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Abstract. Let A1 denote the set of arithmetic functions f with f(1) real
and P  ⊆ A1 denote the set of arithmetic functions f with f(1) > 0. If ψ
denotes Lehmer’s convolution, placing mild conditions on ψ it can be shown

that the ψ−analogue of Rearick’s ([7]) logarithmic operator L : (P , ψ)→
→ (A1,+) defined by Lf(1) = log f(1) and Lf(n) = (fhψf−1)(n), if
n > 1, where h is any ψ−additive function with h(n) = 0 for all n > 1,
is a group isomorphism. In this paper we prove the converse when ψ is a

Lehmer-Narkiewicz convolution.

1. Introduction

An arithmetic function is a complex-valued function defined on the set of
positive integers Z+. The set of arithmetic functions will be denoted by A.

The classical Dirichlet convolution denoted by D is defined by

(1.1) (f D g)(n) =


d|n
f(d)g(n/d),
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for f , g ∈ A and n ∈ Z+; the sum on the right hand side of (1.1) is taken over
all positive divisors d of n.

Let A1 denote the set of arithmetic functions f with f(1) real and

(1.2) P  = {f ∈ A1 : f(1) > 0} .

It is well-known that an arithmetic function f which is not identically zero is
said to be multiplicative if f(mn) = f(m)f(n) for all m,n ∈ Z+ with (m,n) =
= 1; here, as usual, the symbol (a, b) denotes the greatest common divisor of a
and b. The set of multiplicative functions will be denoted by M.

In 1968, David Rearick (cf. [7], Theorem 9) among other things proved
that the groups (P , D), (A1,+) and (M,D) are all isomorphic. In fact, Rearick
(cf. [7], Theorems 2 and 3) showed that the logarithmic operator L : (P , D)→
→ (A1,+) defined by

(1.3) Lf(1) = log f(1),

and for n > 1

(1.4) Lf(n) =


d|n
f(d)f−1(n/d) log d

is an isomorphism, where f−1 is the inverse of f with respect to the Dirichlet
convolution D so that 

d|n
f(d)f−1(n/d) = e(n)

for all n ∈ Z+, where

(1.5) e(n) =

 1, if n = 1,

0, if n > 1.

A divisor d of n is called a unitary divisor (cf. [1]) and write dn if
(d, n/d) = 1. The unitary convolution (cf. [1]) denoted by U is defined by

(1.6) (f U g) (n) =


dn
f(d)g(n/d),

for f , g ∈ A and n ∈ Z+.

The unitary convolution was originally introduced by R.Vaidyanathaswamy
(cf. [13]) under the name of ”compounding operation”.
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It is interesting to note that Rearick (cf. [7], Theorem 9) also observed
that the results mentioned above in the case of Dirichlet convolution can be
extended to the unitary convolution. That is, Rearick proved that the groups
(P , U), (A1,+) and (M,U) are isomorphic.

As in the case of Dirichlet convolution, Rearick (cf. [7]) proved that the
logarithmic operator L : (P , U)→ (A1,+) defined by

(1.7) Lf(1) = log f(1),

and for n > 1,

(1.8) Lf(n) =


dn
f(d)f−1(n/d) log d

is an isomorphism, where f−1 is the inverse of f with respect to the unitary
convolution U so that 

dn
f(d)f−1(n/d) = e(n)

for all n ∈ Z+, where e(n) is as given in (1.5).

Let ∅ = T ⊆ Z+ × Z+ and ψ : T −→ Z+ be a mapping satisfying the
following conditions :

(1.9) For each n ∈ Z+, ψ(x, y) = n has a finite number of solutions.

(1.10) If (x, y) ∈ T, then (y, x) ∈ T and ψ(x, y) = ψ(y, x).

(1.11)





The statements ”(x, y) ∈ T , (ψ(x, y), z) ∈ T ”
and ”(y, z) ∈ T , (x, ψ(y, z)) ∈ T ” are equivalent; if one of these
conditions holds, we have ψ(ψ(x, y), z) = ψ(x, ψ(y, z)).

If f, g ∈ A, then the ψ-product of f and g denoted by fψg ∈ A is defined
by

(1.12) (fψg)(n) =


ψ(x,y)=n

f(x)g(y)

for all n ∈ Z+. The binary operation ψ in (1.12) is due to D.H. Lehmer [3]. It
is easily seen that (A,+, ψ) is a commutative ring (cf. [3]).
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Clearly, the Dirichlet and unitary convolutions arise as special cases of the
ψ-convolution. Indeed, let ψ(x, y) = xy for all (x, y) ∈ T . If T = Z+ × Z+

then ψ in (1.12) reduces to the Dirichlet convolution. If T = {(x, y) ∈ Z+ ×
×Z+ : (x, y) = 1}, then ψ reduces to the unitary convolution [1]. More

generally, if T =
∞

n=1
{(d, n/d) : d ∈ A(n)}, where A is Narkiewicz’s convolution

[4], then ψ reduces to the A-convolution. Thus the binary operation in (1.12)
is more general than Narkiewicz’s A-convolution.

An arithmetic function h is said to be additive if h(mn) = h(m) + h(n)
whenever (m,n) = 1 ; h is said to be completely additive if h(mn) = h(m) +
h(n) for all m,n ∈ Z+. It is easily seen that L : (P , D) → (A1,+) remains
isomorphism if log d in (1.4) is replaced by h(d) where h ∈ A is completely
additive and non-zero on Z+ − {1}. Similarly, L : (P , U) → (A1,+) remains
isomorphism if log d in (1.8) is replaced by h(d) where h ∈ A is additive and
non-zero on Z+ − {1}.

h ∈ A is said to be ψ-additive if ψ satisfies conditions (1.10) and (1.11),
and h (ψ(m,n)) = h(m) + h(n), for all (m,n) ∈ T.

If h is a ψ−additive function, under mild additional conditions on ψ, it
is easy to observe (see §3 for precise statements) that L : (P , ψ) → (A1,+)
defined by

(1.13) Lf(1) = log f(1),

and if n > 1,

(1.14) Lf(n) =


ψ(x,y)=n

f(x)f−1(y)h(x)

is a homomorphism, where f−1 is the inverse of f with respect to ψ-convolution.
Further if h(n) = 0 for all n > 1, then L is an isomorphism.

The main purpose of this paper is to prove that (see Theorem 4.1) if ψ
is a Lehmer-Narkiewicz convolution (for undefined notions in this section, see
§2), L in (1.13)-(1.14) is an isomorphism, h ∈ A and h(1) = 0, then h must be
a ψ-additive function which is non-zero on Z+ − {1}.

In §2, we develop preliminaries.
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2. Preliminaries

The following results (Lemmas 2.1 and 2.2) describe necessary and suffi-
cient conditions concerning the existence of unity and inverses in (A,+, ψ).

Lemma 2.1. (cf. [9], Theorem 2.2). Let ψ satisfy (1.9) - (1.12) implying
that (A,+, ψ) is a commutative ring. Let ψ(x, y) ≥ max{x, y} for all x, y ∈ T .
Then (A,+, ψ) possesses the unity if and only if for each k ∈ Z+, ψ(x, k) = k
has a solution. In such a case if g stands for the unity, then for each k ∈ Z+,

(2.1) g(k) =




1− 

ψ(x,k)=k,
x<k

g(x), if ψ(k, k) = k,

0 , if ψ(k, k) = k.

Remark 2.1. It has been established by J.L. Nicolas and V. Sitaramaiah
(cf. [5], Theorem 3.1) that if (A,+, ψ) is a commutative ring then it possesses
unity if and only if for each k ∈ Z+, ψ(x, k) = k has a solution.

Lemma 2.2. (cf. [8], also see [10], Remark 1.1). Let ψ satisfy (1.9) -
(1.12) and ψ(x, y) ≥ max{x, y} for all x, y ∈ T . For each k ∈ Z+, let the
equation ψ(x, k) = k have a solution so that the unity exists in (A,+, ψ). Let
g denote the unity. Then f ∈ A is invertible with respect to ψ if and only if

Sf (k)
def=


ψ(x,k)=k

f(x) = 0,

for all k ∈ Z+. In such a case, this inverse denoted by f−1(k) can be computed
by

f−1(1) =
1

f(1)
,

and for k > 1,

f−1(k) = (Sf (k))
−1


g(k)−


ψ(x,y)=k

y<k

f(x)f−1(y)


 .

Remark 2.2. If ψ satisfies (1.9) - (1.12) and ψ(1, k) = k for all k ∈ Z+,
then the function e defined in (1.5) is the unity in the ring (A,+, ψ). Further,
if ψ(x, y) ≥ max{x, y} for all x, y ∈ T and for each k ∈ Z+, ψ(x, k) = k if and
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only if x = 1, by Lemma 2.2, it follows that f ∈ A is invertible with respect to
ψ if and only if f(1) = 0.

Definition 2.1. If ψ satisfies (1.9) - (1.12), then ψ is said to be
multiplicativity preserving if f ψ g is multiplicative whenever f and g are (see
[10]).

The following results (Lemmas 2.3 and 2.4) give a characterization of
multiplicativity preserving ψ-functions which are onto:

Lemma 2.3. (cf. [11], Theorem 3.1) Suppose that the binary operation
ψ in (1.12) is multiplicativity preserving and for each k ∈ Z+, the equation

ψ(x, k) = k has a solution. Let x =
r
i=1

pαi
i and y =

r
i=1

pβi

i , where p1, p2, . . . , pr

are distinct primes, αi and βi are non-negative integers. Then we have

(a) (x, y) ∈ T if and only if (pαi
i , pβi

i ) ∈ T for i = 1, 2, . . . , r.
(b) If (x, y) ∈ T then

(2.2) ψ(x, y) =
r

i=1

p
θpi

(αi,βi)

i ,

where θp(α, β) is a non-negative integer satisfying the following properties:

(i) θp(α, β) is a non-negative integer defined for non-negative integers α, β
such that (pα, pβ) ∈ T.

(ii) For each integer γ ≥ 0, θp(α, β) = γ has a finite number of solutions.
(iii) θp(α, β) = 0 if and only if α = β = 0.
(iv) θp(α, β) = θp(β, α).
(v) For each γ ≥ 0, θp(α, γ) = γ has a solution.
(vi) For non-negative integers α, β, γ and for any prime p, the statements

“(pβ , pγ) ∈ T , (pα, pθp(β,γ)) ∈ T” and ”(pα, pβ) ∈ T and (pθp(α,β), pγ) ∈ T” are
equivalent; if one of these conditions holds, we have

θp(α, θp(β, γ)) = θp(θp(α, β), γ).

Lemma 2.4. (cf. [11], Theorem 3.2) Let T ⊆ Z+ × Z+ be such that
(a) (x, y) ∈ T if and only if (y, x) ∈ T .
(b) If x and y are given as in Lemma 2.3 then (x, y) ∈ T if and only if

(pαi
i , pβi

i ) ∈ T for i = 1, 2, . . . , r.
Further, for each prime p and non-negative integers α, β such that

(pα, pβ) ∈ T , let θp(α, β) be a non-negative integer satisfying (i) - (vi) of Lemma
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2.3. If for (x, y) ∈ T , ψ(x, y) is defined by (2.2), then ψ is mulitiplicativity
preserving and for each k ∈ Z+, ψ(x, k) = k has a solution.

Lemma 2.5. (cf. [11], Theorem 3.3) Let ψ be given as in Lemma 2.4 and
ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T. If M denotes the set of all multiplicative
functions which are invertible with respect to ψ then (M,ψ) is a commutative
group in which the function g defined in (2.1) is the identity.

Remark 2.3. For ψ and θp given in Lemma 2.4, we have that ψ(x, y) ≥
≥ max{x, y} for all (x, y) ∈ T is equivalent to saying that θp(α, β) ≥ max{α, β}
for all non-negative integers α and β such that (pα, pβ) ∈ T. In such a case,
it is clear that ψ(x, y) = n implies that x|n and y|n; it may also be noted that
if ψ(1, n) = n for all n ∈ Z+, then ψ(x, y) = xy whenever (x, y) = 1 (see also
[10], Lemmas 2.1 and 2.2) and θp(0, α) = α for all non-negative integers α.

Definition 2.2. (see [12]) Let ψ be multiplicativity preserving with
ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T and ψ(1, k) = k for all k ∈ Z+. Let T and
θp be as in Lemma 2.4. Then ψ is called a Lehmer-Narkiewicz convolution or
simply an L-N convolution if θp satisfies the following conditions for all primes
p:

(i) (θp(α, β) = θp(α, γ)) implies that (β = γ),

and

(ii) (θp(α, β) = θp(γ, δ)) implies that




α = θp(γ, c) for some c ≥ 0,

or β = θp(δ, d) for some d ≥ 0.

Definition 2.3. (see Narkiewicz [4]) A binary operation B in A is called
a regular convolution if the following conditions hold:

(i) The triple (F ,+ , B) is a commutative ring with unity (here  + 

denotes the usual point-wise addition).
(ii) B is multiplicativity preserving; that is f B g are multiplicative when-

ever f , g ∈ A are multiplicative.
(iii) The function 1 ∈ A defined by 1(n) = 1 for all n ∈ Z+ has an inverse

µB with respect to B and µB is 0 or -1 at prime powers.

Definition 2.4. (cf. [12]) Let ψ satisfy (1.9) - (1.12). The binary
operation ψ in (1.12) is called a regular ψ−convolution if it satisfies Definition
2.3.

Remark 2.4. Let ψ satisfy (1.9) - (1.12) and ψ(x, y) ≥ max{x, y}, for all
(x, y) ∈ T . It has recently been established (cf. [6], Theorem 3.1) that ψ is
regular convolution if and only if ψ is a Lehmer-Narkiewicz convolution.
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In what follows ψ denotes a Lehmer-Narkiewicz convolution. For conve-
nience, we now enlist the properties of these convolution (cf. [12] and [6]):

Theorem 2.1. We have
(I) The triple (A,+,ψ) is a commutative ring with unity e given by (1.5).
(II) ψ(x, y) ≥ max{x, y}, for all (x, y) ∈ T.

(III) For each k ∈ Z+ , ψ(x, k) = k if and only if x = 1.
(IV) ψ(x, k) = ψ(x, ) implies k = .

(V) f ∈ A is invertible with respect to ψ if and only if f(1) = 0.
(VI) ψ is multiplicativity preserving, that is, whenever f , g ∈ A are

multiplicative, then so is f ψ g.
(VII) The set of multiplicative functions forms a group with respect to ψ

and with e as identity. In particular, if f is multiplicative then the inverse of
f with respect to ψ, namely, f−1 is also multiplicative.

(VIII) The ψ-analogue of the Möbius function denoted by µψ is the inverse
of the constant function 1 and µψ is multiplicative. Clearly

(2.4)


ψ(x,y)=n

µψ(x) = e(n),

for all n ∈ Z+.

(IX) For each prime p and non-negative integers α and β with

pα, pβ

 ∈
∈ T let θp(α, β) = θ(α, β) be the non-negative integer given in Lemma 2.3. By
taking n = pα > 1 in (2.4), we obtain

(2.5)


θ(a,b)=α

µψ (pa) = 0.

(X) For each prime p and any non-negative integer α let Sp,α ⊆
⊆ (Z+

{0})× (Z+
{0}) be defined by

(2.6) Sp,α = Sα = {(a, b) : θ(a, b) = α} .

(a) If

(2.7) Sα = {0 = a0 < a1 < a2 < . . . < ak = α} ,

then for i = 1, 2, . . . , k

Sai = {a0 , a1 , . . . , ai}.
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(b) pα is called ψ−primitive if Sα = {0 , α}. From (a) it is clear that pa1

is ψ−primitive and pai is not ψ−primitive for i = 2, 3, . . . k, if k ≥ 2.
(c) The least positive integer in Sα is denoted by τψ(pα). The rank of pα

denoted by rp(α) or simply by r(α) is the number of elements in Sα − {0}.
Clearly, a1 = τψ(pα) and r(ai) = i for i = 1, 2, . . . k. Also,

(2.8) µψ (pα) =
−1, if pα is ψ-primitive,
0, otherwise.

In particular,

(2.9) µψ(pa1) = −1 and µψ(pai) = 0,

for i = 2, 3, . . . , k.

(d) θ(α, β) = θ(α, γ) implies β = γ.

(e) θ(x, α) = α if and only if x = 0.
(f) If ai , aj and ai+j ∈ Sα, then θ(ai, aj) = ai+j (i and j need not be

distinct).
(g) If 0 ≤  ≤ k then the solutions of θ(x, y) = a are precisely {(ai, aj) :

i+ j = , i j ≥ 0.}
The following theorem characterizes the Lehmer-Narkiewicz convolutions

(or simply L-N convolutions ) in a very effective way:

Theorem 2.2. (cf. [12], Corollary 4.1) For each prime p, let πp denote a
class of subsets of non-negative integers such that

(i) the union of all members of πp is the set of non-negative integers;
(ii) each member of πp contains zero;
(iii) no two members of πp contain a positive integer in common.

If S ∈ πp and S = {a0, a1, a2, . . .} with 0 = a0 < a1 < a2 < · · ·, we define
θp(ai, aj) = ai+j, if ai, aj and ai+j ∈ S (i and j need not be distinct). If ψ
and T are as given in Lemma 2.4 then ψ is an L-N convolution and is also a
regular convolution. Also, every L-N convolution can be obtained in this way.

For each prime p, if πp : {0, 2, 3} ; {0, 4, 5} ; {0, 6} ; {0, 7} ; {0, 8}; .... then
the corresponding ψ convolution is an L-N convolution, but not a regular
Narkiewicz convolution [4].
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3. ψ-analogues of some results of Rearick

We recall that if ψ satisfies the conditions (1.10) and (1.11) then h ∈ A is
called ψ−additive if h (ψ(x, y)) = h(x)+h(y), for all (x, y) ∈ T. It is clear that
h(1) = 0 if ψ(1, 1) = 1 and h is ψ-additive.

The following results (Theorems 3.1-3.4) can be established on lines similar
to Theorems 1 to 4 in Rearick [7]:

Theorem 3.1. Let ψ satisfy (1.9)-(1.12) and ψ(x, y) ≥ max{x , y}, for
all (x, y) ∈ T. Further suppose that for each k ∈ Z+ , ψ(x, k) = k if and only if
x = 1. Let h ∈ A be ψ−additive and L : (P , ψ) → (A1,+) be the logarithmic
operator given in (1.13) - (1.14). Then L is a homomorphism.

Theorem 3.2. (under the hypothesis of Theorem 3.1) If h(n) = 0, for all
n > 1, then L is an isomorphism.

Theorem 3.3. (under the hypothesis of Theorem 3.2) Let ψ be multi-
plicativity preserving. Then f ∈ P  is multiplicative if and only if Lf(n) = 0,
whenever n is not a prime power.

Theorem 3.4. (under the hypothesis of Theorem 3.3) The groups (M,ψ)
and (A1,+) are isomorphic.

Remark 3.1. Suppose that ψ satisfies (1.9)-(1.12) and ψ(x, y) ≥
max{x, y} for all (x, y) ∈ T . It can be shown that a necessary and sufficient
condition for every f ∈ P  is invertible with respect to ψ is that for each k ∈ Z+,
ψ(x, k) = k if and only if x = 1. Since the logarithmic operator defined in
(1.13) and (1.14) involves f−1 for f ∈ P , this condition imposed in Theorem
3.1 is justified.

Remark 3.2. If ψ is multiplicativity preserving, ψ(1, k) = k for all k ∈
∈ Z+, and ψ(x, y) ≥ max{x, y} for all (x, y) ∈ T, then by Remark 2.3 we
have ψ(x, y) = xy whenever (x, y) = 1. If θ = θp is as given in Lemma 2.3,
then an additive arithmetic function h is ψ-additive if and only if h


pθ(α,β)


=

= h (pα)+h

pβ


, for all non-negative integers α and β such that (pα, pβ) ∈ T.

Example 3.1. Let T = Z+ × Z+ and let r ≥ 0 be an integer. For each
prime p, let θp(α, β) = α+ β + rαβ, for non-negative integers α and β. If x =
k
i=1

pαi
i and y =

k
i=1

pβi

i , where p1 , p2 , . . . , pk are distinct primes, αi and βi are

non-negative integers for i = 1 , 2 , . . . , k, we define ψr(x, y) =
k
i=1

pαi+βi+rαiβi

i .

Then ψr satisfies the hypothesis of Theorems 3.1 - 3.4. Let θ = θp. We note
that θ(α, β) = n if and only if rn + 1 = (rα + 1)(rβ + 1). For a completely
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additive function g define the additive function h at prime powers pn > 1 by
h (pn) = g(rn + 1). Then h


pθ(α,β)


= h (pα) + h


pβ


, for all non-negative

integers α and β. Hence by Remark 3.2, h is ψr additive. If g(x) > 0 for all
x > 1, it follows that h(n) > 0 for n > 1. One can take g(n) = Ω(n) or log n,
where Ω(n) is the total number of prime factors of n if n > 1 and Ω(1) = 0. It
follows that the groups (P , ψr) , (M,ψr) and (A1,+) are isomorphic. Clearly
ψ0 is the Dirichlet convolution; ψ1 is due to D.H. Lehmer [3] and ψr for r ≥ 2
is due to V. Sitaramaiah and M.V. Subbarao [10]. It is not difficult to see that
ψr is not a regular convolution for r ≥ 2.

Example 3.2. Let T = Z+×Z+ and ψ(x, y) = x+y−1 for all (x, y) ∈ T.
It is not difficult to see that h ∈ A is ψ−additive if and only if h(n) = (n−1)h(2)
for all n ≥ 1. In particular, if h(2) = 0 then h(n) = 0 for all n ≥ 2. Hence ψ
satisfies Theorems 3.1 and 3.2 so the groups (P , ψ) and (A1,+) are isomorphic.
Here, ψ is not multiplicativity preserving.

Example 3.3. Let ψ be an L-N-convolution. On lines similar to that
of Theorem 4.1 in [6], it can be shown that an additive arithmetic function
h is ψ-additive if and only if h (pα) = r(α)h (pa1) where a1 = τψ(pα) and
r(α) = |Sp,α − {0}| . It is clear that one can find a ψ-additive function h not
vanishing on Z+−{1}. For example the additive function h defined at any prime
power pα > 1 by h (pα) = r(α) serves the purpose. Hence Theorems 3.1-3.4 are
applicable so the groups (P , ψ) , (A1,+) and (M,ψ) are isomorphic. We may
note that Dirichlet and unitary convolutions are L-N-convolutions.

Example 3.4. Let β ⊆ Z+ × Z+. β is said to be a basic sequence if (i)
(a, b) ∈ β implies that (b, a) ∈ β; (ii) (a, bc) ∈ β if and only if (a, b) and (a, c)
are in β; (iii) (1, n) ∈ β for every n ∈ Z+. If we take T = β and ψ(x, y) = xy
for all (x, y) ∈ T, then it is easily seen that ψ satisfies Theorems 3.1 and 3.2.
If h(n) = log n for all n ∈ Z+, then h is ψ−additive. The ψ-convolution in this
example reduces to the basic convolution introduced by Smith [2]. It follows
by Theorems 3.1 and 3.2 that the groups (P , ψ) and (A1,+) are isomorphic;
these results were originally due to Smith (cf. [2], Theorem 2).

4. A characterization

Throughout this section we assume that ψ is a Lehmer-Narkiewicz con-
volution and L is the logarithmic operator defined in (1.13) and (1.14). We
make use of the multiplicativity properties of the functions dψ = 1ψ 1 , µψ ,
and d−1

ψ = µψ ψ µψ . We recall that 1 denotes the constant function 1 and µψ
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denotes the inverse of the function 1 with respect to ψ, the ψ-analogue of the
Möbius function µ. We shall write L(f) instead of Lf.

We begin with

Lemma 4.1. Suppose h is an arithmetic function. If pα1
1 , pα2

2 ..., pαrr are
any r distinct ψ primitive elements, then

(4.1) L(dψ) (pα1
1 pα2

2 . . . pαrr ) =

=


θ(xi,yi)=αi
1≤i≤r

dψ




r

j=1

p
xj
j


d−1

ψ




r

j=1

p
yj
j


h



r

j=1

p
xj
j


 =

= 2r




r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

p
αi2
i2

. . . p
αir−k
ir−k


+ (−1)rh(1)



 .

Proof. We shall prove (4.1) by induction on r. If r = 1,

(4.1)



θ(x1,y1)=α1

dψ(px11 )d−1
ψ (py11 )h(p

x1
1 ) =

=dψ(1)d−1
ψ (pα1

1 )h(1) + dψ(pα1
1 )d−1

ψ (1)h(pα1
1 ) =

=2 {h(pα1
1 )− h(1)}

since pα1
1 is ψ-primitive. Thus the identity in (4.1) holds good when r = 1. We

assume (4.1) for some positive integer r. Suppose that pα1
1 , pα2

2 ..., pαrr , p
αr+1
r+1 are

any r+ 1 distinct ψ primitive elements. If Σ denotes the sum on the left hand
side of (4.1) for r + 1, we obtain

(4.2)

Σ =


θ(xi,yi)=αi
1≤i≤r

dψ




r

j=1

p
xj
j


d−1

ψ




r

j=1

p
yj
j


×

×


θ(xr+1,yr+1)=αr+1

dψ(p
xr+1
r+1 )d

−1
ψ (pyr+1

r+1 )h



r+1

j=1

p
xj
j


 =

=


θ(xi,yi)=αi
1≤i≤r

dψ




r

j=1

p
xj
j


d−1

ψ




r

j=1

p
yj
j


×

×


−2h




r

j=1

p
xj
j


+ 2h


pαr+1

r+1

r

j=1

p
xj
j





 =

=2 {Σ1 − Σ2} ,
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where

(4.3) Σ1 =


θ(xi,yi)=αi
1≤i≤r

dψ




r

j=1

p
xj
j


d−1

ψ




r

j=1

p
yj
j


h

pαr+1

r+1

r

j=1

p
xj
j




and

(4.4) Σ2 =


θ(xi,yi)=αi
1≤i≤r

dψ




r

j=1

p
xj
j


d−1

ψ




r

j=1

p
yj
j


h



r

j=1

p
xj
j


 .

For non-negative integers x1 , x2 , . . . , xr if we define

g(px11 px22 . . . pxrr ) = h(px11 px22 . . . pxrr p
αr+1
r+1 ),

noting that g(1) = h(pαr+1
r+1 ), we obtain from (4.1),

(4.5) Σ1 =


θ(xi,yi)=αi
1≤i≤r

dψ




r

j=1

p
xj
j


d−1

ψ




r

j=1

p
yj
j


g (px11 px22 . . . pxrr ) =

2r




r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir+1−k
ir+1−k p

αr+1
r+1


+ (−1)rh pαr+1

r+1




 .

Substituting (4.5) and (4.1) into (4.2), we obtain

(4.6) Σ = 2r+1

Σ4 + (−1)r+1h(1)


,

where

(4.7)

Σ4 =
r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir+1−k
ir+1−k p

αr+1
r+1


+

+ (−1)rh pαr+1
r+1

−
r−1

k=0



1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir+1−k
ir+1−k


.

In view of (4.6), (4.7) and considering the right hand side of (4.1) when r is
replaced by r + 1, it remains to prove that

(4.8) Σ4 =
r

k=0

(−1)k


1≤i1<i2<...<ir+1−k≤r+1

h

p
αi1
i1

. . . p
αir+1−k
ir+1−k


.
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Let Σ5 denote the sum on the right hand side of (4.8). Splitting the inner sum
in Σ5 according to ir+1−k = r + 1 or ir+1−k ≤ r we obtain

(4.9)

Σ5 =
r

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k
ir−k p

αr+1
r+1


+

+
r

k=0

(−1)k


1≤i1<i2<...<ir+1−k≤r
h

p
αi1
i1

. . . p
αir+1−k
ir+1−k


=

=Σ6 +Σ7,

say. Consider the sum Σ6. In this sum the term corresponding to k = r is
(−1)rh pαr+1

r+1


. Hence

(4.10)

Σ6 =
r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k
ir−k p

αir+1
ir+1


+ (−1)rh pαr+1

r+1


.

In the sum Σ7, the inner sum is empty when k = 0. Hence by using the
substitution k ← k − 1, we see that

(4.11) Σ7 = −
r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k
ir−k


.

Putting (4.10) and (4.11) into (4.9), we obtain (4.8). The induction is complete.
Hence Lemma 4.1 follows.

Lemma 4.2. (under the hypothesis of Lemma 4.1) We have

(4.12)

L(1) (pα1
1 pα2

2 . . . pαrr ) =

=


θ(xi,yi)=αi
1≤i≤r

h




r

j=1

p
xj
j


µψ




r

j=1

p
xj
j


 =

=
r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k
ir−k


+ (−1)rh(1).

Proof. We shall prove Lemma 4.2 by induction on r. The identity in
(4.12) is true when r = 1. We assume (4.12) for some positive integer r. We
consider the left hand side of (4.12) when r is replaced by r + 1. Suppose that
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pα1
1 , pα2

2 , ..., pαrr , p
αr+1
r+1 are any r + 1 distinct ψ-primitive elements. Since µψ is

multiplicative, we have

(4.13) L(1)

pα1
1 pα2

2 . . . pαrr p
αr+1
r+1


=

=


θ(xi,yi)=αi
1≤i≤r+1

h



r+1

j=1

p
xj
j


µψ



r+1

j=1

p
yj
j


 =

=


θ(xi,yi)=αi
1≤i≤r

µψ




r

j=1

p
yj
j


 

θ(xr+1,yr+1)=αr+1

h



r+1

j=1

p
xj
j


µψ

p
yr+1
r+1


=

=


θ(xi,yi)=αi
1≤i≤r

µψ




r

j=1

p
yj
j





−h



r

j=1

p
xj
j


+ h


pαr+1

r+1

r

j=1

p
xj
j





 =

= −Σ8 +Σ9,

where

(4.14) Σ8 =


θ(xi,yi)=αi
1≤i≤r

h




r

j=1

p
xj
j


µψ




r

j=1

p
yj
j


 ,

and

(4.15) Σ9 =


θ(xi,yi)=αi
1≤i≤r

h


pαr+1

r+1

r

j=1

p
xj
j


µψ




r

j=1

p
yj
j


 .

We can directly apply our induction hypothesis to the sum Σ8.

As in the proof of Lemma 4.1 let g


r
j=1

p
xj
j


= h


p
αr+1
r+1

r
j=1

p
xj
j


. We

replace h by g in the sum Σ9 and apply (4.12). Substituting these results in
(4.13), we obtain

(4.16) L(1)

pα1
1 pα2

2 . . . pαrr p
αr+1
r+1


= Σ4 + (−1)r+1h(1),

where Σ4 is given in (4.7). By (4.8), the left hand side of (4.16) is precisely
the left hand side of (4.12) when r is replaced by r + 1. This completes the
induction and the proof of Lemma 4.2.
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Definition 4.1. Let h be an arithmetic function with h(1) = 0. Let
t be a fixed positive integer. We say that h is additive of order t, if

h


t
i=1

pxi
i


=

t
i=1

h (pxi
i ) , for all distinct primes p1, p2, . . . , pt and non-negative

integers x1, x2, . . . , xt such that p
xj

j is ψ-primitive if xj > 0.

Lemma 4.3. Let r ≥ 2 and let h be an additive arithmetic function of
order r − 1. If pα1

1 , pα2
2 ..., pαr

r are any r distinct ψ primitive elements, then
(4.17)

L(1) (pα1
1 pα2

2 . . . pαr
r ) =

r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k

ir−k


=

= h




r

j=1

p
αj

j


−

r

j=1

h

p
αj

j


.

Proof. The first equality in (4.17) is (4.12) since h(1) = 0. For each integer
t ≥ 2, let P (t) denote the proposition that (4.17) holds (when r is replaced by
t) for any additive arithmetic function h of order t − 1. Clearly P (2) is true.
We assume P (t) for 2 ≤ t ≤ r. Let h be an additive function of order r. We
have

(4.18)

Σ =
r

k=0

(−1)k


1≤i1<i2<...<ir+1−k≤r+1

h

p
αi1
i1

. . . p
αir+1−k

ir+1−k


=

=
r

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k

ir−k
p
αr+1
r+1


+

+
r

k=0

(−1)k


1≤i1<i2<...<ir+1−k≤r
h

p
αi1
i1

. . . p
αir+1−k

ir+1−k


=

= Σ10 +Σ11,

say. The inner sum of Σ11 is empty for k = 0. Also, the term corresponding to
k = 1 in Σ11 is −h (pα1

1 pα2
2 . . . pαr

r ) . Hence

(4.19) Σ11 =
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= −h (pα1
1 pα2

2 . . . pαr
r ) +

r

k=2

(−1)k


1≤i1<i2<...<ir+1−k≤r
h

p
αi1
i1

. . . p
αir+1−k

ir+1−k


=

= −h (pα1
1 pα2

2 . . . pαr
r )−

r−1

k=1

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k

ir−k


=

= −
r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k

ir−k


=

= −


h



r

j=1

p
αj

j


−

r

j=1

h

p
αj

j




 = 0,

by our induction hypothesis.

In Σ10, the term corresponding to k = 0 is h


r+1
j=1

p
αj

j


. Also, since h is

additive function of order r, we obtain
(4.20)

Σ10 =h



r+1

j=1

p
αj

j


+

+
r

k=1

(−1)k


1≤i1<i2<...<ir−k≤r


h

p
αi1
i1

. . . p
αir−k

ir−k


+ h

p
αr+1
r+1


=

=h



r+1

j=1

p
αj

j


+

r

k=1

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k

ir−k


+

+ h

p
αr+1
r+1

 r

k=1

(−1)k


1≤i1<i2<...<ir−k≤r
1 =

=h



r+1

j=1

p
αj

j


+Σ12 + h


p
αr+1
r+1


Σ13,

say. The inner sum in Σ12 is empty when k = r. Further, the term correspond-

ing to k = 0 in Σ12 is h


r
j=1

p
αj

j


. Hence by (4.17),

(4.21) Σ12 = −
r

j=1

h

p
αj

j


.
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From (4.20) we have
(4.22)

Σ13 =
r

k=1

(−1)k


1≤i1<i2<...<ir−k≤r
1 =

r

k=1

(−1)k


r

r − k


= −1+(1−1)r = −1.

Lemma 4.3 now follows from (4.22), (4.21), (4.20), (4.19) and (4.18).

Lemma 4.4. Assume that the logarithmic operator L : (P , ψ)→ (A1,+)
defined in (1.13)-(1.14) is a homomorphism and let h ∈ A and h(1) = 0. If
pα1
1 , pα2

2 ..., pαr
r are any r distinct ψ−primitive elements, then

(4.23) h




r

j=1

p
αj

j


 =

r

j=1

h

p
αj

j


.

Proof. Since L is a homomorphism we have

(4.24) L(dψ) = L(1ψ 1) = L(1) + L(1) = 2L(1).

We can assume that r ≥ 2. Since h(1) = 0, by Lemmas 4.1, 4.2 and (4.24), we
obtain

(4.25)
r−1

k=0

(−1)k


1≤i1<i2<...<ir−k≤r
h

p
αi1
i1

. . . p
αir−k

ir−k


= 0.

We now show that h is additive of order t for 1 ≤ t ≤ r and this proves
(4.23). Clearly h is additive of order 1. Suppose that h is additive of order
r − 1. It follows from Lemma 4.3 and (4.25) that (4.23) holds. This completes
the induction and the proof of Lemma 4.4.

Theorem 4.1. Let h ∈ A and h(1) = 0. Then we have the following :

(a) If L : (P , ψ)→ (A1,+) is a homomorphism, then h is ψ-additive.
(b) If L is an injection, then h(n) = 0 for all n > 1.

Proof. The proof of (b) is not difficult. Suppose that h(k) = 0 for some
k > 1. We define f ∈ P  by

f(n) =

 0, if n = k,

1, if n = 1 or k.

Since h(1) = 0, it follows that f(x)h(x) = 0 for all x ∈ Z+. Hence

(Lf)(1) = log f(1) = 0,
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and
(Lf)(n) =



ψ(x,y)=n

f(x)h(x)f−1(y) = 0,

for all n > 1. Thus Lf ≡ 0. Since Le ≡ 0, where e is as given in (1.5) and L
is an injection, we must have f = e. But f = e. This contradiction proves that
h(n) = 0 for all n > 1. Hence (b) follows.

Proof of (a). We assume that L is a homomorphism. First we prove that
h is additive. For each non-negative integerm, let P (m) denote the proposition
that

(4.26) h


r

i=1

pαii


=

r

i=1

h (pαii ) ,

whenever p1 , p2 , . . . , pr are r distinct primes where r ≥ 2 and α1 , α2 , . . . αr
are non-negative integers with α1 + α2 + . . .+ αr = m.

Clearly P (0) is true. We assume P (t) for 0 ≤ t < m. We prove P (m). Let
α1 , α2 , . . . , αr be non-negative integers such that α1+α2+ . . .+αr = m. First
we prove that

(4.27) Σ =


x1+x2+...+xr<α1+α2+...+αr
θ(xi,yi)=αi

1≤i≤r
xr<αr




r

j=1

µψ

p
yj
j



 = 0.

Indeed,

(4.28) Σ =

xr<αr

θ(xr,yr)=αr

µψ (pyrr )Σ1Σ2 . . .Σr−1,

where for j = 1 , 2 , . . . , r − 1,

(4.29) Σj =

xj<mj

θ(xj,yj)=αj

µψ

p
yj
j



and

(4.30) mj =
j−1

k=1

(αk − xk) +
r−1

k=j

αk + (αr − xr).
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We show that Σr−1 = 0, from which (4.27) follows by (4.28). By (4.29) (j =
= r − 1) we have

(4.31) Σr−1 =


xr−1<mr−1
θ(xr−1,yr−1)=αr−1

µψ

p
yr−1
r−1


,

where

mr−1 =
r−2

k=1

(αk − xk) + αr−1 + (αr − xr).

The conditions under the sum on the right hand side of (4.27) imply that
xk ≤ αk for k = 1 , 2 , . . . , r and xr < αr. Hence mr−1 > 0. Let

(4.32) Spr−1,αr−1 = Sαr−1 = {0 < a1 < a2 < . . . at = αr−1} .

In the sum Σr−1 given in (4.31) the possible choices of yr−1 are yr−1 = 0 and
yr−1 = a1 (for the other choices of yr−1 , µψ


p
yr−1
r−1


= 0). For these choices of

yr−1 the corresponding choices of xr−1 are xr−1 = αr−1 < mr−1 and xr−1 =
= at−1 ≤ αr−1 < mr−1. Hence in the sum Σr−1 both the choices, namely,
yr−1 = 0 and yr−1 = a1 are admissible. Then

Σr−1 = 1 + µψ

pa1r−1


= 1− 1 = 0,

since pa1r−1 is ψ-primitive. Thus (4.27) follows.

We now prove that

(4.33) Σr =


x1+x2+...+xr<α1+α2+...+αr
θ(xi,yi)=αi

1≤i≤r
xr=αr




r

j=1

µψ

p
yj
j



 = −1.

Let r = 2. We have

(4.34) Σ2 =


x1+x2<α1+α2
θ(x1,y1)=α1
θ(x2,y2)=α2

x2=α2

µψ (p
y1
1 )µψ (p

y2
2 ) .

Let Sα1 be as given in (4.32) (r = 2). In (4.34), the conditions x2 =
= α2 and θ(x2, y2) = α2 imply that y2 = 0. Hence

(4.35) Σ2 =

x1<α1

θ(x1,y1)=α1

µψ (p
y1
1 ) .
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In the sum in (4.35), the possible choices of y1 for which µψ (p
y1
1 )) = 0 are

y1 = 0 and a1. The choice y1 = 0 is forbidden since this implies x1 = α1. The
choice y1 = a1 implies that x1 = at−1 < at = α1. Hence y1 = a1 is admissible.
Then from (4.35), we obtain

Σ2 = µψ (pa11 ) = −1.

Thus (4.33) is true when r = 2. We assume (4.33). We have

Σr+1 =


x1+x2+...+xr+xr+1<α1+α2+...+αr+αr+1
θ(xi,yi)=αi
1≤i≤r+1

xr+1=αr+1



r+1

j=1

µψ

p
yj
j



 =

=µψ

p0
r+1

 
x1+x2+...+xr<α1+α2+...+αr

θ(xi,yi)=αi
1≤i≤r




r

j=1

µψ

p
yj
j



 =(4.36)

=


x1+x2+...+xr<α1+α2+...+αr
θ(xi,yi)=αi

1≤i≤r
xr=αr




r

j=1

µψ

p
yj
j



+

+


x1+x2+...+xr<α1+α2+...+αr
θ(xi,yi)=αi

1≤i≤r
xr<αr




r

j=1

µψ

p
yj
j



 =(4.37)

=− 1 + 0 = −1,(4.38)

by our induction hypothesis and (4.27).

The passage from (4.36)-(4.38) also proves that

(4.39)


x1+x2+...+xr<α1+α2+...+αr
θ(xi,yi)=αi

1≤i≤r




r

j=1

µψ

p
yj
j



 = −1.

We shall now evaluate L(1) (pα1
1 pα2

2 . . . pαrr ) . We have

(4.40)
L(1) (pα1

1 pα2
2 . . . pαrr ) =


θ(xi,yi)=αi

1≤i≤r

h




r

j=1

p
xj
j




r

j=1

µψ

p
yj
j


=

= Σ1 +Σ2,
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where

(4.41)

Σ
1 =


x1+x2+...xr=α1+α2+...αr

θ(xi,yi)=αi
1≤i≤r

h




r

j=1

p
xj
j




r

j=1

µψ

p
yj
j


=

= h




r

j=1

p
αj
j


 ,

since the conditions in the sum Σ
1 imply xj = αj and consequently yj = 0 for

j = 1, 2, 3, . . . , r; also,

(4.42) Σ
2 =


x1+x2+...xr<α1+α2+...αr

θ(xi,yi)=αi
1≤i≤r

h




r

j=1

p
xj
j




r

j=1

µψ

p
yj
j


.

The conditions under the sum Σ
2 are favourable to apply the induction

hypothesis (4.26). By doing so we obtain,

(4.43)

Σ
2 =

r

j=1


x1+x2+...xr<α1+α2+...αr

θ(xi,yi)=αi
1≤i≤r

h

p
xj
j

 r

j=1

µψ

p
yj
j


=

=
r

j=1

Σ
j ,

say. We now evaluate Σ
1 . The same procedure is applicable for the general

sum Σ
j . We have

(4.44)

Σ
1 =


x1+x2+...xr<α1+α2+...αr

θ(xi,yi)=αi
1≤i≤r
x1=α1

h (px11 )
r

k=1

µψ (p
yk
k )+

+


x1+x2+...xr<α1+α2+...αr
θ(xi,yi)=αi

1≤i≤r
x1<α1

h (px11 )
r

k=1

µψ (p
yk
k ) =

=Σ1 +Σ2,
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say. We have

(4.45)

Σ1 = h (pα1
1 )µψ


p0
1

 
x2+...xr<α2+...αr

θ(xi,yi)=αi
1≤i≤r

r

k=2

µψ (p
yk
k ) =

= −h (pα1
1 ) ,

by (4.39). From (4.44), we have

(4.46) Σ2 =

x1<α1

θ(x1,y1)=α1

h (px11 )µψ (p
y1
1 )


x2+...xr<α1−x1+α2+...αr

θ(xi,yi)=αi
1≤i≤r

r

k=2

µψ (p
yk
k ) = 0,

since the inner sum vanishes as in the proof of (4.27).

It follows from (4.46), (4.45) and (4.44) that Σ
1 = −h (pα1

1 ) . In a similar
way, we can show that Σ

j = −h

p
αj
j


, for j = 2 , 3 , . . . , r. Hence from (4.43)

it follows that

(4.47) Σ
2 = −

r

j=1

h

p
αj
j


.

Substituting the results in (4.47) and (4.41) into (4.40), we obtain

(4.48) L(1) (pα1
1 pα2

2 . . . pαrr ) = h




r

j=1

p
αj
j


−

r

j=1

h

p
αj
j


.

We now prove that for r ≥ 2 ,

(4.49) L(µψ) (pα1
1 pα2

2 . . . pαrr ) = 0.

For i = 1 , 2 , . . . , r , let βi = τψ(pαii ). Since p
βi
i is ψ-primitive for i = 1 , 2 . . . , r ,

by Lemma 4.4 and h(1) = 0, we have

(4.50) h


r

i=1

pxii


=

r

i=1

h (pxii ) ,

if each xi = 0 or βi. We have

(4.51) L(µψ) (pα1
1 pα2

2 . . . pαrr ) =


θ(xi,yi)=αi
1≤i≤r

h




r

j=1

p
xj
j




r

j=1

µψ

p
xj
j


.
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Since µψ (pα) = 0 if pα is not ψ-primitive, in (4.51) we can assume that each
xi = 0 or βi for i = 1 , 2 , . . . r. Hence from (4.50), we obtain

L(µψ) (pα1
1 pα2

2 . . . pαrr ) =

=
r

j=1



θ(xj ,yj)=αj

h

p
xj
j


µψ

p
xj
j

 
θ(xi,yi)=αi

1≤i≤r
i=j

µψ




r
k=1
k =j

pxkk


 =

=
r

j=1



θ(xj ,yj)=αj

h

p
xj
j


µψ

p
xj
j

 r
i=1
i=j


 

θ(xi,yi)=αi

µψ (pxii )


 =

= 0,

since for α > 0 , 

θ(a,b)=α

µψ (pa) = 0.

µψ = 1−1 and L is a homomorphism, therefore

(4.52) L(µψ) = L(1−1) = −L(1).

Now (4.26) follows from (4.52), (4.48) and (4.49). The induction is complete.
Hence h is additive.

We now prove that h is ψ-additive. Fix a prime p and a positive integer
α. Let

Sp,α = {0 < a1 < a2 < . . . < ar = α} .
Following the discussion in Example 3.3, to prove that h is ψ-additive, it is
enough to show that

(4.53) h (pα) = rh (pa1) .

In fact we prove that

(4.54) h (pak) = kh (pa1)

for 1 ≤ k ≤ r. From this (4.53) follows by taking k = r.
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Clearly (4.54) is true when k = 1. We assume (4.54) for 1 ≤ k < t where
t ≤ r. We have

(4.55)

L(µψ) (pat) =


ψ(x,y)=pat

µψ(x)h(x) =

=


θ(u,v)=at

µψ (pu)h (pu) =

=


u∈Sp,at

µψ (pu)h (pu) =

= −h (pa1) .

On the other hand,

(4.56)

L(1) (pat) =


ψ(x,y)=pat

h(x)µψ(y) =

=


θ(u,v)=at

h (pu)µψ (pv) =

= h (pat)− h (pat−1) =

= h (pat)− (t− 1)h (pa1) .

Evaluating both sides of (4.52) at pat , and making use of (4.54), (4.55), we
obtain that h (pat) = th (pa1) . This completes the proof of Theorem 4.1.

In connection with Theorem 4.1 we note that ψ that the condition that ψ
is an L-N-convolution is only a sufficient condition but not a necessary one.

Indeed, let

F1 = {f ∈ A : f(1) = 1}, F0 = {f ∈ A : f(1) = 0}

and let β be a basic sequence (see Example 3.4). Let T = β and ψ(x, y) = xy
on T. Let h ∈ A with h(1) = 0 and L be defined as in (1.13) and (1.14). If
L : (P , ψ) → (A1,+) is a homomorphism then L is also a homomorphism
from (F1, ψ) to (F0,+); now, a result of K.P.R. Sastry and P. Suvarna Kumari
(Characterization of certain homomorphisms on groups of arithmetic functions,
Bull. Calcutta Math. Soc., 90 (5) (1998), 319-324) extended to complex-
valued functions, implies that h is ψ − additive. If L : (P , ψ) → (A1,+) is
an injection, by using the same proof as in (a) of Theorem 4.1, it follows that
h(n) = 0 for n > 1. Thus Theorem 4.1 is valid when ψ is a basic convolution. If
β = {(1, n), (n, 1) : n ∈ Z}, then the corresponding basic convolution ψ (T = β
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and ψ(x, y) = xy on T ) is not a multiplicativity preserving convolution and
hence is not an L-N-convolution. Also, for each prime p, if

πp : {0, 2, 3} ; {0, 4, 5} ; {0, 6} ; {0, 7} ; {0, 8}; ....

then the corresponding ψ convolution (see Theorem 2.2) is an L-N convolution
but not a basic convolution since ψ(x, y) = xy for at least one pair (x, y) ∈ T.
For instance ψ(p2, p2) = p3, for each prime p.
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