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Abstract. The following assertion is proved. Given an arbitrary constant
A > 2 let 2 = logz, zpp1 = logay (K = 1,2,...), ¢(n) be Euler’s
. - . AT
totient, and 0’(71) the sum of divisors function. Let [, = |—, x2|,
T3
Q1,Q2 € I, be primes,

EQ17Q2 (33) = #{’I’I < | Ql}/(ﬁ(n), QQ}/@(H + 1)}

Then, uniformly for Q1, Q2 € I,

1 B
;EQth (x) = (1 + 093(1»5"'@1532;

T2

Q;—1

other assertions are formulated without proof.

where K; = exp (— ) (j = 1,2), B is a given constant. Some

The project is supported by the Hungarian and Vietnamese TET (grant
agreement no. TET 10-1-2011-0645).
https://doi.org/10.71352/ac.38.245


https://doi.org/10.71352/ac.38.245

246 1. Kétai

1. Introduction

Let ¢(n) be Euler’s totient function, o(n) be the sum of divisors function.
We shall define the iterates of ¢ and o as follows:

er+1(n) = p(px(n)), ok1(n) = o(ok(n)),
p1(n) =¢(n), oi(n)=o(n).

Let P be the set of primes. It is known that ¢ and o are multiplicative
functions, and if p® is a prime power, then ¢(p®) = p*~(p — 1), o(p®) =
=1+4+p+...+p“ In particular, o(p) =p—1, o(p) =p+ 1. The letters p, Q
with and without suffixes always denote prime numbers. As usual let p(n) be
the smallest and P(n) be the largest prime divisor of n.

Let 1 =logx, xo=logxy,....

The letters ¢, cq1,co,... denote suitable, d,dy,ds, ... be arbitrary positive
constants, not necessarily the same at every occurrence.

Let (& =) &) = e 71 (peP),

Q[ 2) =) [[(1-4@), QeP.

P<Q
pPEP

Let
Pi(Q):={p|lpeP, p==£l (modQ)}.

Since Qfp(n), n < x holds if and only if (n, P, (Q)) = 1 and Q?}n, thus,
by the sieve of Eratosthenes-Brun we obtain that

Eg(z)

*#{ﬂ <z[Qfp(n)} =
=(1+4 0,(1 (

\_/
_
|
—_
\
)
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holds uniformly as (k,l) =1, k < z{*, we obtain that the right hand side of
(1.1) is &4(x) (1 +0 (%)) (140,(1)). We shall list several assertions which

can be deduced by immediate application of the Brun sieve (see Theorem 2.5
in [7]).

I.Let Q € [z3,22], Q€P, 1€Z, 1#0. Then

(12 Tfn<zlo() 0 (mod @)= (1+o0.(1))éq(x)

S#n <o) 0 (mod @), o(n) 20 (mod Q)} =
= (14 0, ()G (@)

(1.3)

(14 S #p<elep+) 20 (nod Q) = (1 +0.(1)Eg(r),

S <alop+) 20 (mod Q) = (1+ 0,(1))q ()

P ST e+ D20 (mod @o(p+) 20 (mod Q) =
— L+ 0,(1)& (o).

II. Similar assertions can be proved for the set of integers F'(n) or F(p),
where F' € Z[z] is a polynomial the leading coefficient of which is positive.

III. Let Q1,...,Qr; QF,...,Q% € [z3,22] be primes, Q; # Q; if i #
#74, QF #QFifu#v. Let [ #0. Then

THn <] (pn). Q1 Q) =1, (o(n), QF .. Q1) =1} =

(1.7) .
1+o0,(1 {HfQJ }{H‘EQ;*(QU)}’
=1

furthermore

A<+ 1,Qr Q) =1, (ol +1),QF.. QD) =1} =

(1.8) s
— (14 0,(1 {HsQJ }{H&;;(x)},
=1

For fixed @, (1.1), (1.2) and (1.3) can be improved (see [2], [1]).



248 1. Kétai

2. Counting those integers n for which ¢(n) and o(n) each avoid a
given prime as their smaller prime factor

Let u(n) be the smallest prime @ for which Qfy(n), and v(n) be the
smallest () € P, for which Qfo(n).

Let Kg(z) :=#{n <z [u(n) =Q}, To(z):=#{n<z[v(n)=Q},
5Q1,Q2 (1) = #{n <z [u(n) = Q1,v(n) = Q2}.

Theorem 1. Assume that Q, Q1, Q2 € [x37 i—ﬂ Then

(2.) Ko@) _ (1 4 0,160 @),

(2:2) 1al®) _ (14 0,160 )

(2.3 5008 _ (1 4 0,(1))éq, () - €0, ().
Furthermore, if | # 0, then

(24) S lp < |ulp+1) = Q) = (1+ 0u(1)Eg(®),
(25) S < |o(p+D) = Q) = (14 0,(1)q(),

(2.6) %#{péxluw”)=Q1’”<p+l):Q2}:

= (14 0:(1))éq, (%) - €@, (7).

Remark 1. Unfortunately we cannot extend Theorem 1 for the values

Q,Q1,Q2 > x2/x3.
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Conjecture 1. Let d be a positive constant. Then, uniformly as x3 <
< Q,Q1,Qs < dxs we have

(27) “#{n <z uln) = Q) = (1+ 0, ()r(Qle),
(28) #{n<z] o) = Q) = (1 +0.(V)r(Q)

é#{n <zfu(n)=Q1,v(n) =Q2} =
= (1+0,(1))7(Q1]2)7(Q2]x).

(2.9)

Remark. Similar assertion seems to hold for the set of shifted primes as
well.

In [2] we considered Ni(Q|z), the number of those n < x for which
Qfpr41(n). We determined the asymptotic of Ni(Q|z) in the range @ €
€ (a5T, 25T179). By using the same method with some generalization we

could prove
Theorem 2. Lete >0, k> 2 be fired, | #0, | € Z, and let x§+5 <

k+1
< Q< x§+178, Q € P. Then, setting ni.q(x) = exp (—W), we

obtain
(2.10) %#{n <z | Qfoks1(n)} = (14 0. (1))mk.o(),
(2.11) %#{p <z |Qfori(p+ 1)} =1+ 0.(1))k.0(2),
o2 L < 2| Qo (). Qlorn () =

= (14 0:(1))n o (),
and
(2.13) %#{pg 2| Qforr1(p+1),Qfor1(p+ 1)} =

= (1+0s(1))1i g ().
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Theorem 3. Lete > 0, k > 2, rs > 1. Let Q1,...,Q, and

s
1
Q1,...,QF be distinct primes from the interval [ g+2+67m§+175] Then

S < (@ Quoprn(m) =1 (QF Q5 oka(n) = 1) =

(2.14) s
= (1+o0.(1 an Q,( {HWZ,Q;‘(CU)}7
=1
and
(2.15)

AP <] (@ Qrprnp D) =1, (QF - Qhokalp 1) =1} =

= (14 0.(1 an Q; (@ {HWZ,Q,*(I’)}~
=1

We shall not prove these theorems.

3. Counting those integers n for which ¢(n) and ¢(n + 1) each avoid
given primes in their respective prime factorizations

The problem of giving the asymptotic of those n < z for which Q1)p(n)
and Qafp(n + 1) simultaneously for given primes @1, Q2 seems to be much
harder. We are unable to determine it for example if Q1 = Q2 = 3.

Theorem 4. Let \ > 2 be an arbitrary constant. Let T, = [’\“’32,302} ,

p=I( 5w

Let Q1,Q2 € I, be arbitrary primes. Let

(3.1) EqQ.q.(z) :=#{n <z | Qife(n), Qofp(n+1)}.
Then, uniformly as Q1,Q2 € Z,,

1

(32) L Bo,0.(2) = (14 0,(1)) 5 ks,
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where K1 = exp (— inl) , Ko = exp (— jSl).
Remark. A similar assertion can be proved for o(n) instead of ¢(n).
Proof. It is clear that
KR1K2 R1K2
Q1 Q2
Let P ={p|p=1 (mod Q;)} (j =12), N(Pj)={n|pln=1pe€
€Pi}t, No,(Pj) ={n|neN(P;)and Qjfn}, (j=1,2).

Let £€g,.0, = {n | n <z, neNg (P1), n+1¢€ Ng,(Pz)}. Let Y =
=/ 5, = 40z,.

(3.3) — 0, — 0, as T — o0.

For some n € £y, o, we write n = &u, n+1 = nv, where § € N, (P1), n €
€ No,(P2), P(§) <Y, P(n) <Y, p(u) >Y, p(v)>Y. Let T(&,n) be the
set of those n € &g, @, for which £ and n are fixed. Let T'(§,n) = #7T(&,n). If
T(&,n) #0, then (§,m7) =1 and 2 | &n.

It is well-known that ¥ (z,y) < ze~“/?, u= igg; where

Y(z,y) = #{n <z | P(n) <y}.

It is clear that

(3.4) Eqi.q. (‘T> < ZT(§777)
&m

We shall overestimate the contribution of those terms standing on the right
hand side of (3.4), for which & > /10, or 5 > 2'/1° holds. This is less than

+1,.1/10
2x E 1/m <2z E 21171/101/)(2] /P Y) <
m>zl/10 j=0

P(m)<Y

1 .
1521 + jlog2 Yz 1
S 2x E exp <101'7g> = 2re 20 . SE— S
= 2logY 1—e Togv
< Age™ 36 1 ! a:

log2 7, mfl’)/2 ’

(35) Eqi.q. (.’1?) < Z T(& 77) + 0 <x§/2> :

max(€,n) <az1/10



252 1. Kétai

We shall estimate T'(&,7) for max(£,7) < /19, We have to count those
n < x, for whichn =&u, n+1=nv, n<zand p(u) >Y, p)>Y. Let
ug, vg be the smallest pair of those positive integers u, v, for which nv —&u = 1.
Let Fy(t) = ug + nt, Fa(t) = vo + &t. Then

T n) =# {t < % ’ p(F1(t) > Y, p(Fa(t)) > Y} .

By using Theorem 2.6 in Halberstam - Richert [7], we deduce that

(3.6) T =(+ouey T (1-2) -6,

2<p<Y p

uniformly for all possible &, 7, where

1 1-1/p

3.7 Ocp = — .

( ) &m 577 1)1;]7; 172/p
P#2

The implied constants in the error term of (8.4) of Theorem 2.6 in [7] may
depend on the coefficients of Fy, Fy, i.e. on £ and on 7, but reading the proof
carefully one can see that estimate (3.6) will hold for all £, 7 provided that
we add an error term, thus implying that (3.6) holds with that particular
restriction. Hence, from (3.5), we obtain that

(3:8) Fovau(r) < (1+0.0)5 ] (1_2> o8
2<p<Y p
where
1 1—-1/p
3.9 N = - )
(3.9) =Yg

Let 35 be the sum of those terms on the right hand side of (3.9), for which
additionally Q1f¢, Q2fn holds. Tt is clear that

1 1 I3
3.10 0<>¥ — X — 4+ — ]2 —¥.
( ) 1 2<<<Q1+Q2> 1<<x2 1

We shall write

(3.11) 5y = A(Y)B(Y)C(Y),
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where

3<p<Y
(pP—1,Q1Q2)=1

I (1+2 )
3<p<Y p—= 1
(P—1,Q1Q2)=1

(3.12)

(3.13)  B(Y)= II a+1i/mp; cv)= I «a+p.

p=1 (mod Q) p=1 (mod Qg)
(P—1,Q2)=1 (p—1,Q1)=1
p<Y p<Y

Thus we proved that

31 Fo.0u0) < (1003 [T (1-2) ampmicm+o ().

2<p<Y p

Let 7*(&,n) be the set of those n = {u < x, for which n+1 =nv, p(u) >
>Y, p(v) >Y,and u € N(Py), v e€N(Pa). Let

(3.15) Agm) =#(TEmM\T(En))-

Iftne7T(&n)\7T"En), then there exists pi|n such that ¥ < p;, p1 =1
(mod Q1), or pa|n + 1, such that Y < ps, p2 =1 (mod Q2).

We shall prove that

(3.16) Z A(&,n) = 0x(1)xk1K2.

En<at/10

Let £, < 219 be fixed. By using Theorem 2.6 in [7] we can overestimate
those solutions of n = u, n+1 = nv counted in 7 (&, n) for which there exists
either a p; € P; such that pi|u, and p; < 2% or a py € Py, such that ps|v
and py < %7, We consider the first case. The second case is similar. If p;|n,
then let u = pym. For fixed &, p1,n we should estimate those m,v for which
nu—(pi&)m =1, p(v) >Y, p(m)>Y. Arguing as above, by using Theorem
2.6 in [7] we obtain the number of the integers is less than ->T'(¢, 7). Since

c1 log x T3
1/p1 < —>1o < =2,
Z /p Q1 s logY — @1

Y<pi<z
r1=1(Q1)
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the contribution of these types of integers to (3.16) is less than

(3.17) % > T(Em).

£7n<$1/10

Let us observe that the number of those n < x for which there exists
p1 € P1, piln, p1 > x, or po € Pa, such that pa|n + 1, pa2 > x is
04(1)xk1K2. The number of these integers is less than

> oot X ree(gita)
P1=1(Q1) P p2=1(Q2) p2 ! 2
VZ<pi<= VE<py<=

and the right hand side is 0, (1)xk; k2.

(3.17) is proved, whence we obtain that

x 2
g ee@=romg T (1-2) amzice+

+ 0z (1)xK1K2.

We have
2) 2 1
I (1-2)am =] <1_ ) |
2<p<Y ( p 3<p<y plp—1) s<pey 1+35
3.19 B
o ST T ()
— B,
3<p<Y 1 + ﬁ 3<p<Y b= 1
P=1(Q2) P=1(Q1,Q2)
Furthermore,
1 —2logloaY L (1)
3.20 —_— ©(D) D
( ) 3<1—[ 1+ 2 e
<p<Y p—1
p=1 (mod D)
and
(3.21) [ (+1/p)=c55 +0F)

3<p<Y
p=1 (mod D)
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uniformly as D < x3. Let

(3.22) B=]] (1 — p(p21)) .

From (3.19), (3.20), (3.21) we have:
(i) the right hand side of (3.19) equals to

2x
(14 0,(1))B - k2kZe@ D@1 =

o = (1+0,(1))B - w3r3,
(i)

(3.24) BY) = (1+ 0,(1)
(iii)

(3.25) C)=(+ ow(1))%2.

Hence the theorem follows immediately.

4. Final remark

The distribution of the prime power divisors of the iterates of p(n), o(n)
are investigated in [8].
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