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Abstract. Mean values of random multiplicative functions over polyno-

mial values, and the mean values of random multiplicative functions defined

on the set of Gaussian integers will be investigated.

1. Introduction

1.1.

This paper is continuation of [1]. The method we use is similar but
somewhat more complicated.

1.2.

Let P be the set of prime numbers, the letters p with and without indices
always denote prime numbers. Let M∗ be the set of completely multiplicative
functions. A function f : N → C belongs to M∗ if f(1) = 1 and f(nm) =
= f(n) · f(m). Let τ(n) be the number of divisors of n, and τk(n) be the
number of those positive integers d1, . . . , dk for which n = d1 . . . dk.
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Let (n) be the number of solutions of the congruence x2+1 ≡ 0 (mod n).
It is clear that (n) is a multiplicative function.

(pα) = 0 if p ≡ −1 (mod 4) (α = 1, 2, . . .),

(pα) = 2 if p ≡ 1 (mod 4) and (2α) = α ≥ 2.

Let τ(n) be the number of solutions f the equation n = u2 + v2, u, v ∈ Z.
1.3.

Let G be the set of Gaussian integers, i.e. G = {u+ iv|u, v ∈ Z}. Let G∗

be the multiplicative semigroup defined over G, that is G∗ = G \ {0}. Let I
be the set of units in G∗, i.e. I = {1,−1, i,−i}. We say that α1 and α2 are
associates if α1 = εα2 with some ε ∈ I. Let furthermore G∗

+ be the set of those
α ∈ G∗ for which Re α ≥ 0 and Im α > 0. It is clear that

(1) if α, β ∈ G∗
+, then αβ ∈ G∗

+,

(2) if γ ∈ G∗, then there is a unique ε ∈ I, such that εγ ∈ G∗
+.

Let P̃ be the set of primes in G∗. A general prime element is denoted by
π. It is known that:

(1) if p ∈ P, p ≡ 3 (mod 4), then p ∈ P̃,
(2) 1 + i ∈ P̃,
(3) if p ≡ 1 (mod 4), p = u2 + v2, then u+ iv ∈ P̃,
(4) the associates of the numbers listed in (1), (2), (3) belong to P̃,
(5) all elements of P̃ are listed in (1), (2), (3), (4).

Let P̃+ be the set of those primes which belong to G∗
+. One can see that

every α ∈ G∗
+ can be uniquely written as the product of primes π1, . . . , πk

where πl ∈ G∗
+.

Let M̃∗ be the set of completely multiplicative functions over G∗.

We shall say that f : G → C belongs to M∗, if f(ε) = 1 (ε ∈ I), and
f(αβ) = f(α) · f(β) holds for every α, β ∈ G∗.

Let Tk(α) (α ∈ G∗) be defined as follows.

For α ∈ G∗
+ let Tk(α) be the number of solutions of the equation α =

= χ1 . . . χk where χ1, . . . , χk ∈ G∗
+. Furthermore let Tk(ε) = 1 (if ε ∈ I)

and for an arbitrary β ∈ G∗ let Tk(β) = Tk(εβ), where ε is that element in I
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for which εβ ∈ G∗
+. It is clear that Tk is a multiplicative function. If π is a

non-rational prime, i.e.

ππ̄ = p, p = 2 or p ≡ 1 (mod 4), then

Tk(πl) = τk(pl), and if π = p(≡ 3 (mod 4)),

then Tk(πl) = πk(pl).

1.4.

Let Q ≥ 2 be an integer, AQ = {κ|κQ = 1} = group of complex unit
roots of order Q. Let (Ω,A, P ) be a probability space. Let ξp (p ∈ P̃+) be a
sequence of independent random variables distributed as follows: P (ξp ≡ κ) =
= 1

Q (κ ∈ AQ).

We define the random multiplicative function f ∈ M̃∗ by f(π|ω) = f(π) =
= ξπ (π ∈ P̃+) and investigate the sum


α∈G∗

+
|α|≤r

f(α)h(α),

where h(α) (α ∈ G∗) is an arbitrary complex function satisfying |h(α)| ≤ 1
(see Theorem 2 in §4). In §5 (see Theorem 3) we count the number of those
α ∈ G∗

+, for which |α| ≤ r, and f(α + βj) = κj (j = 1, . . . , k), κj ∈
∈ AQ, β1, . . . , βk are distinct elements of G∗.

2. Lemmas

2.1.

Lemma 1. [Borel-Cantelli] Let A1, A2, . . . be an infinite sequence of sets
in (Ω,A, P ) and let


j

P (Aj) < ∞. Then almost all ω ∈ Ω are belonging to

finitely many Ai only.

This is a wellknown assertion, see e.g. in [2].

2.2.
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Lemma 2. Let a ≥ 1 be a square-free integer, x ≥ 2. Let N(x|a) be the
number of solutions of n2 − am2 = −1 in integers n,m ∈ N such that n ≤ x.
Then N(x|a) ≤ c log x, c is an absolute constant.

This lemma is wellknown. Despite of it, we shall give a short proof for it.
Let us consider the Pell-equation U2 − aV 2 = 1, and let U0, V0 be the smallest
positive solution pair of it. It is known that all the other positive solutions
Ul, Vl can be computed from Ul +

√
aVl = (U0 +

√
aV0)l (l = 1, 2, . . .). Since

U0 ≥ 2, V0 ≥ 2, therefore Ul ≥ 2l (l = 1, 2, . . .).

Let (n1,m1) be the smallest positive solution of n2 − am2 = −1, and
(n2,m2) be another positive solution such that n2 ≤ x. We have

(n1 −
√

am1)(n1 +
√

am1) = −1, (n2 −
√

am2)(n2 +
√

am2) = −1.

Multiplying these equations we obtain that U2 − aV 2 = 1, where

U = n1n2 + am1m2, V = n1m2 − u2m1 (> 0).

Thus (U, V ) = (Ul, Vl) for some l, U ≤ 3x2, thus 2l ≤ 3x2, l ≤ 1
log 2 log 3x

2 ≤
c log x. The lemma is proved.

3. The mean value of random multiplicative function over n2 + 1

Let f(n) = f(n|ω) be defined as in §1.4. Let

SN (ω|h) :=


n≤N

f(n2 + 1)h(n2 + 1).

Theorem 1. The following relations hold with probability 1:

(3.1) lim
N→∞

SN (ω|h)
N

3
4 (logN)2

= 0,

(3.2) lim
N→∞

1
N

3
4 (logN)2

=


n≤N

f(n2 + 1) = 0,

(3.3) lim
N→∞

1
N

3
4 (logN)2

=


p≤N

f(p2 + l) = 0.
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Proof. (3.2), (3.3) are special cases of (3.1), by choosing h(n2 + 1) =
= 1 (n ∈ N), and by choosing

h(n2 + 1) =

 1 if n ∈ P,

0 otherwise.

We shall prove (3.1). This is an easy consequence of

Lemma 3. Let N ≥ 2. Then ESN (ω|h) = 0, E |SN (ω|h)|2 ≤ cN logN .

First we deduce (3.1) from Lemma 3. Let

λN =
1

log logN
, TN =

SN (ω|h)
N

3
4 (logN)2

.

We have

(3.4)

P (|TN | > λN ) ≤


1
λN

|SN (ω|h)|2
N

3
2 (logN)4

dP ≤

≤ cN(logN) log logN

N
3
2 (logN)4

=
c(log logN)
N

1
2 (logN)3

.

Let now N run over Nm = m2 (m = 1, 2, . . .), Am := {ω|TN | > λNm}.
From (3.4), and Lemma 1 we obtain that

(3.5) limTNm
= 0.

Let Nm ≤ N < Nm+1. Since |TN | ≤ |TNm |+ |TN − TNm |, and

|TN − TNm | ≤
|SN (ω|h)− SNm(ω|h)|

N
3
4
m(logNm)2

≤ c

m
1
2
→ 0 (m → 0),

we obtain (3.1).

Finally we prove Lemma 3. It is clear that Ef(n2+1) = 0 for every n ≥ 1,
since n2 + 1 cannot be a square. Therefore ESN (ω, h) = 0.

We have

E|SN (ω|h)|2 ≤


n1,n2≤N

E(f(n2
1 + 1)f(n

2
2 + 1)).
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A summand on the right hand side can be different from zero, and in that case
it equals to 1, if there is a square-free a such that n2

1+1 = am2
1, n

2
2+1 = am2

2.

Let n1 be run over the integers 1, 2, . . . , N . For every n1 the number of
possible n2 ≤ N with the same a is at most c logN (see Lemma 2), therefore
Lemma 3 is true.

Remark. We can prove similar theorems for quadratic irreducible poly-
nomial P (x) ∈ Z[x] instead of x2 + 1. Perhaps analogous result holds for
polynomials P (x) the degree of which is larger than 2. We hope to return to
this question in another paper.

4. Mean values of random multiplicative functions over the Gaussian
integers

We shall keep the notations defined in §1.4.
Let Dr = {α|α ∈ G∗

+, |α| < r}

T (r) = T (r|ω) =


α∈Dr

f(α)h(α).

For some β ∈ G let γQ be the ”largest” Q’th power divisor of β, such that
γ ∈ G∗

+. The largest means that if γ
Q
1 |β, γ1 ∈ G∗

+, then γ1|γ.
Let a(β) be defined by β

γQ . It is clear that a(β) ∈ G∗
+.

It is clear that for β, β1, β2 ∈ G∗
+:

Ef(β) =


1 if a(β) = 1,

0 otherwise.

Ef(β1)f(β2) =


1 if a(β1) = a(β2),

0 otherwise.

Hence we obtain that

E|T (r)|2k =


a(α1...αk)=a(β1...βk)

h(α1) . . . h(αk)h̄(β1) . . . h̄(βk).
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Here α1, . . . , αk, β1, . . . , βk run over Dr. Let us write Aj = a(αj), αj =
= Ajγ

Q
j , Aj ∈ G∗

+, γj ∈ G∗
+.

We have |γj |Q ≤ |αj |
|Aj | ≤ r

|Aj | , consequently for fixed Aj the number of γ,

for which Ajγ
Q
j ∈ Dr holds in less than c


r

|Aj |
 2

Q

, where c is absolute positive

constant. Consequently,

(4.1) E|T (r)|2k ≤ cT
4k
Q Σ∗ 1

|A1 . . . Ak| · |B1 . . . Bk| ,

where ∗ on the right hand side of (4.1) means that we have to sum over those
Q-free Gaussian integers A1, . . . , Ak, B1, . . . , Bk for which |Aj | ≤ r, |Bj | ≤ r,
and

a(A1 . . . Ak) = a(B1 . . . Bk).

Let us write A1 . . . Ak = D ·eQ, where D is Q-free, |eQD| ≤ rk. For fixed D and
e the number A1, . . . , Ak satisfying A1 . . . Ak = Dea is no more than the number
of possible solutions of D = c1 . . . ck (cj ∈ G∗

+), e
Q = ν1 . . . νk (νj ∈ G∗

+).
Thus for fixed D and e we have Tk(D)·Tk(eQ) solutions. Since |D| ≤ rk, |eQ| ≤
≤ rk; D, eQ ∈ G∗

+, we obtain that

E|T (r)|2k ≤ cr
4k
Q Σ1 · Σ2

2,

where

Σ1 =


|D|≤rk

D∈G∗
+

T 2
k (D)

|D| 4
Q

; Σ2 =


|eQ|≤rk

e∈G∗
+

Tk(eQ)

|eQ| 2
Q

.

To estimate Σ1,Σ2, we observe that |D|2 = n holds for r(n)
4 integers D ∈

∈ G∗
+, where r(n) is defined in §1.1. Thus

Σ1 ≤


n≤r2k

τ2k (n)r(n)

n
2
Q

, Σ2 ≤


n≤r2k

τk(nQ)r(n)
n

.

By using routine estimates in number theory we obtain that



n≤x
τ2k (n)r(n) ≤ cx(log x)d(k),



n≤x
τk(nQ)r(n) ≤ cx(log x)d(k)
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with some suitable positive constants d(k), and c, therefore

Σ2 ≤ c1(k)(log log r) log r,

furthermore
Σ1 ≤ c2(k)(log log r) log r, if Q = 2,

and
Σ1 ≤ c3(k)(log r)d(k)(r2k)1−

2
Q .

We proved

Lemma 4. Let k ≥ 1 be an arbitrary integer. Then there are positive
numbers c(k), d(k) for which

(4.2) E |T (r|ω)|2k ≤ c(k)r2k(log r)d(k),

if r ≥ 2.
Hence we obtain

Theorem 2. Let  > 0 be an arbitrary small constant. Then

lim
r→∞

T (r, ω)
r1+ε

= 0

with probability 1.

Indeed, let k be so large that kε > 1. From (4.2) with λr = 1
log log r (r ≥ 4)

we have

P


T (r, ω)
r1+ε

 ≥ λr


≤ 1
λ2k
r

 
T (r, ω)
r1+ε


2k

dP ≤

≤ (log log r)2k 1
r2kε

.

Let us apply this for r = n (n = 4, 5, . . .) and use the Borel-Cantelli lemma.
We obtain that

T (n, ω)
n1+ε

→ 0 (n→ ∞, n ∈ N).

Finally we observe that if n ≤ r < n+1, then the number of Gaussian integers
α in the ring n ≤ |α| < r is bounded by cn an n→ ∞, therefore (4.3) is true.
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5. On random subset of the Gaussian integers defined by the values
of random multiplicative functions

Let us keep the notation used earlier. Let ξπ be independent random
variables, P (ξπ = κ) = 1

Q (κ ∈ AQ). Let β1, . . . , βk be fixed distinct Gaussian

integers. Let f(α|ω) ∈M∗ defined on the set of P̃+ by f(π) = ξπ. Let

S := {α | α+ βj ∈ G∗+, j = 1, . . . , k},

κ1, . . . , κk be fixed elements of AQ,

∆ := {α|α+ βj ∈ G∗+, f(α+ βj) = κj , j = 1, . . . , k}.

Let h(α) be a complex valued function defined on S, such that |h(α)| ≤ 1. Let

R(r) :=

α∈S
|α|≤r

h(α), R(r|∆) :=

α∈S
|α|≤r
α∈∆

h(d).

Let

Λ(r) =
R(r|∆)−

R(r)
Qk

 .

We shall prove

Theorem 3. Let ε be an arbitrary constant. Then with probability 1,

lim
r→0

Λ(r)
r5/3+ε

= 0.

Let uκ(x) = xQ−1
x−κ be defined for every κ ∈ AQ. Easy to see that uκ(κ) = Qκ̄,

and uκ(λ) = 0 if λ = κ, λ ∈ AQ.

Let α ∈ S,

∆(α) := uκ1(f(α+ β1)) · · ·uκk(f(α+ βk)).

Then

∆(α) =


Qkκ̄1 · · · κ̄k if α ∈ ∆,

0 otherwise.

We can write ∆(α) as a polynomial of f(α+ β1), . . . , f(α+ βk); the degree in
each variable is limited in Q− 1, and the coefficients of which do depend only
on Q and k.
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Let

s(α) =
Q−1

l1=0

. . .

Q−1

lk=0

d(l1, . . . , lk)f(α+ β1)l1 · · · f(α+ βk)lk =

= d(0, . . . , 0) +


(l1,...,lk)=(0,...,0)

d(l1, . . . , lk)f(α+ β1)l1 · · · f(α+ βk)lk .

Then

α∈S
|α|≤r

h(α)s(α) =Qkκ̄1 · · · κ̄kR(r|∆) =

=κ̄1 · · · κ̄kR(r) +


(l1,...,lk) =(0,...,0)

d(l1, . . . , lk)Xl1,...,lk(r),

where
Xl1,...,lk(r) =


α∈S
|α|≤r

h(α)f(α+ β1)l1 · · · f(α+ βk)lk .

We shall estimate E|Xl1,...,lk(r)|4 for (l1, . . . , lk) = (0, . . . , 0).
Let us write (α+β1)l1 · · · (α+βk)lk in the form (α+βj1)

m1 · · · (α+βjt)
mt ,

where j1, . . . , jt is a non-empty subset of {1, . . . , k}, and 1 ≤ mj ≤ Q− 1. Let
L(α) = (α+ βj1)

m1 · · · (α+ βjt)
mt .

We shall write every γ as a(γ) ·m(γ)Q, where m(γ)Q is the largest Q-th
power divisor of Q and a(γ) is Q-free. It is assumed that γ ∈ G∗+, m(γ) ∈
∈ G∗+, a ∈ G∗+. It is clear that, if γ1, γ2 ∈ G∗+, then

Ef(γ1)f̄(γ2) =


1 if a(γ1) = a(γ2),

0 otherwise.

We shall write that γ1 ∼ γ2 if a(γ1) = a(γ2).

Assume first that t ≥ 2. We can write

Xl1,...,lk =

α∈S
|α|≤r

h(d)f(L(α)) =

=
2j≤r

j≥0

Θ
 r
2i


,
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where
Θ(r) =


α∈S

r
2<|α|≤r

h(d)f(L(α)).

To estimate Θ(r) we denote by N2 the set of those integers α ∈ S for which
there exists a squareful Gaussian integer µ ∈ G∗

+, for which |µ| >
√
r/(log r)2,

and µ|(α+ βu) for at least one u ∈ {j1, . . . , jt}, and let N1 be the set of those
α which do not belong to N2.

γ|α + βu implies that γδ = α + βu, r
2 − |βu| ≤ |γδ| ≤ r + |βu|, thus the

number of possible δ ∈ G∗ is less than c


r
|γ|

2

, and so

#{N2} ≤ c


|γ|≥√
r/(log r)2


r

|γ|
2

≤

≤ cr2


n>r/(log r)2
nsquare−full

r(n)
n

≤

≤ cr3/2(log r)3.

Let
Θ1(r) =


α∈S

r
2<|α|≤r
α∈N1

h(α)f(L(α)).

We proved that

Θ(r) = Θ1(r) +O(r3/2(log r)3).

Applying the Cauchy-Schwarz inequality, we obtain that

(5.1) |Xr1,...,rk |4 ≤ (log r)3
 Θ1

 r

2j


4

+O(r6(log r)12).

Let Ef(L(α1))f(L(α2))f̄(L(α3))f̄(L(α4)) = 0 (and then = 1). It holds if
and only if a(L(α1)L(α2)) = a(L(α3)L(α4)).

Let H(E) be the number of those α1, α2 ∈ N1,
r
2 ≤ |α2| ≤ r for which

e(L(α1)L(α2)) = E.

It is clear that

E|Θ1(r)|4 ≤


H2(E) ≤ maxH(E)


H(E).
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Since

H(E) is clearly ≤ #{α1, α2 ∈ N1} ≤ cr4, we have

E|(Θ1(r)|4 ≤ cr4maxH(E).

Let us estimate H(E). For a general Q-free integer A let G(A) be the number
of those α ∈ N1 for which L(α) = AY Q with some suitable integer A.

Let
α+ βil1

= Rl1Cl1Ml1 , α+ βil2
= Rl2Cl2Ml2 ,

...

α+ βilt
= RltCltMlt

where RljClj is the square-free part of α+ βilj
, the prime divisors π in


Rlj

satisfy |π| ≤ K, and the prime divisors ρ of

Clj are such that |ρ| > K, where

K = max
u =v

|βu − βv|.

It is clear that (Cli , Clj ) = 1 if li = lj . Then

L(α) = Cm1
l1
· · ·Cmt

lt
ν, (ν, Cl1 · · ·Clt) = 1.

Since Clj are coprime square-free numbers, mν < Q, therefore Cm1
l1
· · ·Cmt

lt
is

a divisor of A. Observe that Rlν are bounded, Mlj < r1/2/(log r)1/2, therefore

r

2
− |βlij

| ≤ |α+ βlij
| ≤ |Clj ||Rlj |r1/2(log r)−2

whence we obtain that |Rlj | >
√
r(log r) for every large r. It implies that

α+ βl1 ≡ 0 (mod R)l1 , α+ βl2 ≡ 0 (mod R)l2

has at most one solution α. Hence we obtain that G(A) ≤ T3(A) ≤ τ3(|A|2).
Furthermore we have that

H(E) =


E1E2=E



U

G(E1U)G(E2V (U)),

where U runs over the Q-free integers, and if U =
h

j=1

π
uj

j , then V (U) =

=

π

Q−uj

j . Since G(E1U) ≤ τ3(|E1U |2), and


U

G(E2V (U)) ≤ cr2,
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we obtain that H(E) ≤ cr2+ε, where ε > 0 is an arbitrary constant, c = c(ε).

We proved that
E|Θ1(r)|4  r6+ε.

From (5.1) we obtain that

E|Xl1,...,lk |4  r6+ε.

Let us consider the case t = 1. We have to estimate a sum of type

Z(r) =

α∈S
|α|≤r

h(α)f(α+ βl)m,

where 1 ≤ m ≤ Q1. Defining g(γ) := f(α)m, g is a random multiplicative
function g(π) = ξr

p. ξ
r
p takes the values of unit roots of order

Q
(Q,m) = Qm,

each with probability 1
Qm
. Since m < Q, therefore we can apply Lemma 4 and

prove that E|Z(r)|4  r4+ε.

Let

Λ(r) :=

R(r)
Qk

−R(r|∆)
 .

We proved that
E(|Λ(r)|4) ≤ cr6+ε.

This implies that

P (|Λ(r)| > rσ) ≤
 |Λ(r)|4

r4σ
dP ≤

≤cr6−4σ+ε.

Let Nm = m3, σ = 5
3 + ε. Then


P (|Λ(Nm)| > Nσ

m) ≤ c
 1

m1+ε
≤ ∞.

From the Borel-Cantelli lemma we obtain that

lim
m→∞

Λ(Nm)

N
5/3+ε
m

= 0.

Let Nm ≤ r ≤ Nm+1. Then

|Λ(r)− Λ(Nm)| ≤ #{α|Nm ≤ |α| ≤ Nm+1} ≤ cm5.
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Since
|Λ(r)|
r5/3+ε

≤ |Λ(Nm)|
N

5/3+ε
m

+
cm5

N
5/3+ε
m

,

and the last summand tends to zero as m→ ∞, we obtain that

lim
r→∞

Λ(r)
r5/3+ε

= 0

holds for almost all ω. Thus Theorem 3 is true.

Remark. The assertions in Theorem 2, 3 remain valid, if we extend the
summation for all α ∈ G∗, |α| ≤ r. This is clear since f(εα) = f(α) (ε ∈ I)
holds for the function f ∈ M̃∗.
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