)>η(x)1/ε

f(n)e(αQ1(n)) εx.
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Combining (6.15) and (6.16), we can write that

(6.17) E(x) =


η(x)<p<η(x)1/ε

f(p)e(αp)Σp +O(εx),

where, setting Πp :=


η(x)<π<p

π,

(6.18) Σp =


x
p

<m≤ 2x
p

(m,Πp)=1

f(m).

Now, consider the summation

S(x) =

n≤x

f(n).

In light of (6.14), it follows from a classical theorem of Halász (see [9]) that
there exists a function ε(x) which tends to 0 monotonically as x → ∞ such
that

|S(x)|
x

≤ ε(x),

which in turn implies that

(6.19)
|S(2x)− S(x)|

x
≤ ε(x).

From (6.18), we get that

Σp =


x
p<m≤ 2x

p

f(m)


δ|(Πp,m)

µ(δ) =

=

δ|Πp

µ(δ)


x<mδp≤2x

f(mδ) =

=

δ|Πp

µ(δ)f(δ)


S


2x

δp


− S


x

δp


+ Erp,

(6.20)

where Erp is the error term coming from those terms for which (m, δ) > 1.

Thus, it follows from (6.19) and (6.20) that

(6.21) |Σp| ≤

δ|Πp

µ2(δ)ε


x

δp


+ |Erp| ≤

x

p


δ|Πp

µ2(δ)

δ
+ |Erp| ,
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Since it is easily checked that


p∈J

1

p
≤ c1 log

1

ε
,


π|δ1⇒π∈J

µ2(δ1)

δ1
≤


π∈J


1 +

1

π


≤ c2

ε
log η(x),


κ≥η(x)

1

κ2
≤ c3

η(x)
,

then using these estimates in (6.25), we obtain that

V (x) ≤ c4x
log η(x)

η(x)

1

ε
log

1

ε
= o(x) (x→ ∞),

thus proving our claim (6.24).

Substituting (6.24) in (6.23), we obtain that

|E(x)| ≤ cx
1

ε
log

1

ε
· o(1) + o(x) +O(εx) = o(x) (x→ ∞),

from which it follows that given any arbitrarily small number ξ > 0, there is
some x0 = x0(ξ) such that

(6.26) |E(X)| ≤ ξ X for all X > x0.

Therefore, given any fixed large number x and letting L be the smallest integer
such that 2L > x/2, we have that, using (6.26) repetitively,

|A(x)| =


L
a=1

E
 x
2a

 ≤ cξ

L
a=1

x

2a
< cξx,

thus proving (2.1) in the second case, as requested.

This completes the proof of Theorem 8. 
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where we used the fact that since

max
η(x)<p<η(x)1/ε

δ|Πp

pδ

x
→ 0 as x→ ∞,

then ε(x/δp) = o(x/δp) uniformly for η(x) < p < η(x)1/ε and δ|Πp.

Now, since


δ|Πp

µ2(δ)

δ
≤


η(x)<π<η(n)1/ε


1 +

1

π


≤ c

1

ε
,

it follows from (6.21) that, as x→ ∞,

(6.22) |Σp| ≤
cx

pε
· o(1) + |Erp| .

Using (6.22) in (6.17), we obtain that, as x→ ∞,

(6.23) |E(x)| ≤ cx

ε


 
η(x)<p<η(x)1/ε

1

p


 · o(1) + V (x) +O(εx),

where

V (x) =


η(x)<p<η(x)1/ε

|Erp| .

We will now show that

(6.24) V (x) = o(x) (x→ ∞).

Setting J = J(x) = (η(x), η(x)1/ε) and writing those mδp such that (m, δ) > 1
as mδp = κ2δ1p, where κ and δ1 are squarefree numbers whose prime factors
all belong to J , we have that

V (x) ≤


κ≥η(x)

µ2(κ)


x<κ2δ1p≤2x
p∈J

π|δ1⇒π∈J

µ2(δ1) =

=


κ≥η(x)

µ2(κ)

p∈J

π|δ1⇒π∈J

µ2(δ1)


x
κ2δ1p

<≤ 2x
κ2δ1p

1 ≤

≤ cx


κ≥η(x)

µ2(κ)

κ2


p∈J

π|δ1⇒π∈J

µ2(δ1)

δ1p
.

(6.25)
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Since it is easily checked that


p∈J

1

p
≤ c1 log

1

ε
,


π|δ1⇒π∈J

µ2(δ1)

δ1
≤


π∈J


1 +

1

π


≤ c2

ε
log η(x),


κ≥η(x)

1

κ2
≤ c3

η(x)
,

then using these estimates in (6.25), we obtain that

V (x) ≤ c4x
log η(x)

η(x)

1

ε
log

1

ε
= o(x) (x→ ∞),

thus proving our claim (6.24).

Substituting (6.24) in (6.23), we obtain that

|E(x)| ≤ cx
1

ε
log

1

ε
· o(1) + o(x) +O(εx) = o(x) (x→ ∞),

from which it follows that given any arbitrarily small number ξ > 0, there is
some x0 = x0(ξ) such that

(6.26) |E(X)| ≤ ξ X for all X > x0.

Therefore, given any fixed large number x and letting L be the smallest integer
such that 2L > x/2, we have that, using (6.26) repetitively,

|A(x)| =


L
a=1

E
 x
2a

 ≤ cξ

L
a=1

x

2a
< cξx,

thus proving (2.1) in the second case, as requested.

This completes the proof of Theorem 8. 

References
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Abstract. In this paper we construct rational orthogonal and biorthogonal
systems on the unit disc with respect to the area measure. These orthog-
onal systems can be considered as the planar version of the Malmquist–
Takenaka systems defined on the unit circle. Similarly to the one dimen-
sional case the starting functions are elementary rational functions and
the Gram–Schmidt orthogonalization process is applied to them. Unfor-
tunately, unlike the Malmquist–Takenaka systems there exist no explicit
representation for the generated orthogonal system in the two dimensional
case. We show that if the poles of the starting elementary rational func-
tions have multiplicity 2 then the orthogonalization process reduces to an
interpolation problem. Moreover the orthogonal projection can be directly
calculated by means of the values of the function taken only at the so called
inverse poles. At the end of the paper we present results of numerical tests
that were performed for several test functions and parameters.
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