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Abstract. The generalized divisor function, defined on an arithmetical
semigroup, is considered. The asymptotic formula for its mean value is
obtained.

1. Introduction

Let G be a commutative multiplicative semigroup with identity element
a0 and generated by a countable subset P of prime elements. We assume that
k, l,m, n are non-negative integers, a, b, d ∈ G , p ∈ P and a completely additive
degree function ∂ : G → N ∪ {0} is defined so that ∂(p) ≥ 1 for each prime p.
Moreover, we suppose that the semigroup G satisfies ( see [8], [7]) the following

Axiom A∗. There exist constants A > 0, q > 1 and 0 ≤ ν < 1 such that

G(n) := #{a ∈ G : ∂(a) = n} = Aqn +O(qνn).

In this case the generating function

Z(z) :=

n≥0

G(n)

z

q

n

, |z| < 1,
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In Lemma 2.1 we obtain the asymptotic formula for the mean value of the
shifted multiplicative functions from the class M(κ, C, c). This enables us to
prove the main result contained in following

Theorem 1.1. Suppose that f : G → [0,∞) is a multiplicative function
such, that 1/T ∈ M(α, 1, c1) with some constants 0 < α < 1 and c1 > 0. Then
for all n ∈ N and 0 ≤ u ≤ t ≤ 1

Fn(t)− Fn(u) =
1

Γ(α)Γ(β)

t

u

dx

xα(1− x)β
+O(ρn(u, t;α, β)) ,

where β := 1− α and

ρn(u, t; γ, δ) := n−γ−δ
�
(n−1 + u)−γ + (n−1 + 1− t)−δ


.

This theorem implies the uniform estimate

(1.2) Fn(t) =
1

Γ(α)Γ(β)

t

0

dx

xα(1− x)β
+O

�
n−α + n−β


,

for all n ∈ N and 0 ≤ t ≤ 1.

When f ≡ 1, the value T (a) means the number of divisors of the element
a. In this case α = β = 1/2.

2. Preliminaries

We will need an estimate for the mean value of shifted positive multiplicative
functions defined on G

Mn(g, d) :=
1

Aqn

∗

∂(a)=n

g(ad).

The following lemma yields the result of this type. In some cases it intersects
with the corresponding results in the papers [9], [10].

Lemma 2.1. Let g : G → [0,∞) be a multiplicative function such that
g ∈ M(κ, C, c) with some positive constants κ, C and c. Then, uniformly for
all d ∈ G and n ≥ 0,

Mn(g, d) = (A(n+ 1))κ−1


L(κ)g̃(d)
Γ(κ)

+ O


ĝ(d)

n+ 1


,
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is known to be continuable into the disc |z| < q1−ν and Z(z) = 0 for |z| ≤ 1
with the possible exception at the point z = −1. The analogue of the prime
number theorem (see [6]) yields

(1.1) π(n) := #{p ∈ P : ∂(p) = n} = qn

n
(1− (−1)nI(G)) + O(qµn)

with some max(1/2, ν) < µ < 1. Here I(G) = 1, if Z(−1) = 0, and I(G) = 0
otherwise.

For a multiplicative function f : G → [0,∞) let

T (a, v) :=
∗

d|a, ∂(d)≤v

f(d), a ∈ G, v ≥ 0.

Here and thereafter the starred sum or product symbols mean that these opera-
tions are used over corresponding elements of the semigroup G. For any a ∈ G,
set

X(a, t) :=
T (a, ∂(a)t)

T (a)
, t ∈ [0, 1],

where the multiplicative function T (a) is defined by T (a) := T (a, ∂(a)). To
evaluate the mean value of the ratio X(a, t) we will consider the sequence

Fn(t) :=
q − 1

Aqn+1

∗

∂(a)≤n

X(a, t), t ∈ [0, 1], n ∈ N.

The asymptotic behaviour of Fn(t), as n → ∞, was considered by the first
author on the polynomial semigroup [1]. For the multiplicative functions, de-
fined on the set of natural numbers, similar problem was investigated in the
series of papers, see for example [4, 3, 2] . The aim of our paper is to improve
and generalize the main result in [1] and correct the mistake which was made
in this paper by estimating mean value of the shifted multiplicative function.

We consider a non-negative multiplicative function f(a), defined on the
semigroup with axiom A∗, provided the associated ”divisor” function T (a)
satisfies some analytic condition.

Definition 1.1. Let g : G → [0,∞) be a multiplicative function such that
g(pm) ≤ C for m ∈ N , any prime p and some C > 0 . We say that g belongs
to the class M(κ, C, c), κ ≥ 0, if the function defined by

Lg(z,κ) :=

m≥1


z

q

m ∗

∂(p)=m

(g(p)− κ), |z| < 1,

has an analytic continuation into the disc |z| < 1 + c for some c > 0.
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Let us consider the function G(z, d,κ) when |z| ≤ r := min(1 + c/2, 3
√
q). Set

k0 := 1 + [1.5 logq(1 + 2C)] and

δ(z, p) :=



exp


−κ


z
q

∂(p)

, if ∂(p) < k0 ,

(ψ(z, p, a0))
−1, if ∂(p) ≥ k0 .

In the disc |z| ≤ r we have that

(2.3) |ψ(z, p, a0)− 1| < 1/2,

when ∂(p) ≥ k0. Moreover, there exists a constant c1 = c1(C,κ) such that

(2.4) |δ(z, p)| ≤ 1 +
c1

q2∂(p)/3
,

for all p ∈ P. Further, let P be the subset of prime elements

P := P \ {p ∈ P : p|d, ∂(p) < k0}.

Then the function G(z, d,κ) can be written in such form

G(z, d,κ) =
∗

p∈P

ψ(z, p, a0) exp


−κ


z

q

∂(p)


·
∗

p|d

δ(z, p)ψ(z, p, d),

=: G1(z, d,κ) ·G2(z, d,κ).

Inequality (2.4) implies that, for |z| ≤ r, the multiplicative functions G2(z, d,κ)
and ĝ(d) are related by the inequality

|G2(z, d,κ)| ≤ ĝ(d).

Taking exponent and logarithm, which is allowed by (2.3), in the routine way
we obtain

G1(z, d,κ) = eLg(z,κ)G3(z, d,κ).

Here G3(z, d,κ) is analytic and bounded for |z| ≤ r. Moreover, the assump-
tions of lemma allow us to assert that the function Lg(z,κ) has an analytic
continuation and is bounded in this domain. Thus we have that G(z, d,κ) is
analytic in the disc |z| ≤ r, satisfies there the inequality

(2.5) |G(z, d,κ)|  ĝ(d),

and

(2.6) G(1, d,κ) = g̃(d)
∗

p

ψ(1, p, a0) exp


− κ
q∂(p)


.
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where L(κ) and the multiplicative functions g̃ and ĝ are defined by

L(κ) :=
∗

p


1− 1

q∂(p)

κ 
k≥0

g(pk)

qk∂(p)
,

g̃(pm) :=




k≥0

g(pk)

qk∂(p)




−1 
k≥0

g(pk+m)

qk∂(p)
,(2.1)

ĝ(pm) :=


1 +

c1
q2∂(p)/3


k≥0

g(pk+m)

q2k∂(p)/3
.

Here c1 ≥ 0 is a constant, depending on κ and C.

Proof. Our proof is similar to that in [2] and based on the properties of
the generating function

F (z, d) := A

n≥0

Mn(g, d)z
n =

∗

a

g(ad)


z

q

∂(a)

.

By the Euler identity, for |z| < 1, we have

F (z, d) =
∗

p

ψ(z, p, d).

Here

ψ(z, p, d) :=

k≥0

g(pk+γp(d))


z

q

k∂(p)

and γp(d) is defined by pγp(d)||d. Since

k≥1

1− (−1)kI(G)
k

zk = ln
1 + zI(G)
1− z

,

for |z| < 1, we have the representation

(2.2) F (z, d) = G(z, d,κ)Wκ(z,G)

1 + zI(G)
1− z

κ
,

where

G(z, d,κ) :=
∗

p

ψ(z, p, d) exp


−κ


z

q

∂(p)

,

W (z,G) := exp





k≥1


π(k)

qk
− 1− (−1)kI(G)

k


zk


 .
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Lemma 2.3. For 0 ≤ u ≤ t ≤ 1, n ≥ 1, γ > 0 and δ > 0, we have


nu<k≤nt

1

(1 + k)γ(1 + n− k)δ
= n1−γ−δI(u, t; γ, δ, n−1) + O(ρn(u, t; γ, δ)),

where

I(u, t; γ, δ, η) :=

t

u

dv

(η + v)γ(η + 1− v)δ
.

Moreover,

(2.9) I(u, t; γ + 1, δ, n−1) + I(u, t; γ, δ + 1, n−1) nγ+δρn(u, t; γ, δ)

and

(2.10) I(u, t; γ, δ, n−1) = I(u, t; γ, δ, 0) + O (ρn(u, t; γ, δ)) .

Proof. The first formula in this lemma follows from Euler-Maclaurin sum-
mation formula. The relations (2.9) and (2.10) follow from the definition of the
integral I(u, t; γ, δ, η) by straightforward estimations (see, eg. in [2]). 

3. Proof of Theorem 1.1

Assumptions of the theorem imply, that the multiplicative functions
1/T (a) ∈ M(α, 1, c1) and f(a)/T (a) ∈ M(β, 1, c2) with some positive constants
c1 and c2. We have

(3.1) Fn(t) = Sn(t) +Rn(t),

where

Sn(t) :=
q − 1

Aqn+1


0≤m≤n

∗

∂(a)=m

T (a, nt)

T (a)
,

Rn(0) = 0 and

Rn(t) q−n
∗

∂(d)≤nt

f(d)


k≤∂(d)(1−t)/t

∗

∂(a)=k

1

T (ad)
, t ∈ (0, 1].

To evaluate the most inner sum we apply Lemma 2.1 with g(a) = g0(a) :=
:= 1/T (a). We have

(3.2)
∗

∂(a)=k

1

T (ad)
=

Aαqk

(1 + k)β


L0(α)g̃0(d)

Γ(α)
+ O


ĝ0(d)

1 + k


.
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From (1.1) it follows that W (z,G) is analytic in the disc |z| < q1−µ. Moreover,
it can be shown (see eg. [9]) that

W (1,G) =
A

1 + I(G)
∗

p


1− q−∂(p)


exp


q−∂(p)


.

Therefore in virtue of (2.2), (2.5) and (2.6) we obtain

F (z, d) = H(z, d,κ)(1− z)−κ ,

where H(z, d,κ) is analytic and satisfies the inequality

|H(z, d,κ)|  ĝ(d),

when |z| ≤ r1 := min(r, q(1−µ)/2). Moreover,

(2.7) H(1, d,κ) = AκL(κ)g̃(d).

Thus with the sole exception at point z = 1 for |z| ≤ r1 we have

(2.8) F (z, d) = H(1, d,κ)(1− z)−κ +O
�
ĝ(d)|1− z|1−κ .

According to Theorem 1 and Corollary 3 in [5] this estimate implies

Mn(g, d)A = H(1, d,κ)

n+ κ − 1

n


+O

�
ĝ(d)nκ−2


.

Since M0(g, d) = A−1F (0, d) ĝ(d) and


n+ κ − 1

n


=
(n+ 1)κ−1

Γ(κ)


1 + O


1

n+ 1


,

the desired estimate follows from (2.8) and (2.7). 

In addition, we provide some asymptotic formulas which will be useful in
the sequel.

Lemma 2.2 ([8] p. 86). Suppose that σ ∈ R. Then

n
m=1

mσqm =
q

q − 1
nσqn +O

�
nσ−1qn


.
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It is easy to see, that f(a)g̃0(a) ∈ M(β,C2, c4) with some positive C2 and c4.
Therefore the inner sums in the expressions of S1(n;u, t) and R1(n;u, t) we can
evaluate by means of Lemma 2.1. So we have

Sn(u, t) =
L0(α)L1(β)

Γ(α)Γ(β)
S(α, β) + O (S(α+ 1, β) + S(α, β + 1)) ,

where

S(γ, δ) :=


nu≤j≤nt

1

(1 + n− j)δ(1 + n)γ

for short. Now Lemma 2.3 implies

(3.4) Sn(u, t) =
L0(α)L1(β)

Γ(α)Γ(β)
I(u, t;α, β, 0) + O (ρn(u, t;α, β)) .

Here L0(α) and L1(β) are defined in (2.1) by setting g = g0 and g = f · g̃0
respectively. The routine calculation yields that L0(α) · L1(β) = 1 ( see, eg.
[1, 2]). Finally the proof of the theorem follows from (3.4) and (3.3). 

The estimate (1.2) is an easy consequence of Theorem 1.1 with u = 0, since
Fn(0) n−β by (3.2) and Lemma 2.2.
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Here L0(α) and multiplicative functions g̃0, ĝ0 are defined in (2.1) by setting
g = g0. An easy calculation shows that

g̃0(p
m) = g0(p

m)

1 + O


q−∂(p)


,

ĝ0(p
m) = g0(p

m)

1 + O


q−

2∂(p)
3


.

Thus

Rn(t) q−n
∗

∂(d)≤tn

f(d)ĝ0(d)


k≤∂(d)(1−t)/t

qk

(1 + k)β
.

By the Lemma 2.2

Rn(t)
q−nt

(1 + n(1− t))β


m≤nt

∗

∂(a)=m

f(a)ĝ0(a).

Since f(a)ĝ0(a) ∈ M(β,C1, c3) with some positive C1 and c3, for the inner sum
we can apply Lemma 2.1 by setting g = f · ĝ0 and d = a0. Then employing
Lemma 2.2 again we obtain that

Rn(t) (1 + n(1− t))−β(1 + nt)−α,

for all 0 ≤ t ≤ 1. Setting Sn(u, t) := Sn(t) − Sn(u), from this and (3.1) we
deduce

(3.3) Fn(t)− Fn(u) = Sn(u, t) + O(ρn(u, t;α, β)).

It remains to evaluate the sum Sn(u, t). Changing order of summation we
have

Sn(u, t) =
q − 1

Aqn+1

∗

nu<∂(d)≤nt

f(d)

n−∂(d)
m=0

∗

∂(a)=m

1

T (ad)
.

Since g̃0(a) ≤ ĝ0(a), applying (3.2) and Lemma 2.2 we get

Sn(u, t) = S1(n;u, t) + O (R1(n;u, t)) ,

where

S1(n;u, t) :=
L0(α)A

−β

Γ(α)


nu<m≤nt

q−m

(1 + n−m)β

∗

∂(d)=m

f(d)g̃0(d)

and

R1(n;u, t) :=


nu<m≤nt

q−m

(1 + n−m)β+1

∗

∂(d)=m

f(d)ĝ0(d).



43

On the number of divisors in arithmetical semigroups 43

It is easy to see, that f(a)g̃0(a) ∈ M(β,C2, c4) with some positive C2 and c4.
Therefore the inner sums in the expressions of S1(n;u, t) and R1(n;u, t) we can
evaluate by means of Lemma 2.1. So we have

Sn(u, t) =
L0(α)L1(β)

Γ(α)Γ(β)
S(α, β) + O (S(α+ 1, β) + S(α, β + 1)) ,

where

S(γ, δ) :=


nu≤j≤nt

1

(1 + n− j)δ(1 + n)γ

for short. Now Lemma 2.3 implies

(3.4) Sn(u, t) =
L0(α)L1(β)

Γ(α)Γ(β)
I(u, t;α, β, 0) + O (ρn(u, t;α, β)) .

Here L0(α) and L1(β) are defined in (2.1) by setting g = g0 and g = f · g̃0
respectively. The routine calculation yields that L0(α) · L1(β) = 1 ( see, eg.
[1, 2]). Finally the proof of the theorem follows from (3.4) and (3.3). 

The estimate (1.2) is an easy consequence of Theorem 1.1 with u = 0, since
Fn(0) n−β by (3.2) and Lemma 2.2.
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des diviseurs, Acta Arith., 34 (1979), 7–19.

[5] Flajolet, P. and A. Odlyzko, Singularity analysis of generating func-
tions, SIAM J. Discrete Math., 3(2) (1990), 216–240.

[6] Indlekofer, K.-H., E. Manstavičius and R. Warlimont, On a certain
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Abstract. Given an integer q ≥ 2, a q-normal number is an irrational
number ξ such that any preassigned sequence of  digits occurs in the q-
ary expansion of ξ at the expected frequency, namely 1/q. Let η(x) be a

slowly increasing function such that log η(x)
log x

→ 0 as x → ∞. Then, letting
P (n) stand for the largest prime factor of n, set Q(n) to be the smallest
prime divisor of n which is larger than η(n), while setting Q(n) = 1 if
P (n) > η(n). Then, we show that the real number 0.Q(1)Q(2) . . . is a
normal number in base 10. With various similar constructions, we create
large families of normal numbers in any given base q ≥ 2. Finally, we
consider exponential sums involving the Q(n) function.

1. Introduction

Given an integer q ≥ 2, a q-normal number, or simply a normal number,
is an irrational number whose q-ary expansion is such that any preassigned
sequence, of length  ≥ 1, of base q digits from this expansion, occurs at the
expected frequency, namely 1/q.

Key words and phrases: Normal numbers, largest prime factor, smallest prime factor.
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