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Abstract. We give conditions for the existence of a twice differentiable

solution of hyperbolic type partial differential equation of homogeneous

string vibration with random strongly Orlicz initial conditions.

1. Introduction

The influence of random factors should often be taken into account in
solving problems of mathematical physics. These factors can be of a diverse
nature: random boundary conditions and random initial conditions, random
forces acting on the system, random coefficients of differential operators, etc.
This brings up the necessity of analyzing specific features of the problem in
question. The keypoints usually are: existence and uniqueness of the solution,
the possibility of a constructive approximation of the solution and type of
convergence of approximating functions to the solution, behavior of different
functionals of the solution, etc. Different methods are applied depending on
the type of the problem, specifics of random factors involved and the questions
to be studied.
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We consider boundary problems of homogeneous string vibration with
random strongly Orlicz initial conditions. The main objective of the paper
is to propose a new approach for studying partial differential equations with
random initial conditions and to apply this approach for the justification of
the Fourier method for solving hyperbolic type problems. Similar problems for
the hyperbolic type equations are considered in [1, 4, 6, 7, 8, 10, 11], parabolic
type equations are considered in [9]. Further references can be found in [2, 5].

2. Stochastic processes of the Orlicz space

Definition 2.1. ([2]) A continuous even convex function u (x) (x ∈ R) is
called a C-function if u (x) is monotonically increasing for x > 0 and u (0) = 0.

Definition 2.2. ([2]) We say that a C-function u satisfies the g-condition
if there exist constants z0 > 0, k > 0 and A > 0 such that the inequality

u(x)u(y) ≤ Au(kxy)

holds for all x > z0 and y > z0.

Definition 2.3. ([2]) Suppose that (T, ρ) is a nonempty metric space and
ε > 0. Denote by Nρ (t, ε) the smallest number of points in ε-net for the set T
with respect to the udometric ρ. The function (Nρ (T, ε) , ε > 0) is called the
massiveness of the set with respect to the udometric ρ.

Let {Ω,, P} be a probability space.
Definition 2.4. ([1]) The Orlicz space Lu (Ω) of random variables

generated by a C-function u (x) is defined to be the space of random variables

ξ (ω) = ξ, ω ∈ Ω such that there exists a constant rξ with Eu


ξ
rξ


≤ ∞.

The Orlicz space Lu (Ω) is a Banach space with the norm

ξLu
= inf

r > 0 : Eu


ξ

r


≤ 1

.

Definition 2.5. ([1]) A stochastic process X = {X (t) , t ∈ T} is said to
be from the Orlicz space Lu (Ω) if for all t ∈ T the random variable X (t)
belongs to Lu (Ω).

Definition 2.6. ([1]) Let u(x) be a C-function such that u(x) is stronger
than V (x) = x2 that is V (x) > cx2 as x > x0, c > 0. The set of random
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variables ξ (Eξ = 0) from the space Lu (Ω) is called strongly Orlicz family of
random variables if there exists a constant C∆ such that for ξi ∈ ∆, i ∈ I and
for all λi ∈ R1 the following inequality holds (I is any finite set)




i∈I
λiξi


Lu

≤ C∆


E


i∈I
λiξi

2

1/2

.

Definition 2.7. ([1]) A stochastic process

X = {X (t) , t ∈ T} , (X ∈ Lu (Ω))

is called a strongly Orlicz process if the family of random variables X =
= {X (t) , t ∈ T} is a strongly Orlicz family.

Theorem 2.1. ([1]) Let ∆ be a strongly Orlicz family of random variables.
Then the linear closure ∆ of the family ∆ in the space L2(Ω) is a strongly Orlicz
family.

Theorem 2.2. ([1]) Let Xi = {Xi (t) , t ∈ T, i ∈ I} be a family of
strongly Orlicz stochastic processes. Let (T,Θ, µ) is a measurable space. If

ϕki(t), i ∈ I, k = 1, . . . ,∞

is a family of measurable functions in (T,Θ, µ) and the integral

ξki =


T

ϕki (t)Xi (t) dµ (t)

is well defined in the mean square sense, then the family of random variables

∆ξ =

ξki, i ∈ I, k = 1,∞

is a strongly Orlicz family.

Theorem 2.3. ([11]) Let Rk be the k-dimensional space,

d(t, s) = max
1≤i≤k

|ti − si| ,

T = {0 ≤ ti ≤ Ti, i = 1, 2, . . . , k}, Xn = {Xn(t), t ∈ T}, n = 1, 2, . . . be a
sequence of stochastic processes belonging to the Orlicz space Lu (Ω), and let the
function u satisfy the g-condition. Assume that the process Xn(t) is separable
and

sup
d(t,s)≤h

sup
n=1,∞

Xn(t)−Xn(s) ≤ σ(h),
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where σ = {σ(h), h > 0} is a monotonically increasing continuous function
such that σ(h)→ 0 as h → 0. We also assume that



0

u(−1)


k

i=1


Ti

2σ(−1)(u)
+ 1


du < ∞,

where σ(−1)(u) is the inverse function of σ(u). If the processes Xn(t) converge
in probability to the process X(t) for all t ∈ T , then Xn(t) converge in
probability in the space C(T ).

Theorem 2.4. ([3]) Let ξ(X) be an almost sure continuous random field
such that Eξ(X) = 0 for X ∈ T , where

T = {(x, y) | ai ≤ xi ≤ bi, i = 1, . . . , n} .

Let
B(X,Y ) = Eξ(X)ξ(Y )

be the correlation of the field ξ(X), and suppose that the partial derivatives
exist.

Bii(X,Y ) =
∂2B(X,Y )
∂Xi∂Yi

, i = 1, . . . n,

Bii(X,Y ) are the correlation functions of square mean derivatives
∂ξ(X)
∂xi

. If

there is a version of the field ∂ξ(X)
∂xi

, i = 1, . . . , n, that is a continuous random
field, then this version is an ordinary partial derivative of the random field
ξ(X).

The following result contains conditions for the existence of partial deriva-
tives for stochastic processes of Orlicz space.

Theorem 2.5. Let T = {ai ≤ xi ≤ bi, i = 1, . . . ,m}. ξ(X), X ∈ T ,
be a separable random field such that ξ(X) is a strongly Orlicz stochastic pro-
cesses. Let B0000(X,Y ) = Eξ(X)ξ(Y ) and assume that the partial derivatives

Bi0i0(X,Y ) =
∂2B(X,Y )
∂xi∂yi

, i = 1, . . . ,m, and

Bikik(X,Y ) =
∂4B(X,Y )

∂xi∂yi∂xk∂yk
, i = 1, . . . ,m, k = 1, . . . ,m

exist. Suppose that there exist monotone increasing continuous functions
σz(h) > 0, h > 0, such that σz(h) → 0 as h → 0 for z = (0, 0, 0, 0),
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z = (i, 0, i, 0), i = 1, . . . ,m and z = (i, k, i, k), i = 1, . . . ,m, k = 1, . . . ,m.
Assume that

(2.1) sup
|xi−yi|≤h
i=1,...,m

(Bz(X,X) +Bz(Y, Y )− 2Bz(X,Y ))
1
2 ≤ σz(h).

If

(2.2)

ε

0

u−1


π

2σ(−1)
z

+ 1


T

2σ(−1)
z

+ 1


du <∞

for all z and for sufficiently small ε then with probability one the partial
derivatives

∂ξ(X)
∂xi

,
∂2ξ(X)
∂xi∂xj

, i, j = 1, . . . ,m.

Proof. The proof of this theorem is analogous to that of Theorem 3.9 of
[7].

3. Conditions on existence with probability one of twice continuously
differentiated solution of the boundary-value problem of homo-
geneous string vibration

Consider the boundary-value problem of first kind for a homogeneous
hyperbolic equation [12]. The problem is whether one can find a function
u = (u (x, y) , x ∈ [0, π] , t ∈ [0, t]) satisfying the following conditions:

(3.1)
∂

∂x


p(x)

∂u

∂x


− q(x)u− ρ(x)

∂2u

∂t2
= 0;

x ∈ [0, π] , t ∈ [0, T ] , T > 0;

(3.2) u(0, t) = u(π, t) = 0, t ∈ [0, T ] ;

(3.3) u(x, 0) = ξ(x),
∂u(x, 0)

∂t
= η(x), x ∈ [0, π] .
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The functions

p = (p(x), x ∈ [0, π]) , q = (q(x), x ∈ [0, π]) , ρ = (ρ(x), x ∈ [0, π])

satisfy the following conditions:

(i) p(x) > 0, ρ(x) > 0, q(x) ≥ 0, x ∈ [0, π] ;

(ii) p(x) and ρ(x) are twice continuously differentiable on x ∈ [0, π];

(iii) q(x) is continuously differentiable on [0, π].

Derivatives at the endpoints of the segment are interpreted as one-sided
derivatives.

Assume also that (ξ(x), x ∈ [0, π]) (η(x), x ∈ [0, π]) are strongly Orlicz
stochastic processes defined on the same complete probability space (Ω, , P )
such that

(3.4) ξ(0) = ξ(π) = η(0) = η(π) = 0

almost surely. Additional restrictions on the processes ξ(•) and η(•) will be
imposed later. Denote by

Bξ(x, y) = Eξ(x)ξ(y), x, y ∈ [0, π] ,

Bη(x, y) = Eη(x)η(y), x, y ∈ [0, π]

the correlation functions of ξ and η. We assume that the functions Bξ and Bη

are continuous, that is ξ(•) and η(•) are mean square continuous. (3.4) implies
that

Bξ(0, y) = Bξ(x, 0) = Bξ(π, y) = Bξ(x, π) = 0,

Bη(0, y) = Bη(x, 0) = Bη(π, y) = Bη(x, π) = 0.

The particular equation (3.1) describes the oscillation of a nonhomogeneous
string with fixed ends (3.2) and random initial conditions (3.3). In this case
the stochastic process ξ(•) describes the initial position of the string, and
the process η(•) represents the initial velocity. If the initial position and
initial velocity are nonrandom, then the boundary-value problem (3.1)-(3.3)
is classical and studied in detail. We are interested in the probabilistic aspects
of the problem, and therefore we assume that the processes ξ(•) and η(•) have
zero means.

Independently of whether the initial conditions are deterministic or ran-
dom the Fourier method is about looking for a solution

(3.5) u (x, t) =
∞

k=1

Xk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt


,
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x ∈ [0, π] , t ∈ [0, T ] , T > 0,

where

Ak =

π

0

ξ(x)Xk(x)ρ(x)dx, k ≥ 1,

Bk =

π

0

η(x)Xk(x)ρ(x)dx, k ≥ 1,

and where λk, k ≥ 1 are eigenvalues, and Xk = (Xk)(x), x ∈ [0, π]), k ≥ 1, the
corresponding orthonormal, with weight ρ(•), eigenfunctions of the following
Sturm-Liouville problem:

(3.6)
d

dx


p(x)

dXk(x)
dx


− q(x)x(x) + λρ(x)X(x) = 0,

x ∈ [0, π],

(3.7) X(0) = X(π) = 0.

The assumptions imposed on the function p(x), ρ(x) and q(x) make all
eigenvalues λk, k ≥ 1 positive, and we can assume that λ1 < λ2 < λ3 <
< . . . < λn < . . .. Observe also that the eigenfunctions Xk, k ≥ 1 are twice
continuously differentiable on [0, π].

Suppose that D = [0, π] × [0, T ], and let C(D) be the space of functions
continuous on D. This space is a separable Banach space.

Lemma 3.1. [12] Assume that λk, k ≥ 1 are eigenvalues and Xk, k ≥ 1
are the corresponding eigenfunctions of the Sturm-Liouville problem (3.6)-(3.7)
with the functions p, q, and ρ satisfying (i)-(iii). Then


λk = k +O


1
k



as k →∞, and

Xk(x) =


2
π
sin k




x

0


ρ(u)
p(u)

 1
2

du


+ βk

k
,

for all x ∈ [0, π], where
sup
k≥1

sup
x∈[0,π]

|βk(x)| <∞.
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Lemma 3.2. [12] Suppose that the functions p, q, and ρ satisfy conditions
(i)-(iii). Then the eigenvalues λk, k ≥ 1 and the corresponding eigenfunctions
Xk, k ≥ 1 of the Sturm-Liouville problem (3.6)-(3.7) are the eigenvalues and
the corresponding eigenfunctions of the integral equation

(3.8) X(x) = λ

π

0

G(x, s)ρ(s)X(s)ds,

where G(x, s), x, s ∈ [0, π] is the influence function of the boundary-value
problem (3.6)-(3.7) defined as follows:

G(x, s) =




u(x)v(s), x ≤ s;

u(s)v(x), x > s,

u(x) and v(x) are twice continuously differentiable on [0, π].

Theorem 3.1. Let (ξ(x), x ∈ [0, π]) , and (η(x), x ∈ [0, π]) be strongly
Orlicz stochastic processes. In order that a twice continuously differentiable
solution of the problem (3.1)-(3.3) exist with probability one in the domain D,
and be represented in the form of a uniformly convergent in probability series
(3.5), it is sufficient that

(i) the continuous derivatives

d2ξ(x)
dx2

,
dη(x)
dx

, 0 ≤ x ≤ π

exist with probability one;
(ii) for all 0 ≤ x ≤ π, 0 ≤ t ≤ T the series (3.5) and the series

(3.9)
∞

k=1


λkXk(x)


−Ak sin


λkt+

Bk√
λk

cos

λkt


,

(3.10)
∞

k=1

λkXk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt



converge uniformly in probability.

Proof. From Theorem 4.1 of [7] follows, that for the existence of twice
continuously differentiable solution of the problem (3.1)-(3.3) in the set D,
with probability one it is sufficient the condition (i) to be satisfied and for all
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x ∈ [0, π], t ∈ [0, T ] series converge uniformly in probability come out from
(3.5) differentiable by x and t and double differentiable by x and t, that is
series (3.9), (3.10), and series

(3.11)
∞

k=1

dXk(x)
dx


Ak cos


λkt+

Bk√
λk

sin

λkt


,

(3.12)
∞

k=1

d2Xk(x)
dx2


Ak cos


λkt+

Bk√
λk

sin

λkt


.

Substituting Xn(x) and λn in (3.8) we have

(3.13) Xn(x) = λn

π

0

G(x, s)ρ(s)Xn(s)ds.

By differentiation of (3.13) we obtain

X 
n(x) = λn

π

0

G∗(x, s)ρ(s)Xn(s)ds,

(3.14)

X 
n(x) = λn




π

0

G∗∗(x, s)ρ(s)Xn(s)ds+ (v(x)u(x)− v(x)u(x)) ρ(x)Xn(x)


 ,

where

G∗(x, s) =




u(x)v(s), x ≤ s;

u(s)v(x), x > s,

G∗∗(x, s) =




u(x)v(s), x ≤ s;

u(s)v(x), x > s,

By substituting (3.13) in (3.11), we have for all m ≥ 1, n ≥ m

n

k=m

dXk(x)
dx


Ak cos


λkt+

Bk√
λk

sin

λkt


=
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=

π

0

G∗(x, s)ρ(s)


n

k=m

λkXk(s)

Ak cos


λkt+

Bk√
λk

sin

λkt


ds.

Then

sup
(x,t)∈D


n

k=m

dXk(x)
dx


Ak cos


λkt+

Bk√
λk

sin

λkt

 ≤

≤
π

0

|G∗(x, s)ρ(s)| ds× sup
(x,t)∈D


n

k=m

λkXk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt

 .

From here it follows, that if the series (3.10) converges uniformly in
probability, then the series (3.11) will also converge uniformly in probability.
Prove that the uniform convergence uniformly in probability series (3.12)
follows from the uniform convergence in probability series (3.10). Substituting
(3.14) in (3.10) we obtain for m ≥ 1, n ≥ m

∞

k=m

d2Xk(x)
dx2


Ak cos


λkt+

Bk√
λk

sin

λkt


=

=

π

0

G∗∗(x, s)ρ(s)


n

k=m

λkXk(s)

Ak cos


λkt+

Bk√
λk

sin

λkt


ds+

+ [v(x)u(x)− v(x)u(x)] ρ(x)×

×
n

k=m

λkXk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt


.

Then

sup
(x,t)∈D


∞

k=1

d2Xk(x)
dx2


Ak cos


λkt+

Bk√
λk

sin

λkt

 ≤




π

0

|G∗∗(x, s)ρ(s)| ds+ sup
(x,t)∈D

|v(x)u(x)− v(x)u(x)|

×

× sup
(x,t)∈D


∞

k=1

d2Xk(x)
dx2

Xk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt

 .
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Lemma 3.3. Let the initial conditions (ξ(x), x ∈ [0, π]), and (η(x), x ∈
∈ [0, π]) be strongly Orlicz stochastic processes and assume that the hypotheses
of Theorem 3.1 hold. Then also the random series (3.5) and (3.9)-(3.10) are
strongly Orlicz stochastic processes.

Proof. It follows from Theorem 2.2 that the family of random variables
Ak and Bk, k ≥ 1, is a strongly Orlicz family. According to Theorem 2.1 the
random series (3.5) and (3.9)-(3.10) are strongly Orlicz stochastic processes.

For n ≥ 1 put

S(0)
n (x, t) =

n

k=1

Xk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt


,

S(1)
n (x, t) =

n

k=1


λkXk(x)


Ak sin

λkt− Bk√

λk

cos

λkt


,

S(2)
n (x, t) =

n

k=1

λkXk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt


,

(x, t) ∈ D.

Theorem 3.2. Let ξ(x) and η(x) be strongly Orlicz processes. In order
that a twice continuously differentiable solution of problem (3.1)-(3.3) exist with
probability one in the domain D, and be represented in the form of series (3.5),
uniformly convergent in probability, it is sufficient that

(i) the derivatives
d2ξ(x)
dx2

,
dη(x)
dx

, 0 ≤ x ≤ π

exist and are continuous with probability one;
(ii) for all (x, t) ∈ D the series

∞

k=1

∞

l=1

Xk (x)Xl (x)

EAkAl cos


λkt cos


λlt +

+
EBkBl√
λk

√
λl

sin

λkt sin


λlt+

2EAkBl√
λl

cos

λkt sin


λlt


,

∞

k=1

∞

l=1


λk


λlXk(x)Xl(x)


EAkAl sin


λkt sin


λlt +
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+
EBkBl√
λk
√
λl
cos

λkt cos


λlt− 2EAkBl√

λl
cos

λkt sin


λlt


,

∞

k=1

∞

l=1

λkλlXk(x)Xl(x)

EAkAl cos


λkt cos


λlt+

+
EBkBl√
λk
√
λl
sin

λkt sin


λlt+ 2

EAkBl√
λl

cos

λkt sin


λlt



converge;
(iii) for n ≥ 1 and k = 0, 1, 2

sup
|x−y|≤h
|t−s|≤h


E
S(k)

n (x, t)− S(k)
n (y, s)


2
 1

2

≤ σk(h),

where σk(h) is a monotononically increasing continuous function such that
σk(h)→ 0 as h→ 0 moreover

ε

0+

u(−1)


π

2σ(−1)(u)
+ 1


T

2σ(−1)(u)
+ 1


du <∞

where σ−1
k (ε) is the inverse function of σk(ε).

Proof. Conditions (ii) imply that the series (3.5) and (3.9)-(3.10) converge
in the mean square sense. According to Theorem 2.3 and Lemma 3.3 the series
(3.5), (3.9)-(3.10) converge in probability in the space C(D).

Now Theorem 3.2 follows from Theorem 3.1.

When using introduction from Lemma 3.1 we denote

Z(0)
n =

n

k=1

Ak sin(kγ(x)) cos kt+
Bk

k
sin(kγ(x)) sin kt,

Z(1)
n =

n

k=1

kAk sin(kγ(x)) sin kt−Bk sin(kγ(x)) cos kt,

Z(2)
n =

n

k=1

k2Ak sin(kγ(x)) cos kt+ kBk sin(kγ(x)) sin kt,

(x, t) ∈ D,
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where

γ(x) =

x

0


ρ(u)
p(u)

 1
2

du, x ∈ [0, π].

Then Theorem 3.2 can be formulated as follows.

Theorem 3.3 Let ξ(x) and η(x) be strongly Orlicz processes. In order
that a twice continuously differentiable solution of problem (3.1)-(3.3) exist
with probability one in the domain D, and be represented in the form of series
(3.5), uniformly convergent in probability, it is sufficient that

(i) the derivatives
d2ξ(x)
dx2

,
dη(x)
dx

, 0 ≤ x ≤ π,

exist and are continuous with probability one;
(ii) for all (x, t) ∈ D the series

∞

k=1

∞

l=1


EAkAl sin(kγ(x)) cos kt sin(lγ(x)) cos lt+

EBkBl

kl
sin(kγ(x))×

× sin kt sin(lγ(x)) sin lt+
2EAkBl

l
sin(kγ(x)) cos kt sin(lγ(x)) sin lt


,

∞

k=1

∞

l=1

[klEAkAl sin(kγ(x)) sin kt sin(lγ(x)) sin lt+ EBkBl sin(kγ(x)) ×

× cos kt sin(lγ(x)) cos lt− 2kEAkBl sin(kγ(x)) sin kt sin(lγ(x)) cos lt] ,

∞

k=1

∞

l=1


k2l2EAkAl sin(kγ(x)) cos kt sin(lγ(x)) cos lt+

+klEBkBl sin(kγ(x)× sin(kγ(x)) sin kt sin(lγ(x)) sin lt+
+2k2lEAkBl sin(kγ(x)) cos kt sin(lγ(x)) sin lt



converge;
(iii) for n ≥ 1 and k = 0, 1, 2

sup
|x−y|≤h
|t−s|≤h


E
S(k)

n (x, t)− S(k)
n (y, s)


2
 1

2

≤ σk(h),
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where σk(h) is a monotonically increasing continuous function such that
σk(h)→ 0 as h → 0, moreover

ε

0+

u(−1)


π

2σ(−1)
k (u)

+ 1


T

2σ(−1)
k (u)

+ 1


du < ∞

where σ−1
k (ε) is the inverse function of σk(ε).

Proof. Let us show, that if the condition (iii) of this theorem is fulfilled,
then series (3.9) will converge uniformly in probability. For the series (3.5) and
(3.8) the arguments will be analogous. According to Lemma 3.1


λk = k +O


1
k


,

Xk(x) =


2
π
sin(γ(x)) +

βk(x)
k

,

where

|βk(x)| < C, γ(x) =

x

0


ρ(u)
p(u)

 1
2

du, x ∈ [0, π].

Therefore
∞

k=1

λkXk(x)

Ak cos


λkt+

Bk√
λk

sin

λkt


=

=
∞

k=1

λk


2
π
sin k(γ(x))Ak cos


λkt+

∞

k=1


λk


2
π
sin k(γ(x))Bk cos


λkt+

+
∞

k=1

λk
k
Akβ

∗(x) +
∞

k=1

√
λk
k

Bkβ
∗∗(x) =

∞

k=1

k2


2
π
sin k(γ(x))Ak cos


λkt+

+
∞

k=1

k


2
π
sin k(γ(x))Bk cos


λkt+

∞

k=1

O


1
k2


2
π
sin k(γ(x))Ak cos


λkt+

+
∞

k=1

O


1
k


2
π
sin k(γ(x))Bk cos


λkt+

∞

k=1

λk
k
Akβ

∗(x)+
∞

k=1

√
λk
k

Bkβ
∗∗(x),

|β∗k(x)| ≤ C1, |β∗∗k (x)| ≤ C2.
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Since ξ(x) has continuous second derivative and η(x) has continuous
derivative, thus from [12] (p.462, p.463) it follows the series converge with

probability one
∞
k=1

|Ck| < ∞,
∞
k=1

Ck


|λk|
 < ∞. Thus, the series

∞

k=1

λk
k
Akβ

∗(x),
∞

k=1

λk
k
Akβ

∗(x),

∞

k=1

O


1
k2


2
π
sin k(γ(x))Ak cos


λkt,

∞

k=1

O


1
k


2
π
sin k(γ(x))Bk cos


λkt.

converge with probability one.

From here it follows, that for uniform convergence in probability series
(3.9) it is sufficient the series to converge

∞

k=1

k2Ak sin(kγ(x)) cos kt+ kBk sin(kγ(x)) sin kt,

where

γ(x) =

x

0


ρ(u)
p(u)

 1
2

du, x ∈ [0, π].

Now the theorem follows from Theorem 3.2.

3.1. The conditions of existence with probability one of twice
continuously differentiable solution of the boundary-value prob-
lem of homogeneous string vibration in a partial case

Example 3.4. Assume that ξ(x), η(x) are strongly Orlicz processes LuΩ.
Let u(x) be a function such that u(x) = |x|p for some p > 1 and all |x| > 1.
Then conditions (iii) of Theorem 3.2 holds for the function σk(h) = Ck|h|δ with
0 < δ ≤ 1. Indeed, for ε > 0

I =

ε

0

u−1


π

2σ(−1)
k

+ 1


T

2σ(−1)
k

+ 1


du < ∞,
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I ≤
ε

0


πC

1
δ

k

2u
1
δ

· TC
1
δ

k

2u
1
δ

 1
p

du ≤ D

ε

0

1

u
2
pδ

du.

The latter integral converges under δ > 2
π .

Theorem 3.5. Let ξ(x), and η(x), x ∈ [0, π] be strongly Orlicz processes
LuΩ where u(x) is a function such that u(x) = |x|p for some p > 1 and all
|x| > 1. Set

Bξ(x, y) = Eξ(x)ξ(y),

Bη(x, y) = Eη(x)η(y).

In order that a twice continuously differentiable solution of the problem (3.1)-
(3.3) exist with probability one in the domain D and be represented in the form
of series (3.5), uniformly convergent in probability it is sufficient that

(i) the partial derivatives

B∗∗ξ (x, y) =
∂4B(x, y)
∂x2∂y2

, B∗η(x, y) =
∂2B(x, y)
∂x∂y

,

exist for x, y ∈ [0, π] and are continuous, and

sup
|x−y|≤h


B∗∗ξ (x, x) +B∗∗ξ (y, y)− 2B∗∗ξ (x, y)

 ≤ C∗∗ |h|δ ,

sup
|x−y|≤h


B∗η(x, x) +B∗η(y, y)− 2B∗η(x, y)

 ≤ C1∗ |h|δ ,

for sufficiently small h, where δ > 2
p ;

(ii) the series

∞

k=1

∞

l=1

k2l2

|EAkAl|+ |EBkBl|

kl
+ 2

EAkBl

l



converge;
(iii)

∞

k=1


k2

EA2

k

 1
2 +


EB2

k

 1
2

k


 (k)δ <∞

for arbitrary δ > 2
p .
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Proof. Condition (i) of Theorem 3.5 implies condition (i) of Theorem 3.2.
According to Example 3.4 the conditions of Theorem 2.5 hold for processes
ξ(x) and η(x) if

σk(h) = Ck|h|δ, δ >
2
p
.

It is clear that the series in condition (ii) of Theorem 3.2 converge if so do the
series in condition (ii) of this theorem.

Example 3.4 and Lemma 2.3 imply that conditions (iii) of Theorem 3.2
follow from condition (iii) of Theorem 3.5. It is clear that


E
Z(0)

n (x, t)− Z(0)
n (y, s)


2
 1

2

=

=


E


n

k=1


Ak sin(kγ(x)) cos kt+

Bk

k
sin(kγ(x)) cos kt


−

−
n

k=1


Ak sin(kγ(x1)) cos kt+1

Bk

k
sin(kγ(x1)) cos kt1



2



1
2

≤

≤


n

k

n

l=1

[|EAkAl| |sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1| ×

× |sin(lγ(x)) cos lt− sin(lγ(x1)) cos lt1|+

+

EBkBl

kl

 |sin(kγ(x)) sin kt− sin(kγ(x1)) sin kt1| ×

× |sin(lγ(x)) sin lt− sin(lγ(x1)) sin lt1|+

+
2
EAkBl

l

 |sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1| ×

× |sin(lγ(x)) sin lt− sin(lγ(x1)) sin lt1|])
1
2 ≤

≤




n

k=1

|EAk| |sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1|
2

+

+


n

k=1

n

l=1

2
EAkBl

l

 |sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1| ×

× |sin(lγ(x)) sin lt− sin(lγ(x1)) sin lt1|)+
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+


n

k=1


EBk

k

 |sin(kγ(x)) sin kt− sin(kγ(x1)) sin kt1|


2



1
2

≤

≤
n

k=1


EA2

k

 1
2 |sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1| +

+


EB2

k

 1
2

k
|sin(kγ(x)) sin kt− sin(kγ(x1)) sin kt1|


 .

Furthermore,
|sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1| ≤

≤ |sin(kγ(x))− sin(kγ(x1))|+ |cos kt− cos kt1| ≤

(3.15) ≤ 2
sin

k(γ(x)− γ(x1))
2

+
sin

k(t− t1))
2



.

γ(x+ h)− γ(x) =

x+h

x


ρ(u)
p(u)

 1
2

du ≤ c0h, c0 = max
u∈[0,π]


ρ(u)
p(u)

 1
2

> 0.

The inequality
| sinα| ≤ |α|δ, 0 < δ ≤ 1

together with (3.15) imply that

|sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1| ≤

≤ 2


k(γ(x)− γ(x1))

2


δ

+

k(t− t1)

2


δ

≤

≤ 2

kδcδ0h

δ

2δ
+
kδhδ

2δ


=

1
2δ−1

(c0 + 1))kδhδ.

Similarly,

|sin(kγ(x)) sin kt− sin(kγ(x1)) sin kt1| ≤ 1
2δ−1

(c0 + 1))kδhδ.

One can easily obtain that

E

Z(0)
n (x, t)− Z(0)

n (y, s)
2

1
2

≤ C1 |h|δ ,
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where

C1 =
1

2δ−1
(c0 + 1)

∞

k=1


EA2

k

 1
2 +


EB2

k

 1
2

k


 (k)δ .

Similarly, E

Z(1)
n (x, t)− Z(1)

n (y, s)
2

1
2

≤

≤
n

k=1


k (EAk2)

1
2 |sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1| +

+


EB2

k

 1
2

k
|sin(kγ(x)) sin kt− sin(kγ(x1)) sin kt1|


 ≤ C2 |h|δ ,

where

C2 =
1

2δ−1
(c0 + 1)

∞

k=1


k EA2

k

 1
2 +


EB2

k

 1
2

k


 (k)δ .

E

Z(2)
n (x, t)− Z(2)

n (y, s)
2

1
2

n

k=1


k2 (EAk2)

1
2 |sin(kγ(x)) cos kt− sin(kγ(x1)) cos kt1|


EB2

k

 1
2

k
|sin(kγ(x)) sin kt− sin(kγ(x1)) sin kt1|


 ≤ C3 |h|δ ,

where

C3 =
1

2δ−1
(c0 + 1)

∞

k=1


k2

EA2

k

 1
2 +

EB2

k

 1
2 k

(k)δ .

Convergence of series C3 implies the convergence of series C1 and C2.
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