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Abstract. The following assertion is proved. Given an arbitrary constant

λ > 2, let x1 = log x, xk+1 = log xk (k = 1, 2, . . .), ϕ(n) be Euler’s

totient, and σ(n) the sum of divisors function. Let Ix =

λx2

x3
, x2


,

Q1, Q2 ∈ Ix be primes,

EQ1,Q2(x) := #{n ≤ x | Q1|/ϕ(n), Q2|/ϕ(n+ 1)}.

Then, uniformly for Q1, Q2 ∈ Ix,

1
x
EQ1,Q2(x) = (1 + ox(1))

B

2
κ1κ2,

where κj = exp

− x2

Qj − 1

(j = 1, 2), B is a given constant. Some

other assertions are formulated without proof.
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1. Introduction

Let ϕ(n) be Euler’s totient function, σ(n) be the sum of divisors function.
We shall define the iterates of ϕ and σ as follows:

ϕk+1(n) = ϕ(ϕk(n)), σk+1(n) = σ(σk(n)),

ϕ1(n) = ϕ(n), σ1(n) = σ(n).

Let P be the set of primes. It is known that ϕ and σ are multiplicative
functions, and if pα is a prime power, then ϕ(pα) = pα−1(p − 1), σ(pα) =
= 1 + p+ . . .+ pα. In particular, ϕ(p) = p− 1, σ(p) = p+ 1. The letters p,Q
with and without suffixes always denote prime numbers. As usual let p(n) be
the smallest and P (n) be the largest prime divisor of n.

Let x1 = log x, x2 = log x1, . . ..

The letters c, c1, c2, . . . denote suitable, d, d1, d2, . . . be arbitrary positive
constants, not necessarily the same at every occurrence.

Let (ξp =) ξp(x) = e−
x2

p−1 (p ∈ P),

τ(Q | x) = ξQ(x)

p<Q
p∈P

(1− ξp(x)), Q ∈ P.

Let
P±(Q) := {p | p ∈ P, p ≡ ±1 (mod Q)}.

Since Q|/ϕ(n), n ≤ x holds if and only if (n,P+(Q)) = 1 and Q2|/n, thus,
by the sieve of Eratosthenes-Brun we obtain that

(1.1)

EQ(x)
x

:=
1
x
#{n ≤ x | Q|/ϕ(n)} =

=(1 + ox(1))

1− 1

Q2

 
p≤x

p∈P+(Q)

(1− 1/p)

if Q ≤ xd2.

Since
π(x, k, l) = #{p ≤ x, p ≡ l (mod k)} =

=
1

ϕ(k)
(1 +O(e−c

√
x1))
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holds uniformly as (k, l) = 1, k ≤ xd1
1 , we obtain that the right hand side of

(1.1) is ξq(x)

1 +O


log Q

Q


(1+ox(1)). We shall list several assertions which

can be deduced by immediate application of the Brun sieve (see Theorem 2.5
in [7]).

I. Let Q ∈ [x3, x2], Q ∈ P, l ∈ Z, l = 0. Then

(1.2)
1
x
#{n ≤ x | σ(n) ≡ 0 (mod Q)} = (1 + ox(1))ξQ(x),

(1.3)
1
x
#{n ≤ x | ϕ(n) ≡ 0 (mod Q), σ(n) ≡ 0 (mod Q)} =

= (1 + ox(1))ξ2
Q(x),

(1.4)
1
lix

#{p ≤ x | ϕ(p+ l) ≡ 0 (mod Q)} = (1 + ox(1))ξQ(x),

(1.5)
1
lix

#{p ≤ x | σ(p+ l) ≡ 0 (mod Q)} = (1 + ox(1))ξQ(x),

(1.6)
1
lix

#{p ≤ x | ϕ(p+ l) ≡ 0 (mod Q), σ(p+ l) ≡ 0 (mod Q)} =
= (1 + ox(1))ξ2

Q(x).

II. Similar assertions can be proved for the set of integers F (n) or F (p),
where F ∈ Z[x] is a polynomial the leading coefficient of which is positive.

III. Let Q1, . . . , Qr; Q∗
1, . . . , Q

∗
s ∈ [x3, x2] be primes, Qi = Qj if i =

= j, Q∗
u = Q∗

v if u = v. Let l = 0. Then

(1.7)

1
x
#{n ≤ x | (ϕ(n), Q1 . . . Qr) = 1, (σ(n), Q∗

1 . . . Q
∗
s) = 1} =

= (1 + ox(1))





r

j=1

ξQj (x)






s

l=1

ξQ∗
l
(x)


,

furthermore

(1.8)

1
lix

#{p ≤ x | (ϕ(p+ l), Q1 . . . Qr) = 1, (σ(p+ l), Q∗
1 . . . Q

∗
s) = 1} =

= (1 + ox(1))





r

j=1

ξQj (x)






s

l=1

ξQ∗
l
(x)


,

For fixed Q, (1.1), (1.2) and (1.3) can be improved (see [2], [1]).
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2. Counting those integers n for which ϕ(n) and σ(n) each avoid a
given prime as their smaller prime factor

Let u(n) be the smallest prime Q for which Q|/ϕ(n), and v(n) be the
smallest Q ∈ P, for which Q|/σ(n).

Let KQ(x) := #{n ≤ x | u(n) = Q}, TQ(x) := #{n ≤ x | v(n) = Q},

SQ1,Q2(x) = #{n ≤ x | u(n) = Q1, v(n) = Q2}.

Theorem 1. Assume that Q,Q1, Q2 ∈

x3,

x2
x3


. Then

(2.1)
KQ(x)

x
= (1 + ox(1))ξQ(x),

(2.2)
TQ(x)
x

= (1 + ox(1))ξQ(x),

(2.3)
SQ1,Q2(x)

x
= (1 + ox(1))ξQ1(x) · ξQ2(x).

Furthermore, if l = 0, then

(2.4)
1
lix

#{p ≤ x | u(p+ l) = Q} = (1 + ox(1))ξQ(x),

(2.5)
1
lix

#{p ≤ x | v(p+ l) = Q} = (1 + ox(1))ξQ(x),

(2.6)
1
lix

#{p ≤ x | u(p+ l) = Q1, v(p+ l) = Q2} =
= (1 + ox(1))ξQ1(x) · ξQ2(x).

Remark 1. Unfortunately we cannot extend Theorem 1 for the values
Q,Q1, Q2 ≥ x2/x3.
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Conjecture 1. Let d be a positive constant. Then, uniformly as x3 <
< Q,Q1, Q2 ≤ dx2 we have

(2.7)
1
x
#{n ≤ x | u(n) = Q} = (1 + ox(1))τ(Q|x),

(2.8)
1
x
#{n ≤ x | v(n) = Q} = (1 + ox(1))τ(Q|x),

(2.9)
1
x
#{n ≤ x | u(n) = Q1, v(n) = Q2} =
= (1 + ox(1))τ(Q1|x)τ(Q2|x).

Remark. Similar assertion seems to hold for the set of shifted primes as
well.

In [2] we considered Nk(Q|x), the number of those n ≤ x for which
Q|/ϕk+1(n). We determined the asymptotic of Nk(Q|x) in the range Q ∈
∈ (xk+ε

2 , xk+1−ε
2 ). By using the same method with some generalization we

could prove

Theorem 2. Let ε > 0, k ≥ 2 be fixed, l = 0, l ∈ Z, and let xk+ε
2 ≤

≤ Q ≤ xk+1−ε
2 , Q ∈ P. Then, setting ηk,Q(x) := exp


− xk+1

2
(k+1)!(Q−1)


, we

obtain

(2.10)
1
x
#{n ≤ x | Q|/σk+1(n)} = (1 + ox(1))ηk,Q(x),

(2.11)
1
lix

#{p ≤ x | Q|/σk+1(p+ l)} = (1 + ox(1))ηk,Q(x),

(2.12)
1
x
#{n ≤ x | Q|/σk+1(n), Q|/ϕk+1(n)} =

= (1 + ox(1))η2
k,Q(x),

and

(2.13)
1
lix

#{p ≤ x | Q|/σk+1(p+ l), Q|/ϕk+1(p+ l)} =
= (1 + ox(1))η2

k,Q(x).
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Theorem 3. Let ε > 0, k ≥ 2, r, s ≥ 1. Let Q1, . . . , Qr and

Q∗1, . . . , Q
∗
s be distinct primes from the interval


x

k+ 1
2+ε

2 , xk+1−ε
2


. Then

(2.14)

1
x
#{n ≤ x | (Q1 . . . Qr, ϕk+1(n)) = 1, (Q∗1 . . . Q

∗
s, σk+1(n)) = 1} =

= (1 + ox(1))





r

j=1

ηk,Qj (x)






s

l=1

ηl,Q∗
l
(x)


,

and
(2.15)

1
lix

#{p ≤ x | (Q1 . . . Qr, ϕk+1(p+ l)) = 1, (Q∗1 . . . Q
∗
s, σk+1(p+ l)) = 1} =

= (1 + ox(1))





r

j=1

ηk,Qj
(x)






s

l=1

ηl,Q∗
l
(x)


.

We shall not prove these theorems.

3. Counting those integers n for which ϕ(n) and ϕ(n+ 1) each avoid
given primes in their respective prime factorizations

The problem of giving the asymptotic of those n ≤ x for which Q1|/ϕ(n)
and Q2|/ϕ(n + 1) simultaneously for given primes Q1, Q2 seems to be much
harder. We are unable to determine it for example if Q1 = Q2 = 3.

Theorem 4. Let λ > 2 be an arbitrary constant. Let Ix =


λx2
x3

, x2


,

B =


p≥3


1− 2

p(p− 1)

.

Let Q1, Q2 ∈ Ix be arbitrary primes. Let

(3.1) EQ1,Q2(x) := #{n ≤ x | Q1|/ϕ(n), Q2|/ϕ(n+ 1)}.

Then, uniformly as Q1, Q2 ∈ Ix,

(3.2)
1
x
EQ1,Q2(x) = (1 + ox(1))

B

2
κ1κ2,
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where κ1 = exp

− x2

Q1−1


, κ2 = exp


− x2

Q2−1


.

Remark. A similar assertion can be proved for σ(n) instead of ϕ(n).

Proof. It is clear that

(3.3)
κ1κ2

Q1
→ 0,

κ1κ2

Q2
→ 0, as x→∞.

Let Pj = {p | p ≡ 1 (mod Qj)} (j = 1, 2), N (Pj) = {n | p|n ⇒ p ∈
∈ Pj}, NQj (Pj) = {n | n ∈ N (Pj) and Q2

j |/n}, (j = 1, 2).

Let EQ1,Q2 = {n | n ≤ x, n ∈ NQ1(P1), n + 1 ∈ NQ2(P2)}. Let Y =
= x1/γx , γx = 40x2.

For some n ∈ EQ1,Q2 we write n = ξu, n+1 = ηv, where ξ ∈ NQ1(P1), η ∈
∈ NQ2(P2), P (ξ) ≤ Y, P (η) ≤ Y, p(u) > Y, p(v) > Y . Let T (ξ, η) be the
set of those n ∈ EQ1,Q2 for which ξ and η are fixed. Let T (ξ, η) = #T (ξ, η). If
T (ξ, η) = 0, then (ξ, η) = 1 and 2 | ξη.

It is well-known that ψ(x, y) xe−u/2, u = log x
log y , where

ψ(x, y) = #{n ≤ x | P (n) ≤ y}.

It is clear that

(3.4) EQ1,Q2(x) ≤


ξ,η

T (ξ, η).

We shall overestimate the contribution of those terms standing on the right
hand side of (3.4), for which ξ > x1/10, or η > x1/10 holds. This is less than

2x


m>x1/10
P (m)<Y

1/m ≤ 2x
∞

j=0

1
2jx1/10

ψ(2j+1x1/10, Y ) ≤

≤ 2x


j≥0

exp

−

1
10x1 + j log 2

2 log Y


= 2xe−

γx
20 · 1

1− e−
log 2
log Y

≤

≤ 4xe−
γx
20 · x1

log 2
· 1
γx
 x

x
3/2
1

.

Thus

(3.5) EQ1,Q2(x) ≤


max(ξ,η)≤x1/10

T (ξ, η) +O


x

x
3/2
1


.
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We shall estimate T (ξ, η) for max(ξ, η) < x1/10. We have to count those
n ≤ x, for which n = ξu, n + 1 = ηv, n ≤ x and p(u) > Y, p(v) > Y . Let
u0, v0 be the smallest pair of those positive integers u, v, for which ηv− ξu = 1.
Let F1(t) = u0 + ηt, F2(t) = v0 + ξt. Then

T (ξ, η) = #

t ≤ x

ξη

 p(F1(t)) > Y, p(F2(t)) > Y


.

By using Theorem 2.6 in Halberstam - Richert [7], we deduce that

(3.6) T (ξ, η) = (1 + ox(1))x · 12


2<p<Y


1− 2

p


· θξ,η

uniformly for all possible ξ, η, where

(3.7) θξ,η =
1
ξη


p|ξη
p=2

1− 1/p
1− 2/p .

The implied constants in the error term of (8.4) of Theorem 2.6 in [7] may
depend on the coefficients of F1, F2, i.e. on ξ and on η, but reading the proof
carefully one can see that estimate (3.6) will hold for all ξ, η provided that
we add an error term, thus implying that (3.6) holds with that particular
restriction. Hence, from (3.5), we obtain that

(3.8) EQ1,Q2(x) ≤ (1 + ox(1))
x

2



2<p<Y


1− 2

p


Σ1,

where

(3.9) Σ1 =
 1

ξη


p|ξη
p>2

1− 1/p
1− 2/p .

Let Σ2 be the sum of those terms on the right hand side of (3.9), for which
additionally Q1|/ξ, Q2|/η holds. It is clear that

(3.10) 0 < Σ1 − Σ2 

1
Q1

+
1
Q2


Σ1  x3

x2
Σ1.

We shall write

(3.11) Σ2 = A(Y )B(Y )C(Y ),
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where

(3.12)

A(Y ) =


3≤p<Y
(p−1,Q1Q2)=1


1 +

2
p
+

2
p2
+ . . .


=

=


3≤p<Y
(p−1,Q1Q2)=1


1 +

2
p− 1


,

(3.13) B(Y ) =


p≡1 (mod Q1)
(p−1,Q2)=1

p<Y

(1 + 1/p); C(Y ) =


p≡1 (mod Q2)
(p−1,Q1)=1

p<Y

(1 + 1/p).

Thus we proved that

(3.14) EQ1,Q2(x) ≤ (1+ox(1))
x

2



2<p<Y


1− 2

p


A(Y )B(Y )C(Y )+O


x

x3
1


.

Let T ∗(ξ, η) be the set of those n = ξu ≤ x, for which n+1 = ηv, p(u) >
> Y, p(v) > Y, and u ∈ N (P1), v ∈ N (P2). Let

(3.15) ∆(ξ, η) = #(T (ξ, η) \ T ∗(ξ, η)).

If n ∈ T (ξ, η) \ T ∗(ξ, η), then there exists p1|n such that Y < p1, p1 ≡ 1
(mod Q1), or p2|n+ 1, such that Y < p2, p2 ≡ 1 (mod Q2).

We shall prove that

(3.16)


ξ,η<x1/10

∆(ξ, η) = ox(1)xκ1κ2.

Let ξ, η < x1/10 be fixed. By using Theorem 2.6 in [7] we can overestimate
those solutions of n = ξu, n+1 = ηv counted in T (ξ, η) for which there exists
either a p1 ∈ P1 such that p1|u, and p1 < x0,75, or a p2 ∈ P2, such that p2|v
and p2 < x0,75. We consider the first case. The second case is similar. If p1|n,
then let u = p1m. For fixed ξ, p1, η we should estimate those m, v for which
ηv− (p1ξ)m = 1, p(v) > Y, p(m) > Y . Arguing as above, by using Theorem
2.6 in [7] we obtain the number of the integers is less than c

p1
T (ξ, η). Since


Y <p1<x

p1≡1(Q1)

1/p1 ≤ c1
Q1

log
log x
log Y

 x3

Q1
,
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the contribution of these types of integers to (3.16) is less than

(3.17)
x3

Q1



ξ,η<x1/10

T (ξ, η).

Let us observe that the number of those n ≤ x for which there exists
p1 ∈ P1, p1|n, p1 >

√
x, or p2 ∈ P2, such that p2|n + 1, p2 >

√
x is

ox(1)xκ1κ2. The number of these integers is less than


p1≡1(Q1)√

x<p1<x

x

p1
+


p2≡1(Q2)√

x<p2<x

x

p2
 x


1
Q1

+
1
Q2


,

and the right hand side is ox(1)xκ1κ2.

(3.17) is proved, whence we obtain that

(3.18)
EQ1,Q2(x) =(1 + ox(1))

x

2



2<p<Y


1− 2

p


A(Y )B(Y )C(Y )+

+ ox(1)xκ1κ2.

We have

(3.19)



2<p<Y


1− 2

p


A(Y ) =



3≤p<Y


1− 2

p(p− 1)

·


3≤p<Y

p≡1(Q1)

1
1 + 2

p−1

×

×


3≤p<Y
p≡1(Q2)

1
1 + 2

p−1

·


3≤p<Y
p≡1(Q1,Q2)


1 +

2
p− 1


.

Furthermore,

(3.20)


3≤p<Y
p≡1 (mod D)

1
1 + 2

p−1

= e−
2 log log Y

ϕ(D) +O( 1
D )

and

(3.21)


3≤p<Y
p≡1 (mod D)

(1 + 1/p) = e
log log Y

ϕ(D) +O( 1
D )
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uniformly as D ≤ x2
2. Let

(3.22) B =


p≥3


1− 2

p(p− 1)

.

From (3.19), (3.20), (3.21) we have:

(i) the right hand side of (3.19) equals to

(3.23)
(1 + ox(1))B · κ2

1κ
2
2e

2x2
(Q1−1)(Q2−1) =

= (1 + ox(1))B · κ2
1κ

2
2,

(ii)

(3.24) B(Y ) = (1 + ox(1))
1
κ1

,

(iii)

(3.25) C(Y ) = (1 + ox(1))
1
κ2

.

Hence the theorem follows immediately.

4. Final remark

The distribution of the prime power divisors of the iterates of ϕ(n), σ(n)
are investigated in [8].
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