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Abstract. We prove that if an additive commutative semigroup G (with
identity element 0) and G-valued completely additive functions fo, fi, fo
satisfy the relation fo(n) + f1(2n + 1) + f2(n+2) = 0 for all n € N, then
fo(n) = fi2n+1) = fo(n) = 0 for all n € N. The same result is proved
when the relation fo(n) + f1(2n — 1) + fa(n +2) = 0 holds for all n € N.

1. Introduction

Let G be an additive commutative semigroup with identity element 0. Let
Af denote the set of those functions f : N — G, for which f(nm) = f(n)+ f(m)
holds for all n, m € N. The domain of f € Af can be extended to Q4 (the
multiplicative group of positive rationals) by

7 () = £m) = ).

m
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If we define f(—a) := f(a) for @ € Q4, then the equation f(af) = f(a) + f(B)
remains valid for arbitrary nonzero rational numbers «, 3. Let P be the set of
primes.

In case G = R, then we simply write A* instead of Aj.

In an old paper written by Kdatai I. [6] the following conjecture has been
formulated:

Conjecture 1. If fo, f1, ..., fx € A* and,
(1.1) L,=fon)+ fin+1)+...+ fi(n+k)=0 (mod 1)
for all n € N, then

(1.2) foln) = filn) = ... = fi(n) =0 (mod 1)

are satisfied for alln € N

This conjecture has been proved for k = 2,3 (see [4] and [5]) and in [3] the
case k = 4 assuming the fulfilment of relation (1.1) for every n € Z. Here we
define f;(0) =0 (j =0,---,k). P.D.T.A. Elliott investigated the case when

fi=foand fj = —fo for j =1,--- , k is arbitrary (see [1] and [2]), and even the
case when f] S {an 7f03 fl, 7f1}7 (] = 27 7k)

For other results we refer to works [7], [8], [9] and [10]

The following, more general problem seems to be interesting, also. Let
Ap(n), A1(n) ..., Ax(n) € Q for all n € N and fo, f1, ..., fx € A* for which

fo(Ao(n)) + fi(A1(n)) + ... + fu(Ar(n)) =0 (mod 1)
holds. Under what conditions can we assert that
fon)=filn)=...= fr(n) =0 (mod 1)

are satisfied for all n € N.

In this short paper we investigate the simple non-trivial case
(Ao(n), Al(n)7 AZ(n)) = (7% 2n + la n+ 2)

and

(Ao(n), A1(n), As(n)) = (n,2n — 1,n + 2).
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2. Formulation of the theorems

We shall prove the following two theorems.

Theorem 2.1. Let G be an additive commutative semigroup with identity
element 0. If fo, fi1, fo € AL and

An) = fo(n) + 120+ 1) + fo(n +2) =0
holds for all n € N, then
fo(n) = f1(2n+1) = fa(n) =0
hold for all n € N.

Theorem 2.2. Let G be an additive commutative semigroup with identity
element 0. If fo, fi1, fo € AL and

B(n) == fo(n) + f1(2n— 1)+ fo(n+2) =0
holds for all n € N, then
fo(n) = f1(2n — 1) = fo(n) =0
hold for all n € N.

3. Lemmas

Firstly we prove a few lemmas.

Lemma 1. Assume that fo, fi, f2 € Af satisfy the condition A(n) = 0 in
Theorem 2.1 for all n € N. Let f1(2) =0. Then

fo(n) = fi(n) = fa(n) =0
holds for all n <5.

Proof. Let B be the subgroup of Q% generated by the element (1,2,1) and
the sequences

L, — (n o+ 1, n+2) (n € N).
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Since A(n) = 0, therefore
fola) 4+ f1(0) + f2(c) =0 forall (a,b,c) € B.
We use the following notations for a prime p:

ap, = (p,1,1), b, =(1,p,1) and ¢, =(1,1,p).

We show that a,,b,, and ¢, are elements of B for all primes p < 19. This

assertion proves Lemma 1.

Using a simple Maple program and the relation A(n) = 0 for n = 4, 25, 38, 40

and n = 42, we will get the following 5 equations.

L
(3.1) By =% = a2byey € B,
Lo

_ L3LiaLy6Llos a3

(3:2) 2T T 2LLsLy B3 <
L3L6L12L38 a3b362
3.3 Eq:= =1 = 2 e B,
( ) 3 L%L3L16L19 CL%
LieLao
(3.4) E, = L, = asbics € B,
and
L3LoLosL 24
(3.5) FEs = 122842 _ a2b3¢5 € B.

L%LSLQ as

This system has solutions in asg, ag, bs, c2, which are given in terms of E, - - -

Thus as, ag, bs, co are elements of 5.

The solutions of the above equations (3.1)-(3.5) are:

98 1724 1732 558 77136 1181
0y — EPESE? 0y = BB By
= 16 37 = 90 77211
E3°Ey E3"E}
ESEII E27E63
b3 374 and ¢p = 3 4

= 288 il 167 1,753 40 °
EPESES EI°TERES

 Es.
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Finally, we express as, bs, c3 and c5 in the terms of as, as, bs, co and L,,. We
have

a5 = L%L%L{;G%Gg o= L2
L12L16b30% ’ QQC%
and 5o .
L1 L1L2L3L5CL2
c3 = — and 5 = ——— =
T by ® " LioL1aLiebs

are elements of B. This completes the proof of Lemma 1.

Lemma 2. Assume that fo, fi, fo € A% satisfy the condition B(n) = 0 in
Theorem 2.2 for all n € N. Let f1(2) =0. Then

fo(n) = fi(n) = fa(n) =0
holds for allm <17.

Proof. The proof is similar to the proof of Lemma 1. Let D be the subgroup
of Q% generated by the element (1,2,1) and the sequences

Dy, :=(n, 2n—1, n+2) (n€N).
From our assumption B(n) = 0 for all n € N, we have
fola) + f1(b) + fa(c) =0 for all (a,b,c) € D.
We shall use the following notations (p is prime):

A,:=(p,1,1) €D, B, :=(1,p,1) €D and C,:=(1,1,p) € D.

By using a simple Maple program and the relation B(n) = 0 for n =
=38, 18, 26, 28 and n = 63, we obtain the following 5 equations in Ay, A3, Bs, Cs:

Dy A2
(3.6) L DD AsCy C
DD AsCh
(3.7) 2T DDy A, °

D3D3D14DogDog  AsCo
(38) B = 8D DDy Dy~ AsBs < 1
5 D5 D7 D9 D13 385
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D3 Do A3
3.9 Fyo= 272 2 - p
(3.9) 4T DiDyDeDyy A2 ST

(3.10) 5 D3DiDeDYDes _ ASBSCS _
' 5 "D2Dy, D2 Do A2 :

This system has solutions in As, Az, Bs,Co, which are given in terms of
Fy,---, F5. Thus As, Az, By, Cy are elements of D.

The solutions of the above equations (3.6)-(3.10) are:

F10F6
Ay = P\ Fy, Ag= =24
2 1472, 3 FfF§F5 )
FIF2F8 F4F5F4
By =251 gand Cp,=-321,
FITF FSF$

Now, we express As, Az, By, B7,C3,Cs and C7 in the terms of As, Az, By, Cs
and L,,. We have

A — L3L1pA3 L4 A3C3
" LiLigA3B5Cy’ T Ly
b Lo I
ST oA,z T LAZC,
and A o
Ls LiL5L4gA3B5C5
C3=L1, OCbh=——, C;=
3 ’ AsBs T L212L10A;

are elements of D. This completes the proof of Lemma 2.

4. Proof of Theorem 2.1

Let G be an additive commutative semigroup with identity element 0. If

an fl7 f2 € A(E and
An) = fon)+ 12n+ 1)+ fa(n+2) =0

holds for all n € N. By using Lemma 1, we have fo(p) = fi(q) = f2(p) = 0 for
primes p < 5 and ¢ = 3, 5.
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Assume indirectly that the theorem is not true. Let ng be the smallest positive
integer for which f;(ng) # 0. Then ng = P € P, P > 5 and either fy(P) # 0 or

f2(P) #0.

Case I. fo(P)=¢ (#£0).

If P=1 (mod 3), then 3|P+2,3|2P + 1, thus f1(P+2) =0, f2(2P+1) =0,
consequently A(P) = 0 implies that fo(P) = 0.

It remains to consider the case P = —1 (mod 3). Let 4P +1 = 3Q. Then
it follows from the fact P > 5 that %=L < Q+3 < P, consequently A(%) =0
implies that

0= () +a@+ (42 = n@,
thus we infer from A(2P) = 0 that
0= fo2P) + 1(3Q) + 2 (475

and so fo(P) =0.

Case II.  fo(P) =v (#0).

From A(n)=0 | we obtain that and that

1| AP-2)=0 2P-3€¢P f1(2P —-3) =

@) | AQP—2)=0 | 4P 3P | fidP —3) =

B) | AGP—2)=0 | 4P—1eP f1(4P—1)——zx
(1) | ABP-5)=0 | Fcp | j( 5 =v
(5) P =2 (mod 3)

6) | A4P-2)=0 8P-3€P | (8P —3)=—v
(7) P =3 (mod 5)

The assertions (1) and (2) are clear.
In order to show (3), let @ := 3£=L. Then we have

2 P+1
QFf2_PHl_p 4 2Q +1 =3P,

Q=1 (mod3),3|Q+2, PR

which with A(Q) = 0 shows that

fo(Q) + /12Q +1) + f2(Q +2) = fo(Q) + f1(P) = 0.

It is clear from A(Z51) = 0 that fi(P) = 0, consequently fo(Q) = fo(3P —1) =
= fo(6P —2) = 0, thus A(6P — 2) = 0 implies

0= fo(6P —2) + L(12P — 3) + o(6P) = L(4P — 1) + ful(P),
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which proves (3).
From A(3P — 5) = 0 we have

3P -5
2

0= fo(3P = 5)+ i(6P = 0) + f2(8P = 3) = fo*——) + fi(2P = 3),

from (1) we obtain (4).

Since P € P, the assertion (5) follows from (3).

From (5), we have 3]2P — 1 and 251 < P, consequently fo(4P —2) =
= fo(2P — 1) = 0. Thus we obtain from A(4P — 2) = 0 that

0=fo(4P =2) + /1(8P = 3) + f2(4P) = /L(8P = 3) + fa(P),
which proves (6). Since P € P, the assertion (7) follows from (1), (2) and (6).

Let T := 3£=2_ Then we infer from (4) and (7) that

(4.1) TeP, foll)=v
and
(4.2) =-1 (mod3), T=2 (modb5).

From (4.2) we have 52T + 1, % = % < P, consequently we obtain from
A(T) = 0 that

A(T) = fo(T) + 12T + 1) + fo(T' + 2) = fo(T) + fo(T' +2) = 0.
This with (4.1) implies
(4.3) fo(T+2)=—u.

From (4.2), we have 53T +4, 31t = 9227 < P and fo (3T +4) = fo(35H) = 0.
Thus we obtain from A(37 + 4) = 0 that

0= fo(B3T +4)+ fr(6T +9) + fo(3T 4+ 6) = f1(2T + 3) + f2(T + 2),
which with (4.3) implies
(4.4) [T +3)=v.
Finally, A(T + 1) = 0 implies that
fo(T+ 1)+ f1(2T +3) + fo(T +3) = 0.

Since Tt =327 < p, T3 = 3841 < P we deduce that fy(27 4 3) = 0. This

contradicts to (4.4).

The proof of Theorem 1 is complete.
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5. Proof of Theorem 2.2

Let G be an additive commutative semigroup with identity element 0. If

f07 fl, f2 S AE‘, and

B(n) := fo(n) + f12n+1) + fa(n +2) =0
holds for all n € N. By using Lemma 2, we have fy(p) = fi(q) = f2(p) = 0 for
primes p < 5 and ¢ = 3, 5.

Assume indirectly that the theorem is not true. Let ng be the smallest positive
integer for which f;(ng) # 0. Then ng = P € P,P > 7 and either fo(P) # 0 or

f2(P) # 0.

Case I. fo(P)=v (#0).
We infer from B(P —2) = 0 that f1(2P—5) = —v,2P—-5¢€ P andso P = —1
(mod 3). We have

B(2P —2) = fo(2P —2) + f1(4P — 5) + f2(2P) = 0.

Since fo(2P — 2) = 0, therefore fi(4P —5) = —v,Q = 255 € P and

B4 = (4 + r@ + £(452) =0,

Since P > 5, we have % = % < P and % = % < P, consequently

4P -5

7@ = i ) = 1P —5) = 0.

This cannot occur.
Case II.  fo(P) =¢ (#0).

Since 4|2P + 2 and 2242 = PEL < P we infer from B(2P) = 0 that
0= B(2P) = fo(2P) + i(4P — 1) + fo(2P +2) =€ + (4P — 1),

Thus fi(4P — 1) = —¢ and either 4P —1 € P or 2£=L € P,

If Q == =2 e P, thenP>7showsthat%:2PT“<Pand ‘Q;E) -

= @ < P, consequently

Q+1

= fo(T) +f1(Q)+f2<Q+5

2

@)

OZB( 2

)=f1(Q)-
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This cannot occur. Thus we have proved that 4P — 1 € P, and so
(5.1) =-1 (mod 3).

From (5.1) we have 3|2P — 1, consequently B(P) = 0 implies that fo(P+2) =
— ¢ Pt2eP.

Since

0= B(2P) = fo(2P) + f1(4P — 1) + f (2P n 2)

and fo <2P + 2) =0, we have

0=B(2P) = fo(2P) + fi(4P — 1) + f» (2P+ 2) — ¢4 fi(4P 1),

consequently fi(4P —1)=—-¢, 4P —-1€P.
On the other hand, we have

B(2P +2) = fo(2P +2) + f1(4P + 3) +f2(2P+4) —0,

which implies that fi(4P+3) = ¢, 4P+3 € P. Since P, P+2,4P—1,4P+3 € P,
therefore P =1 (mod 5) or P =2 (mod 5).

Case IL.a. P =2 (mod 5).
Since 15[8P — 1,52P + 1, therefore

BuP) = faP) + 1 (Y0 + () =0

15
therefore fo(P) = 0.

Case II.Lb. P =1 (mod 5).
In this case 6P — 1 = 5Q), %:313542<Pand%:31%12<P. Thus

B(le) fo<Q+ 1) + f1(Q) +f2(Q+5) = f1(Q).

Hence

(5.2) f1(Q) = fr(6P —1) = 0.

Since 5[3P 4 2, f2(3P + 2) = 0, therefore B(3P) = 0 with (5.2) implies that
fo(P) =

The proof of Theorem 2 is complete.
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6. Final remarks

Theorem 6.1. Let ag = By = (1,2,1) and o, = (n,2n 4+ 1,n 4+ 2), B, =
= (n,2n—1,n+2). Let B be the subgroup of Q% generated by a, (n =0,1,2,--+)
and D be the subgroup of Q% generated by (3, (n=0,1,2,---). Then

lS’:Q3+ and D:Qi.
It means that for every (r1,r2,r3) € Q7 there existny,ng, -+ ,ng € Ny, €1,€2,-+ € €
{=1,1} and my,ma, -+ ,my € No, d1,09,--- ,8, € {—1,1} such that

k

(7’1,7”2,7"3) = Ha;iia

i=1

and that

l
(ri,72,r3) = [ [ adi.-

i=1
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