ON THE PRIME DIVISORS OF THE EULER PHI AND THE SUM OF DIVISORS FUNCTIONS

I. Kátai (Budapest, Hungary)

Communicated by J.-M. DeKoninck

(Received April 10, 2012)

Abstract. The following assertion is proved. Given an arbitrary constant $\lambda > 2$, let $x_1 = \log x$, $x_{k+1} = \log x_k$ (k = 1, 2, ...), $\varphi(n)$ be Euler's totient, and $\sigma(n)$ the sum of divisors function. Let $I_x = \left[\frac{\lambda x_2}{x_3}, x_2\right]$, $Q_1, Q_2 \in I_x$ be primes,

$$E_{Q_1,Q_2}(x) := \#\{n \le x \mid Q_1 \not| \varphi(n), \ Q_2 \not| \varphi(n+1)\}$$

Then, uniformly for $Q_1, Q_2 \in I_x$,

$$\frac{1}{x}E_{Q_1,Q_2}(x) = (1 + o_x(1))\frac{B}{2}\kappa_1\kappa_2$$

where $\kappa_j = \exp\left(-\frac{x_2}{Q_j - 1}\right)$ (j = 1, 2), B is a given constant. Some other assertions are formulated without proof.

The project is supported by the Hungarian and Vietnamese TET (grant agreement no. TET 10-1-2011-0645). https://doi.org/10.71352/ac.38.245

1. Introduction

Let $\varphi(n)$ be Euler's totient function, $\sigma(n)$ be the sum of divisors function. We shall define the iterates of φ and σ as follows:

$$\begin{aligned} \varphi_{k+1}(n) &= \varphi(\varphi_k(n)), \quad \sigma_{k+1}(n) = \sigma(\sigma_k(n)), \\ \varphi_1(n) &= \varphi(n), \quad \sigma_1(n) = \sigma(n). \end{aligned}$$

Let \mathcal{P} be the set of primes. It is known that φ and σ are multiplicative functions, and if p^{α} is a prime power, then $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$, $\sigma(p^{\alpha}) =$ $= 1 + p + \ldots + p^{\alpha}$. In particular, $\varphi(p) = p - 1$, $\sigma(p) = p + 1$. The letters p, Qwith and without suffixes always denote prime numbers. As usual let p(n) be the smallest and P(n) be the largest prime divisor of n.

Let $x_1 = \log x$, $x_2 = \log x_1$,...

The letters c, c_1, c_2, \ldots denote suitable, d, d_1, d_2, \ldots be arbitrary positive constants, not necessarily the same at every occurrence.

Let
$$(\xi_p =) \xi_p(x) = e^{-\frac{x_2}{p-1}}$$
 $(p \in \mathcal{P}),$
 $\tau(Q \mid x) = \xi_Q(x) \prod_{\substack{p < Q \\ p \in \mathcal{P}}} (1 - \xi_p(x)), \quad Q \in \mathcal{P}.$

Let

$$\mathcal{P}_{\pm}(Q) := \{ p \mid p \in \mathcal{P}, \quad p \equiv \pm 1 \pmod{Q} \}$$

Since $Q \not| \varphi(n)$, $n \leq x$ holds if and only if $(n, \mathcal{P}_+(Q)) = 1$ and $Q^2 \not| n$, thus, by the sieve of Eratosthenes-Brun we obtain that

(1.1)
$$\frac{E_Q(x)}{x} := \frac{1}{x} \#\{n \le x \mid Q \not | \varphi(n)\} =$$
$$= (1 + o_x(1)) \left(1 - \frac{1}{Q^2}\right) \prod_{\substack{p \le x \\ p \in \mathcal{P}_+(Q)}} (1 - 1/p)$$

 $\begin{array}{l} \text{if } Q \leq x_2^d.\\ \text{Since} \end{array}$

$$\begin{aligned} \pi(x,k,l) &= \#\{p \leq x, \quad p \equiv l \pmod{k}\} = \\ &= \frac{1}{\varphi(k)} (1 + \mathcal{O}(e^{-c\sqrt{x_1}})) \end{aligned}$$

holds uniformly as (k, l) = 1, $k \leq x_1^{d_1}$, we obtain that the right hand side of (1.1) is $\xi_q(x) \left(1 + \mathcal{O}\left(\frac{\log Q}{Q}\right)\right) (1 + o_x(1))$. We shall list several assertions which can be deduced by immediate application of the Brun sieve (see Theorem 2.5 in [7]).

I. Let
$$Q \in [x_3, x_2]$$
, $Q \in \mathcal{P}$, $l \in \mathbb{Z}$, $l \neq 0$. Then
(1.2) $\frac{1}{x} \#\{n \le x \mid \sigma(n) \not\equiv 0 \pmod{Q}\} = (1 + o_x(1))\xi_Q(x),$

(1.3)
$$\frac{1}{x} \# \{ n \le x \mid \varphi(n) \not\equiv 0 \pmod{Q}, \ \sigma(n) \not\equiv 0 \pmod{Q} \} = \\ = (1 + o_x(1)) \xi_Q^2(x),$$

(1.4)
$$\frac{1}{lix} \# \{ p \le x \mid \varphi(p+l) \not\equiv 0 \pmod{Q} \} = (1+o_x(1))\xi_Q(x),$$

(1.5)
$$\frac{1}{lix} \# \{ p \le x \mid \sigma(p+l) \not\equiv 0 \pmod{Q} \} = (1+o_x(1))\xi_Q(x),$$

(1.6)
$$\frac{1}{lix} \# \{ p \le x \mid \varphi(p+l) \not\equiv 0 \pmod{Q}, \sigma(p+l) \not\equiv 0 \pmod{Q} \} =$$
$$= (1 + o_x(1))\xi_Q^2(x).$$

II. Similar assertions can be proved for the set of integers F(n) or F(p), where $F \in \mathbb{Z}[x]$ is a polynomial the leading coefficient of which is positive.

$$\begin{aligned} \text{III. Let } Q_1, \dots, Q_r; \quad Q_1^*, \dots, Q_s^* &\in [x_3, x_2] \text{ be primes, } Q_i \neq Q_j \text{ if } i \neq \\ \neq j, \quad Q_u^* \neq Q_v^* \text{ if } u \neq v. \text{ Let } l \neq 0. \text{ Then} \\ \quad \frac{1}{x} \# \{ n \leq x \mid (\varphi(n), Q_1 \dots Q_r) = 1, (\sigma(n), Q_1^* \dots Q_s^*) = 1 \} = \\ (1.7) \\ \quad = (1 + o_x(1)) \left\{ \prod_{j=1}^r \xi_{Q_j}(x) \right\} \left\{ \prod_{l=1}^s \xi_{Q_l^*}(x) \right\}, \end{aligned}$$

furthermore

(1.8)
$$\frac{1}{lix} \# \{ p \le x \mid (\varphi(p+l), Q_1 \dots Q_r) = 1, \ (\sigma(p+l), Q_1^* \dots Q_s^*) = 1 \} =$$
$$= (1 + o_x(1)) \left\{ \prod_{j=1}^r \xi_{Q_j}(x) \right\} \left\{ \prod_{l=1}^s \xi_{Q_l^*}(x) \right\},$$

For fixed Q, (1.1), (1.2) and (1.3) can be improved (see [2], [1]).

2. Counting those integers n for which $\varphi(n)$ and $\sigma(n)$ each avoid a given prime as their smaller prime factor

Let u(n) be the smallest prime Q for which $Q \not| \varphi(n)$, and v(n) be the smallest $Q \in \mathcal{P}$, for which $Q \not| \sigma(n)$.

Let
$$K_Q(x) := \#\{n \le x \mid u(n) = Q\}, \quad T_Q(x) := \#\{n \le x \mid v(n) = Q\},$$

 $S_{Q_1,Q_2}(x) = \#\{n \le x \mid u(n) = Q_1, v(n) = Q_2\}.$

Theorem 1. Assume that $Q, Q_1, Q_2 \in \left[x_3, \frac{x_2}{x_3}\right]$. Then

(2.1)
$$\frac{K_Q(x)}{x} = (1 + o_x(1))\xi_Q(x),$$

(2.2)
$$\frac{T_Q(x)}{x} = (1 + o_x(1))\xi_Q(x),$$

(2.3)
$$\frac{S_{Q_1,Q_2}(x)}{x} = (1 + o_x(1))\xi_{Q_1}(x) \cdot \xi_{Q_2}(x).$$

Furthermore, if $l \neq 0$, then

(2.4)
$$\frac{1}{lix} \# \{ p \le x \mid u(p+l) = Q \} = (1 + o_x(1))\xi_Q(x),$$

(2.5)
$$\frac{1}{lix} \# \{ p \le x \mid v(p+l) = Q \} = (1 + o_x(1))\xi_Q(x),$$

(2.6)
$$\frac{1}{lix} \# \{ p \le x \mid u(p+l) = Q_1, v(p+l) = Q_2 \} =$$
$$= (1 + o_x(1))\xi_{Q_1}(x) \cdot \xi_{Q_2}(x).$$

Remark 1. Unfortunately we cannot extend Theorem 1 for the values $Q, Q_1, Q_2 \ge x_2/x_3$.

Conjecture 1. Let d be a positive constant. Then, uniformly as $x_3 < Q, Q_1, Q_2 \leq dx_2$ we have

(2.7)
$$\frac{1}{x} \#\{n \le x \mid u(n) = Q\} = (1 + o_x(1))\tau(Q|x),$$

(2.8)
$$\frac{1}{x} \# \{ n \le x \mid v(n) = Q \} = (1 + o_x(1))\tau(Q|x),$$

(2.9)
$$\frac{1}{x} \# \{ n \le x \mid u(n) = Q_1, v(n) = Q_2 \} =$$
$$= (1 + o_x(1))\tau(Q_1|x)\tau(Q_2|x).$$

Remark. Similar assertion seems to hold for the set of shifted primes as well.

In [2] we considered $N_k(Q|x)$, the number of those $n \leq x$ for which $Q|\!\!/ \varphi_{k+1}(n)$. We determined the asymptotic of $N_k(Q|x)$ in the range $Q \in (x_2^{k+\varepsilon}, x_2^{k+1-\varepsilon})$. By using the same method with some generalization we could prove

Theorem 2. Let $\varepsilon > 0$, $k \ge 2$ be fixed, $l \ne 0$, $l \in \mathbb{Z}$, and let $x_2^{k+\varepsilon} \le 2 \le Q \le x_2^{k+1-\varepsilon}$, $Q \in \mathcal{P}$. Then, setting $\eta_{k,Q}(x) := \exp\left(-\frac{x_2^{k+1}}{(k+1)!(Q-1)}\right)$, we obtain

(2.10)
$$\frac{1}{x} \#\{n \le x \mid Q \not| \sigma_{k+1}(n)\} = (1 + o_x(1))\eta_{k,Q}(x),$$

(2.11)
$$\frac{1}{lix} \# \{ p \le x \mid Q \not| \sigma_{k+1}(p+l) \} = (1 + o_x(1)) \eta_{k,Q}(x),$$

(2.12)
$$\frac{1}{x} \# \{ n \le x \mid Q \not| \sigma_{k+1}(n), Q \not| \varphi_{k+1}(n) \} = (1 + o_x(1)) \eta_{k,Q}^2(x),$$

and

(2.13)
$$\frac{1}{lix} \# \{ p \le x \mid Q \not| \sigma_{k+1}(p+l), Q \not| \varphi_{k+1}(p+l) \} = (1 + o_x(1)) \eta_{k,Q}^2(x).$$

Theorem 3. Let $\varepsilon > 0$, $k \ge 2$, $r, s \ge 1$. Let Q_1, \ldots, Q_r and Q_1^*, \ldots, Q_s^* be distinct primes from the interval $\left[x_2^{k+\frac{1}{2}+\varepsilon}, x_2^{k+1-\varepsilon}\right]$. Then

(2.14)
$$\frac{1}{x} \# \{ n \le x \mid (Q_1 \dots Q_r, \varphi_{k+1}(n)) = 1, \ (Q_1^* \dots Q_s^*, \sigma_{k+1}(n)) = 1 \} =$$
$$= (1 + o_x(1)) \left\{ \prod_{j=1}^r \eta_{k,Q_j}(x) \right\} \left\{ \prod_{l=1}^s \eta_{l,Q_l^*}(x) \right\},$$

and
(2.15)
$$\frac{1}{lix} \# \{ p \le x \mid (Q_1 \dots Q_r, \varphi_{k+1}(p+l)) = 1, \ (Q_1^* \dots Q_s^*, \sigma_{k+1}(p+l)) = 1 \} =$$
$$= (1 + o_x(1)) \left\{ \prod_{j=1}^r \eta_{k,Q_j}(x) \right\} \left\{ \prod_{l=1}^s \eta_{l,Q_l^*}(x) \right\}.$$

We shall not prove these theorems.

3. Counting those integers n for which $\varphi(n)$ and $\varphi(n+1)$ each avoid given primes in their respective prime factorizations

The problem of giving the asymptotic of those $n \leq x$ for which $Q_1 \not| \varphi(n)$ and $Q_2 \not| \varphi(n+1)$ simultaneously for given primes Q_1, Q_2 seems to be much harder. We are unable to determine it for example if $Q_1 = Q_2 = 3$.

Theorem 4. Let $\lambda > 2$ be an arbitrary constant. Let $\mathcal{I}_x = \begin{bmatrix} \frac{\lambda x_2}{x_3}, x_2 \end{bmatrix}$,

$$B = \prod_{p \ge 3} \left(1 - \frac{2}{p(p-1)} \right).$$

Let $Q_1, Q_2 \in \mathcal{I}_x$ be arbitrary primes. Let

(3.1)
$$E_{Q_1,Q_2}(x) := \#\{n \le x \mid Q_1 \not| \varphi(n), \ Q_2 \not| \varphi(n+1)\}.$$

Then, uniformly as $Q_1, Q_2 \in \mathcal{I}_x$,

(3.2)
$$\frac{1}{x} E_{Q_1,Q_2}(x) = (1 + o_x(1)) \frac{B}{2} \kappa_1 \kappa_2,$$

where $\kappa_1 = \exp\left(-\frac{x_2}{Q_1-1}\right)$, $\kappa_2 = \exp\left(-\frac{x_2}{Q_2-1}\right)$.

Remark. A similar assertion can be proved for $\sigma(n)$ instead of $\varphi(n)$.

Proof. It is clear that

(3.3)
$$\frac{\kappa_1\kappa_2}{Q_1} \to 0, \quad \frac{\kappa_1\kappa_2}{Q_2} \to 0, \quad \text{as} \quad x \to \infty.$$

Let $\mathcal{P}_j = \{p \mid p \equiv 1 \pmod{Q_j}\}$ $(j = 1, 2), \quad \mathcal{N}(\mathcal{P}_j) = \{n \mid p \mid n \Rightarrow p \in \mathcal{P}_j\}, \quad \mathcal{N}_{Q_j}(\mathcal{P}_j) = \{n \mid n \in \mathcal{N}(\mathcal{P}_j) \text{ and } Q_j^2 \not\mid n\}, \quad (j = 1, 2).$

Let $\mathcal{E}_{Q_1,Q_2} = \{n \mid n \leq x, n \in \mathcal{N}_{Q_1}(\mathcal{P}_1), n+1 \in \mathcal{N}_{Q_2}(\mathcal{P}_2)\}$. Let $Y = x^{1/\gamma_x}, \gamma_x = 40x_2$.

For some $n \in \mathcal{E}_{Q_1,Q_2}$ we write $n = \xi u$, $n+1 = \eta v$, where $\xi \in \mathcal{N}_{Q_1}(\mathcal{P}_1)$, $\eta \in \mathcal{N}_{Q_2}(\mathcal{P}_2)$, $P(\xi) \leq Y$, $P(\eta) \leq Y$, p(u) > Y, p(v) > Y. Let $\mathcal{T}(\xi, \eta)$ be the set of those $n \in \mathcal{E}_{Q_1,Q_2}$ for which ξ and η are fixed. Let $T(\xi, \eta) = \#\mathcal{T}(\xi, \eta)$. If $T(\xi, \eta) \neq 0$, then $(\xi, \eta) = 1$ and $2 \mid \xi \eta$.

It is well-known that $\psi(x, y) \ll x e^{-u/2}$, $u = \frac{\log x}{\log y}$, where

$$\psi(x, y) = \#\{n \le x \mid P(n) \le y\}.$$

It is clear that

(3.4)
$$E_{Q_1,Q_2}(x) \le \sum_{\xi,\eta} T(\xi,\eta).$$

We shall overestimate the contribution of those terms standing on the right hand side of (3.4), for which $\xi > x^{1/10}$, or $\eta > x^{1/10}$ holds. This is less than

$$\begin{split} 2x \sum_{m > x^{1/10} \\ P(m) < Y} 1/m &\leq 2x \sum_{j=0}^{\infty} \frac{1}{2^j x^{1/10}} \psi(2^{j+1} x^{1/10}, Y) \leq \\ &\leq 2x \sum_{j \geq 0} \exp\left(-\frac{\frac{1}{10} x_1 + j \log 2}{2 \log Y}\right) = 2x e^{-\frac{\gamma_x}{20}} \cdot \frac{1}{1 - e^{-\frac{\log 2}{\log Y}}} \leq \\ &\leq 4x e^{-\frac{\gamma_x}{20}} \cdot \frac{x_1}{\log 2} \cdot \frac{1}{\gamma_x} \ll \frac{x}{x_1^{3/2}}. \end{split}$$

Thus

(3.5)
$$E_{Q_1,Q_2}(x) \le \sum_{\max(\xi,\eta) \le x^{1/10}} T(\xi,\eta) + \mathcal{O}\left(\frac{x}{x_1^{3/2}}\right).$$

We shall estimate $T(\xi, \eta)$ for $\max(\xi, \eta) < x^{1/10}$. We have to count those $n \leq x$, for which $n = \xi u$, $n + 1 = \eta v$, $n \leq x$ and p(u) > Y, p(v) > Y. Let u_0, v_0 be the smallest pair of those positive integers u, v, for which $\eta v - \xi u = 1$. Let $F_1(t) = u_0 + \eta t$, $F_2(t) = v_0 + \xi t$. Then

$$T(\xi,\eta) = \# \left\{ t \le \frac{x}{\xi\eta} \mid p(F_1(t)) > Y, \ p(F_2(t)) > Y \right\}.$$

By using Theorem 2.6 in Halberstam - Richert [7], we deduce that

(3.6)
$$T(\xi,\eta) = (1+o_x(1))x \cdot \frac{1}{2} \prod_{2$$

uniformly for all possible ξ, η , where

(3.7)
$$\theta_{\xi,\eta} = \frac{1}{\xi\eta} \prod_{p \mid \xi\eta \atop p \neq 2} \frac{1 - 1/p}{1 - 2/p}.$$

The implied constants in the error term of (8.4) of Theorem 2.6 in [7] may depend on the coefficients of F_1, F_2 , i.e. on ξ and on η , but reading the proof carefully one can see that estimate (3.6) will hold for all ξ, η provided that we add an error term, thus implying that (3.6) holds with that particular restriction. Hence, from (3.5), we obtain that

(3.8)
$$E_{Q_1,Q_2}(x) \le (1+o_x(1))\frac{x}{2} \prod_{2$$

where

(3.9)
$$\Sigma_1 = \sum \frac{1}{\xi \eta} \prod_{\substack{p \mid \xi \eta \\ p > 2}} \frac{1 - 1/p}{1 - 2/p}.$$

Let Σ_2 be the sum of those terms on the right hand side of (3.9), for which additionally Q_1/ξ , Q_2/η holds. It is clear that

(3.10)
$$0 < \Sigma_1 - \Sigma_2 \ll \left(\frac{1}{Q_1} + \frac{1}{Q_2}\right) \Sigma_1 \ll \frac{x_3}{x_2} \Sigma_1.$$

We shall write

(3.11)
$$\Sigma_2 = A(Y)B(Y)C(Y),$$

where

(3.12)
$$A(Y) = \prod_{\substack{3 \le p < Y \\ (p-1,Q_1Q_2)=1}} \left(1 + \frac{2}{p} + \frac{2}{p^2} + \dots\right) = \prod_{\substack{3 \le p < Y \\ (p-1,Q_1Q_2)=1}} \left(1 + \frac{2}{p-1}\right),$$

$$(3.13) B(Y) = \prod_{\substack{p \equiv 1 \pmod{Q_1} \\ (p-1,Q_2)=1 \\ p < Y}} (1+1/p); C(Y) = \prod_{\substack{p \equiv 1 \pmod{Q_2} \\ (p-1,Q_1)=1 \\ p < Y}} (1+1/p).$$

Thus we proved that

(3.14)
$$E_{Q_1,Q_2}(x) \le (1+o_x(1))\frac{x}{2} \prod_{2$$

Let $\mathcal{T}^*(\xi, \eta)$ be the set of those $n = \xi u \leq x$, for which $n+1 = \eta v$, p(u) > Y, p(v) > Y, and $u \in \mathcal{N}(\mathcal{P}_1)$, $v \in \mathcal{N}(\mathcal{P}_2)$. Let

(3.15)
$$\Delta(\xi,\eta) = \#(\mathcal{T}(\xi,\eta) \setminus \mathcal{T}^*(\xi,\eta)).$$

If $n \in \mathcal{T}(\xi, \eta) \setminus \mathcal{T}^*(\xi, \eta)$, then there exists $p_1|n$ such that $Y < p_1$, $p_1 \equiv 1 \pmod{Q_1}$, or $p_2|n+1$, such that $Y < p_2$, $p_2 \equiv 1 \pmod{Q_2}$.

We shall prove that

(3.16)
$$\sum_{\xi,\eta < x^{1/10}} \Delta(\xi,\eta) = o_x(1) x \kappa_1 \kappa_2.$$

Let $\xi, \eta < x^{1/10}$ be fixed. By using Theorem 2.6 in [7] we can overestimate those solutions of $n = \xi u$, $n+1 = \eta v$ counted in $\mathcal{T}(\xi, \eta)$ for which there exists either a $p_1 \in \mathcal{P}_1$ such that $p_1|u$, and $p_1 < x^{0,75}$, or a $p_2 \in \mathcal{P}_2$, such that $p_2|v$ and $p_2 < x^{0,75}$. We consider the first case. The second case is similar. If $p_1|n$, then let $u = p_1m$. For fixed ξ, p_1, η we should estimate those m, v for which $\eta v - (p_1\xi)m = 1$, p(v) > Y, p(m) > Y. Arguing as above, by using Theorem 2.6 in [7] we obtain the number of the integers is less than $\frac{c}{p_1}T(\xi, \eta)$. Since

$$\sum_{\substack{Y < p_1 < x \\ p_1 \equiv 1(Q_1)}} 1/p_1 \le \frac{c_1}{Q_1} \log \frac{\log x}{\log Y} \ll \frac{x_3}{Q_1}$$

the contribution of these types of integers to (3.16) is less than

(3.17)
$$\frac{x_3}{Q_1} \sum_{\xi, \eta < x^{1/10}} T(\xi, \eta).$$

Let us observe that the number of those $n \leq x$ for which there exists $p_1 \in \mathcal{P}_1, p_1|n, p_1 > \sqrt{x}$, or $p_2 \in \mathcal{P}_2$, such that $p_2|n+1, p_2 > \sqrt{x}$ is $o_x(1)x\kappa_1\kappa_2$. The number of these integers is less than

$$\sum_{\substack{p_1 \equiv 1(Q_1) \\ \sqrt{x} < p_1 < x}} \frac{x}{p_1} + \sum_{\substack{p_2 \equiv 1(Q_2) \\ \sqrt{x} < p_2 < x}} \frac{x}{p_2} \ll x \left(\frac{1}{Q_1} + \frac{1}{Q_2} \right),$$

and the right hand side is $o_x(1)x\kappa_1\kappa_2$.

(3.17) is proved, whence we obtain that

(3.18)
$$E_{Q_1,Q_2}(x) = (1 + o_x(1))\frac{x}{2} \prod_{2$$

We have

(3.19)
$$\prod_{2$$

Furthermore,

(3.20)
$$\prod_{\substack{3 \le p < Y\\ p \equiv 1 \pmod{D}}} \frac{1}{1 + \frac{2}{p-1}} = e^{-\frac{2\log\log Y}{\varphi(D)} + \mathcal{O}\left(\frac{1}{D}\right)}$$

and

(3.21)
$$\prod_{\substack{3 \le p < Y\\ p \equiv 1 \pmod{D}}} (1+1/p) = e^{\frac{\log \log Y}{\varphi(D)} + \mathcal{O}\left(\frac{1}{D}\right)}$$

uniformly as $D \leq x_2^2$. Let

(3.22)
$$B = \prod_{p \ge 3} \left(1 - \frac{2}{p(p-1)} \right).$$

From (3.19), (3.20), (3.21) we have:

(i) the right hand side of (3.19) equals to

(3.23)
$$(1 + o_x(1))B \cdot \kappa_1^2 \kappa_2^2 e^{\frac{2x_2}{(Q_1 - 1)(Q_2 - 1)}} = (1 + o_x(1))B \cdot \kappa_1^2 \kappa_2^2,$$

(ii)

(3.24)
$$B(Y) = (1 + o_x(1))\frac{1}{\kappa_1},$$

(iii)

(3.25)
$$C(Y) = (1 + o_x(1))\frac{1}{\kappa_2}$$

Hence the theorem follows immediately.

4. Final remark

The distribution of the prime power divisors of the iterates of $\varphi(n)$, $\sigma(n)$ are investigated in [8].

References

- Kátai, I., On sets characterized by the values of some multiplicative functions, Annales Univ. Sci. Budapest. Sect. Comp., 32 (2010), 63-72.
- [2] Spearman, B.K. and Williams, K.S., Values of the Euler phi function not divisible by a given odd prime, Ark. Mat., 44 (2006), 166-181.

- B. V. Levin and A. S. Fainleib, Applications of some integral equations to problems in number theory, Uspekhi Mat. Nauk., 22(3), 135 (1967), 119-198 (in Russian), Russian Math. Surveys 22(3) (1967), 119-204 (in English)
- [4] Wirsing, E., Das asymptotische Verhalten von Summen bei multiplikative Funktionen, Math. Ann., 143 (1961), 75-102.
- [5] Bassily, N.L., Kátai, I. and Wijsmuller, M.V., Number of prime divisors of $\varphi_k(n)$, where φ_k is the k-fold iterate of φ , J. Number Theory, **65** (2) (1997), 226-239.
- [6] Indlekofer, K.-H. and Kátai, I., On the normal order of $\varphi_{k+1}(n)/\varphi_k(n)$, where φ_k is the k-fold iterate of Euler's function, *Liet. matem. rink.*, 44 (1) (2004), 68-84.
- [7] Halberstam, H. and Richert, H., Sieve methods, Academic Press, London, 1974.
- [8] Kátai, I., On the prime power divisors of the iterates of $\varphi(n)$ and $\sigma(n)$, Siauliai Math. Semin., 4 (12) (2009), 125-143.

I. Kátai

Department of Computer Algebra Eötvös Loránd University Pázmány Péter sét. 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu