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Abstract. In this paper we establish some theorems on the degree of

approximation of continuous functions by matrix means related to partial

sums of a Fourier series, employing some known and new wider classes of

null-sequences than those of Rest Bounded Variation Sequences or of Head

Rest Bounded Variation Sequences. These new results give significantly

better degrees than all results obtained previously by others.

1. Introduction

Let f(x) be a 2π- periodic continuous function. Let Sn(f ;x) denote the
n-th partial sum of its Fourier series at x and let ω(δ) = ω(δ, f) denote the
modulus of continuity of f .

Let A := (an,k) (k, n = 0, 1, . . .) be a lower triangular infinite matrix of
real numbers and let the A-transform of {Sn(f ;x)} be given by

Tn,A(f) := Tn,A(f ;x) :=
n

k=0

an,kSk(f ;x) (n = 0, 1, . . .).
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The deviation Tn,A(f) − f was estimated by P. Chandra [2] and [3]
for monotonic sequences {an,k}, where  ·  denotes the supnorm. Later on,
these results are generalized by L. Leindler [4] who in his paper considered the
sequences of Rest Bounded Variation and of Head Bounded Variation.

A sequence β := {cn} of nonnegative numbers tending to zero is called of
Rest Bounded Variation, or briefly β ∈ RBV S, if it has the property

∞
n=m

|cn − cn+1| ≤ K(β)cm

for all natural numbers m, where K(β) is a constant depending only on β.
A sequence β := {cn} of nonnegative numbers will be called of Head

Bounded Variation, or briefly β ∈ HBV S, if it has the property

m−1
n=0

|cn − cn+1| ≤ K(β)cm

for all natural numbers m, or only for all m ≤ N if the sequence β has only
finite nonzero terms, and the last nonzero term is cN .

Since Chandra’s and Leindler’s results are not connected directly to our
results, here we shall not recall those. However we shall emphasize that some
results on this topic are given recently by Leindler [6], and for interested reader
we would like to mention that some generalizations of Leindler’s results are
made by present author in [7].

Very recently B. Wei and D. Yu [8] have generalized Leindler’s results, and
thus Chandra’s results, without assumptions that A ∈ RBV S or A ∈ HBV S.
They verified there that Leindler’s results are consequences of their results.
Before we recall their results we shall suppose that

(1.1) an,k ≥ 0,
n

k=0

an,k = 1,

and ω(t) is such that

(1.2)

π

u

t−2ω(t)dt = O(H(u)), (u→ 0+),

where H(u) ≥ 0, and

(1.3)

t

0

H(u)du = O(tH(t)), (t→ 0+).
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Using notation an,k = an,k − an,k+1 B. Wei and D. Yu’s results read as
follows:

Theorem 1.1. Let (1.1) hold. Suppose that ω(t) satisfies (1.2). Then

Tn,A(f)− f = O


ω(π/n) +

n

k=0

|ank|H(π/n)

.

If, in addition, ω(t) satisfies (1.3), then

Tn,A(f)− f = O

 n

k=0

|ank|H
 n

k=0

|ank|


,

Tn,A(f)− f = O

 n

k=0

|ank|H(π/n)

.

Theorem 1.2 Let (an,k) satisfies (1.1). Then

Tn,A(f)−f = O


ω(π/n)+

n

k=1

k−1ω(π/k)
k+1
µ=0

anµ+
n

k=1

ω(π/k)
n

µ=k

|anµ|

.

In 2009, B. Szal [1] introduced a new class of sequences as follows.

Definition 1.1. A sequence α := {ck} of nonnegative numbers tending to
zero is called of Rest Bounded Second Variation, or briefly {ck} ∈ RBSV S, if
it has the property

∞

k=m

|ck − ck+2| ≤ K(α)cm

for all natural numbers m, where K(α) is positive, depending only on sequence
{ck}, and we assume it to be bounded.

In his paper Szal showed the following inclusions

RBV S ⊂ RBSV S ⊂ AMS and RBV S = RBSV S.

For further investigations we introduce the following definition.

Definition 1.2. A null sequence α := {ck} of nonnegative numbers is
called of Head Bounded Second Variation Sequence, briefly {ck} ∈ HBSV S, if
it has the property

m−1

k=0

|ck − ck+2| ≤ K(α)cm



282 Xh.Z. Krasniqi

for all natural numbers n, where K(α) depends only on sequence {ck}.
Note that

K(α)cm ≥
m−1

k=0

|ck − ck+2| ≥

≥|c0 + c1 − cm − cm+1| ≥
≥|cm + cm+1| − |c0 + c1| ≥
≥|cm + cm+1| ≥ cm + cm+1 =⇒

=⇒cm+1 ≤ K(α)cm =⇒
=⇒{ck} ∈MS,

so HBSV S ⊂ MS, where MS denotes the monotone decreasing null-
sequences.

Moreover, we easy can show that

m−1

k=0

|ck − ck+2| ≤ (K(α) + 3)
m−1

k=0

|ck − ck+1|,

which means that HBV S ⊂ HBSV S, but not conversely.

The present paper offers some new and significant estimations of the
deviation Tn,A(f)−f in the supnorm. Also, we shall show that results obtained
previously by others are consequences of ours as a special case (see the Section
4).

We emphasize here that throughout of this paper we write u = O(v), if
there exists a positive constant C such that u ≤ Cv, and all the constants K(·)
are assumed to be positive and bounded.

2. Helpful lemmas

To prove the main results we need some auxiliary statements.

Lemma 2.1. ([2]) If (1.2) and (1.3) hold then

π/n

0

ω(t)dt = O

n−2H(π/n)


.
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Lemma 2.2. ([3]) If (1.2) and (1.3) hold then

r

0

t−1ω(t)dt = O (rH(r)) (r → +0).

Lemma 2.3. For any lower triangular infinite matrix (an,k), k, n =
= 0, 1, 2, . . . of nonnegative numbers, it holds uniformly in 0 < t < π, that

(2.4)
n

k=0

an,k sin

k +

1
2


t = O

 τ

k=0

ank +
1

t(π − t)

n

k=τ

|an,k − an,k+2|

,

where τ denotes the integer part of π
t .

It also holds that

(2.5)
n

k=0

an,k sin

k +

1
2


t = O


1

t(π − t)

n

k=0

|an,k − an,k+2|

.

Proof. For arbitrary λn ≥ 0 and for n ≥ m ≥ 0 we have

Bm,n(t) :=

:=
n

k=m

λk cos

k +

1
2


t =

=
1
2

n

k=m

(λk + λk+1) cos

k +

1
2


t+

1
2

n

k=m

(λk − λk+1) cos

k +

1
2


t,

and whence
1
2
Bm,n(t) =

=
1
2

n

k=m

(λk + λk+1) cos

k +

1
2


t− 1

2

n+1

k=m+1

λk cos

k +

1
2
− 1


t =

=
1
2

n

k=m

(λk + λk+1) cos

k +

1
2


t−

− 1
2

n

k=m+1

λk cos

k +

1
2
− 1


t− 1

2
λn+1 cos


n+

1
2


t =
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=
1
2

n

k=m

(λk + λk+1) cos

k +

1
2


t−

− 1
2
cos t

n

k=m+1

λk cos

k +

1
2


t− 1

2
sin t

n

k=m+1

λk sin

k +

1
2


t−

− 1
2
λn+1 cos


n+

1
2


t

or
1 + cos t

2
Bm+1,n(t) =

=
1
2

n

k=m

(λk + λk+1) cos

k +

1
2


t− 1

2
sin t

n

k=m+1

λk sin

k +

1
2


t−

− 1
2
λn+1 cos


n+

1
2


t− 1

2
λm cos


m+

1
2


t,

and therefore
Bm+1,n(t) =

=
1

2 cos2 t
2


n

k=m

(λk + λk+1) cos

k +

1
2


t− sin t

n

k=m+1

λk sin

k +

1
2


t−

− λn+1 cos

n+

1
2


t− λm cos


m+

1
2


t


.

Further
Lm,n(t) :=

:=
n

k=m

λk sin

k +

1
2


t =

=
1
2

n

k=m

(λk + λk+1) sin

k +

1
2


t+

1
2

n

k=m

(λk − λk+1) sin

k +

1
2


t,

and whence

(2.6) Lm,n(t) =

=
1
2

n

k=m

(λk + λk+1) sin

k +

1
2


t− 1

2

n+1

k=m+1

λk sin

k +

1
2
− 1


t =
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=
1
2

n

k=m

(λk + λk+1) sin

k +

1
2


t−

− 1
2

n

k=m+1

λk sin

k +

1
2
− 1


t− 1

2
λn+1 sin


n+

1
2


t =

=
1
2

n

k=m

(λk + λk+1) sin

k +

1
2


t−

− 1
2
cos t

n

k=m+1

λk sin

k +

1
2


t+

1
2
sin tBm+1,n(t)−

− 1
2
λn+1 sin


n+

1
2


t.

After inserting of Bm+1,n(t) into (2.6) and performing some elementary trans-
formations we obtain

Lm,n(t) =
1

2 cos t
2


n

k=m

(λk+λk+1) sin (k + 1) t+λm sinmt−λn+1 sin (n+ 1) t


.

Moreover, using the summation by parts we get

Lm,n(t) =

=
1

2 cos t
2


n−1

k=m

(λk − λk+2)
k

i=0

sin (i+ 1) t+ (λn + λn+1)
n

i=0

sin (i+ 1) t−

− (λm + λm+1)
m−1

i=0

sin (i+ 1) t+ λm sinmt− λn+1 sin (n+ 1) t


.

Thus, since

k

i=0

sin (i+ 1) t =
cos t

2 − cos

k + 3

2


t

2 sin t
2

= − sin(k + 2)
t
2 sin (k + 1)

t
2

sin t
2

,

we have
Lm,n(t) =
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=− 1
2 sin t

2 cos
t
2


n−1

k=m

(λk − λk+2) sin(k + 2)
t

2
sin (k + 1)

t

2
+

+ (λn + λn+1) sin(n+ 2)
t

2
sin (n+ 1)

t

2
−

− (λm + λm+1) sin(m+ 1)
t

2
sin

mt

2
+

+ λm sinmt sin
t

2
− λn+1 sin(n+ 1)t sin

t

2


.

Therefore using the inequalities sin t
2 ≥ t

π and cos
t
2 ≥ 1 − t

π for t ∈ (0, π) we
obtain

(2.7) |Lm,n(t)| ≤ π2

t(π − t)


1
2

n−1

k=m

|λk − λk+2|+ λn + λn+1 + λm + λm+1


.

Now by (2.7), supposing that n ≥ τ , we have

|L0,n(t)| ≤

≤
τ

k=0

ank +


n

k=τ

ank sin

k +

1
2


t

 ≤

≤
τ

k=0

ank +O


1

t(π − t)


an,τ + an,τ+1 +

1
2

n−1

k=τ

|an,k − an,k+2|+ an,n


.

Since (an,k) is a lower triangular infinite matrix, that is, an,k = 0 for k > n,
then

an,τ + an,τ+1 ≤
n

k=τ

|an,k − an,k+2|,

and

an,n = an,n + an,n+1 =
n

k=n

|an,k − an,k+2| ≤
n

k=τ

|an,k − an,k+2|.

Consequently,

|L0,n(t)| ≤
τ

k=0

ank +O


1

t(π − t)

n

k=τ

|an,k − an,k+2|

,

which completely proves (2.4).
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By a similar technique we have

|L0,n(t)| =O


1
t(π − t)


an,0 + an,1 +

1
2

n−1

k=0

|an,k − an,k+2|+ an,n


=

=O


1
t(π − t)

n

k=0

|an,k − an,k+2|


which completes (2.5), and with this the proof of the lemma.

3. Main results

We establish the following

Theorem 3.3. Let (an,k) satisfy conditions (1.1) and assume that ω(t)
satisfies condition (1.2). Then

(3.8) Tn,A(f)− f = O


ω(π/n) +H(π/n)

n

k=0

|an,k − an,k+2|

.

If, in addition, ω(t) satisfies (1.3), then

(3.9) Tn,A(f)− f = O

 n

k=0

|an,k − an,k+2|H
 n

k=0

|an,k − an,k+2|


,

(3.10) Tn,A(f)− f = O

 n

k=0

|an,k − an,k+2|H(π/n)

.

Proof. Denoting

φx(t) :=
f(x+ t) + f(x− t)− 2f(x)

2
,

we easily obtain

(3.11) Tn,A(f ;x)− f(x) =
2
π

π

0

φx(t)

2 sin

t

2

−1 n

k=0

an,k sin

k +

1
2


t dt.
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By (3.11) we have

(3.12) Tn,A(f ;x)− f(x) ≤ 2
π

 π/n

0

+

π

π/n


:= B1(n) + B2(n).

According to (1.1) and the inequality | sin t| ≤ t for 0 ≤ t ≤ π/n, we have


n

k=0

an,k sin

k +

1
2


t

 ≤ 2nt.

Thus,

(3.13) B1(n) = O(n)

π/n

0

ω(t)dt = O(ω(π/n)).

Also, by (2.5), (1.2) and the obvious inequality 1
t2(π−t) <

1
t2 , for 0 < t < π, we

obtain

(3.14) B2(n) =

= O

 n

k=0

|an,k − an,k+2|
 π

π/n

t−2ω(t)dt = O


H(π/n)

n

k=0

|an,k − an,k+2|

.

Therefore (3.8) follows from (3.12)-(3.14).

Then according to (1.1), and

n

k=0

|an,k − an,k+2| ≤
n

k=0

an,k +
n−2

k=0

an,k+2 ≤ 2
n

k=0

ank = 2 < π,

we get

(3.15) Tn,A(f ;x)− f(x) ≤

≤ 2
π


n

k=0
|an,k−an,k+2|

0

+

π

n

k=0
|an,k−an,k+2|


:= D1(n) +D2(n).
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It is obvious from (1.1) that


n

k=0

an,k sin

k +

1
2


t

 ≤ 1.

Thus, by Lemma 2.2 we have

(3.16) D1(n) = O(1)

n

k=0
|an,k−an,k+2|

0

t−1ω(t)dt =

= O

 n

k=0

|an,k − an,k+2|H
 n

k=0

|an,k − an,k+2|


.

Using (2.5) and (1.2), and the inequality 1
t2(π−t) <

1
t2 , for 0 < t < π, we obtain

(3.17)

D2(n) =O


n

k=0

|an,k − an,k+2|
π

n

k=0
|an,k−an,k+2|

t−2ω(t)dt


=

=O
 n

k=0

|an,k − an,k+2|H
 n

k=0

|an,k − an,k+2|


.

From (3.15), (3.16) and (3.17) follows (3.9).

Now we turn back to prove (3.10). Since ank = 0 for k > n, we deduce
that

an, ≤ |an, + an,+1| − |an,n| ≤
n

k=

|an,k − an,k+2|

for  = 0, 1, 2, . . . , n, which implies

1 =
n

=0

an ≤ (n+ 1)
n

k=0

|an,k − an,k+2|,

i.e.
n

k=0

|an,k − an,k+2| ≥ 1
2n

.
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Whence, according to Lemma 2.2 we obtain

(3.18) B1(n) = O


1
n
H(π/n)


= O

 n

k=0

|an,k − an,k+2|H(π/n)

.

Therefore, by (3.12), (3.14) and (3.18), (3.10) is proved.

Theorem 3.4. Let (an,k) satisfies (1.1). Then

(3.19) Tn,A(f)− f =

= O


ω(π/n) +

n

k=1

k−1ω(π/k)
k+1
µ=0

anµ +
n

k=1

ω(π/k)
n

µ=k

|an,µ − an,µ+2|

.

Proof. According to (2.4), the inequality 1/t2(π − t) < 1/t2, 0 < t < π,
and the property of the monotonicity of ω(t), we have

(3.20) B2(n) =

=
2
π

π

π/n

φx(t)

2 sin

t

2

−1 n

k=0

an,k sin

k +

1
2


t dt =

=O

 π

π/n

t−1ω(t)
 τ
µ=0

anµ +
1

t(π − t)

n
µ=τ

|an,µ − an,µ+2|

dt


=

=O


n−1

k=1

π/k

π/(k+1)

t−1ω(t)
 τ
µ=0

anµ +
1

t(π − t)

n
µ=τ

|an,µ − an,µ+2|


dt =

=O


n

k=1

k−1ω(π/k)
k+1
µ=0

anµ +
n

k=1

ω(π/k)
n

µ=k

|an,µ − an,µ+2|

.

Combining (3.12), (3.13) and (3.20), we immediately obtain (3.19). The
proof of the theorem is completed.

4. Conclusion

In this section we are going to show that the main results contain all results
obtained previously by others. We begin first with the following remark.



On the degree of approximation of continuous functions 291

Remark 4.1. Because of the inequality

n

k=0

|an,k − an,k+2| ≤ 2
n

k=0

|ank|,

Theorem 1.1 and Theorem 1.2 (from [8]) follow immediately from ours.

Secondly, since

n

k=0

|an,k − an,k+2| =
n−1

k=0

|an,k − an,k+2|+ an,n

and
n−1

k=0

|an,k − an,k+2| ≥|an,0 + an,1 − an,n| ≥

≥|an,n − an,0| − |an,1| ≥
≥|an,n − an,0| ≥ an,n − an,0,

then, if {an,k} ∈ RBSV S, we have

n

k=0

|an,k − an,k+2| ≤ 2
n−1

k=0

|an,k − an,k+2|+ an,0 ≤ (2K + 1)an,0.

But, if {an,k} ∈ HBSV S, we have

n

k=0

|an,k − an,k+2| =
n−1

k=0

|an,k − an,k+2|+ an,n ≤ (K + 1)an,n.

Therefore the following immediate corollary of our results hold of true.

Corollary 4.1. Let (an,k) satisfies conditions (1.1) and assume that ω(t)
satisfies condition (1.2). Then:

(i) If {an,k} ∈ RBSV S we have

Tn,A(f)− f = O (ω(π/n) +H(π/n)an,0) .

If, in addition, ω(t) satisfies (1.3), then

Tn,A(f)− f = O (an,0H(an,0)) ,

Tn,A(f)− f = O (an,0H(π/n)) .
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(ii) If {an,k} ∈ HBSV S we have

Tn,A(f)− f = O (ω(π/n) +H(π/n)an,n) .

If, in addition, ω(t) satisfies (1.3), then

Tn,A(f)− f = O (an,nH(an,n)) ,

Tn,A(f)− f = O (an,nH(π/n)) .

Remark 4.2. Since RBV S ⊂ RBSV S and HBV S ⊂ HBSV S, then
Corollary 4.1 contains the results obtained in [4] and [8], and therefore we have
obtained the same degrees on sup-norm approximation for two wider classes of
numerical sequences.

In [5] Leindler has extended the definition of RBV S to the so-called
γRBV S. That definition can be stated as follows:

For a fixed n, let γn := {γn,k}, (k = 0, 1, . . .) be a nonnegative sequence.
If a null-sequence αn := {an,k}, (k = 0, 1, . . .) of real numbers has the property

∞

k=m

|an,k − an,k+1| ≤ K(αn)γn,m

for every positive integer m, then we call the sequence αn := {an,k} a γRBV S,
briefly denoted by αn ∈ γRBV S.

Similarly, in [8] was introduced a new kind of sequences γHBV S as follows:

For a fixed n, let γn := {γn,k}, (k = 0, 1, . . .) be a nonnegative sequence.
If a null-sequence αn := {an,k}, (k = 0, 1, . . .) of real numbers has the property

m−1

k=0

|an,k − an,k+1| ≤ K(αn)γn,m

for every positive integer m, then we call the sequence αn := {an,k} a γHBV S,
briefly denoted by αn ∈ γHBV S.

We introduce here two new kind of sequences γRBSV S and γHBSV S as
follows:

For a fixed n, let γn := {γn,k}, (k = 0, 1, . . .) be a nonnegative sequence.
If a null-sequence αn := {an,k}, (k = 0, 1, . . .) of real numbers has the property

∞

k=m

|an,k − an,k+2| ≤ K(αn)γn,m
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
m−1

k=0

|an,k − an,k+2| ≤ K(αn)γn,m



for every positive integerm, then we call the sequence αn := {an,k} a γRBSV S
(γHBSV S), briefly denoted by αn ∈ γRBSV S (αn ∈ γHBSV S).

It is obvious that if γn = αn, then γRBSV S ≡ RBSV S and γHBV S ≡
≡ HBSV S.

Using a similar technique, as in the proof of Theorem 3.3 and Theorem
3.4, we have the following generalizations:

Theorem 4.5. Let (an,k) satisfies conditions (1.1) and assume that ω(t)
satisfies condition (1.2). Then

(i) If {an,k} ∈ γRBSV S we have

Tn,A(f)− f = O (ω(π/n) +H(π/n)γn,0) .

If, in addition, ω(t) satisfies (1.3), then

Tn,A(f)− f = O (γn,0H(γn,0)) ,

Tn,A(f)− f = O (γn,0H(π/n)) .

(ii) If {an,k} ∈ γHBSV S we have

Tn,A(f)− f = O (ω(π/n) +H(π/n)γn,n) .

If, in addition, ω(t) satisfies (1.3), then

Tn,A(f)− f = O (γn,nH(γn,n)) ,

Tn,A(f)− f = O (γn,nH(π/n)) .
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