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Abstract. Let A; denote the set of arithmetic functions f with f(1) real
and P’ C A denote the set of arithmetic functions f with f(1) > 0. If ¢
denotes Lehmer’s convolution, placing mild conditions on ) it can be shown
that the ¥y —analogue of Rearick’s ([7]) logarithmic operator L : (P, 1¢) —

— (A1, +) defined by Lf(1) = log f(1) and Lf(n) = (fhpf~1)(n), if
n > 1, where h is any ®¥—additive function with h(n) # 0 for all n > 1,
is a group isomorphism. In this paper we prove the converse when 1 is a
Lehmer-Narkiewicz convolution.

1. Introduction

An arithmetic function is a complex-valued function defined on the set of
positive integers ZT. The set of arithmetic functions will be denoted by A.

The classical Dirichlet convolution denoted by D is defined by

(1.1) (f Dg)(n)=>_ f(d)g(n/d),

d|n
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for f,g € A and n € Z; the sum on the right hand side of (1.1) is taken over
all positive divisors d of n.

Let A; denote the set of arithmetic functions f with f(1) real and
(1.2) P ={feA; : f(1)>0}.

It is well-known that an arithmetic function f which is not identically zero is
said to be multiplicative if f(mn) = f(m)f(n) for all m ,n € Z* with (m,n) =
= 1; here, as usual, the symbol (a, b) denotes the greatest common divisor of a
and b. The set of multiplicative functions will be denoted by M.

In 1968, David Rearick (cf. [7], Theorem 9) among other things proved
that the groups (P, D), (A1, +) and (M, D) are all isomorphic. In fact, Rearick
(cf. [7], Theorems 2 and 3) showed that the logarithmic operator L : (P’, D) —
— (A1, 4) defined by

(1.3) Lf(1) =log f(1),

and for n > 1

(1.4) = f(d)f " (n/d)logd

dn

is an isomorphism, where f~! is the inverse of f with respect to the Dirichlet
convolution D so that

Y f@df(n/d) = e(n)

d|n

for all n € Z™, where

1, ifn=1,
(1.5) e(n) = {

0, ifn>1.

A divisor d of n is called a wunitary divisor (cf. [1]) and write d|n if
(d,n/d) = 1. The unitary convolution (cf. [1]) denoted by U is defined by

(1.6) (f U g)(n) = f(d)g(n/d),
d||ln
for f,g eAandneZ™".

The unitary convolution was originally introduced by R.Vaidyanathaswamy
(cf. [13]) under the name of ”compounding operation”.
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It is interesting to note that Rearick (cf. [7], Theorem 9) also observed
that the results mentioned above in the case of Dirichlet convolution can be
extended to the unitary convolution. That is, Rearick proved that the groups
(P',U), (A1,+) and (M, U) are isomorphic.

As in the case of Dirichlet convolution, Rearick (cf. [7]) proved that the
logarithmic operator L : (P',U) — (Ay,+) defined by

(1.7) Lf(1) =log f(1),
and for n > 1,

(1.8) =" f(d)f " (n/d)logd

d||ln

is an isomorphism, where f~! is the inverse of f with respect to the unitary

convolution U so that
S F @) (n/d) = e(n)

d|ln

for all n € Z*, where e(n) is as given in (1.5).

Let W AT CZT xZ* and ¢y : T — Z* be a mapping satisfying the
following conditions :

(1.9)  For each n€Z", (zx,y) =n has a finite number of solutions.
(1.10) If (z,y) €T, then (y,z) € T and ¢(x,y) = ¥(y, x).

The statements " (z,y) € T, (¢Y(z,y),2) € T ”
(1.11) and "(y,z) € T, (x,¢¥(y,2)) € T 7 are equivalent; if one of these
conditions holds, we have ¥ (¢(z,y), z) = ¥(x, ¥(y, 2)).

If f,g € A, then the y-product of f and g denoted by fivg € A is defined
by

(1.12) (fog)n)= > fl=

P(z,y)=n

for all n € ZT. The binary operation ¢ in (1.12) is due to D.H. Lehmer [3]. Tt
is easily seen that (A, +,1) is a commutative ring (cf. [3]).
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Clearly, the Dirichlet and unitary convolutions arise as special cases of the
h-convolution. Indeed, let ¢(x,y) = zy for all (x,y) € T. ¥ T = ZT x ZT
then v in (1.12) reduces to the Dirichlet convolution. If T' = {(x,y) € ZT x
xZT : (z,y) = 1}, then 9 reduces to the unitary convolution [1]. More

generally, if T'= |J {(d,n/d) : d € A(n)}, where A is Narkiewicz’s convolution
n=1

[4], then v reduces to the A-convolution. Thus the binary operation in (1.12)
is more general than Narkiewicz’s A-convolution.

An arithmetic function A is said to be additive if h(mn) = h(m) + h(n)
whenever (m,n) = 1; h is said to be completely additive if h(mn) = h(m) +
h(n) for all m,n € Z*. It is easily seen that L : (P, D) — (A, +) remains
isomorphism if logd in (1.4) is replaced by h(d) where h € A is completely
additive and non-zero on Z* — {1}. Similarly, L : (P',U) — (A1, +) remains
isomorphism if logd in (1.8) is replaced by h(d) where h € A is additive and
non-zero on Z* — {1}.

h € A is said to be t-additive if ¢ satisfies conditions (1.10) and (1.11),
and h (¥(m,n)) = h(m) + h(n), for all (m,n) € T.

If h is a ¥—additive function, under mild additional conditions on %, it
is easy to observe (see §3 for precise statements) that L : (P’,¢) — (Ay,+)
defined by

(1.13) Lf(1) =log f(1),

and if n > 1,

(1.14) Lf(n)= > [f@)f (y)h(z)

Y(z,y)=n

is a homomorphism, where f~! is the inverse of f with respect to 1-convolution.
Further if h(n) # 0 for all n > 1, then L is an isomorphism.

The main purpose of this paper is to prove that (see Theorem 4.1) if 1)
is a Lehmer-Narkiewicz convolution (for undefined notions in this section, see
§2), L in (1.13)-(1.14) is an isomorphism, h € A and h(1) = 0, then h must be
a tp-additive function which is non-zero on Z* — {1}.

In §2, we develop preliminaries.
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2. Preliminaries

The following results (Lemmas 2.1 and 2.2) describe necessary and suffi-
cient conditions concerning the existence of unity and inverses in (A, +, ).

Lemma 2.1. (cf. [9], Theorem 2.2). Let ¢ satisfy (1.9) - (1.12) implying
that (A, +,1) is a commutative ring. Let 1 (x,y) > max{x,y} for allxz,y € T.
Then (A, +,1) possesses the unity if and only if for each k € ZT, ¢(z, k) =k
has a solution. In such a case if g stands for the unity, then for each k € Z+,

1= > g(x), if gk k) =k,
(2.1) g(k) = v R=k,
0, if vk, k) # k.

Remark 2.1. It has been established by J.L. Nicolas and V. Sitaramaiah
(cf. [5], Theorem 3.1) that if (A, +,) is a commutative ring then it possesses
unity if and only if for each k € Z*, 4 (z, k) = k has a solution.

Lemma 2.2. (cf. [8], also see [10], Remark 1.1). Let ¢ satisfy (1.9) -
(1.12) and ¥ (z,y) > max{z,y} for all z,y € T. For each k € ZT, let the
equation ¥(x, k) = k have a solution so that the unity exists in (A, +,1). Let
g denote the unity. Then f € A is invertible with respect to 1 if and only if

Spk)E 3T fx) #£0,

Y(@,k)=k

for all k € Z%. In such a case, this inverse denoted by f~'(k) can be computed
by

O

and for k > 1,

FTHR) = (Sp®) T gk = D0 f@)f M)

W(w,y)=k
y<k

Remark 2.2. If ¢ satisfies (1.9) - (1.12) and ¥(1,k) =k for all k € ZT,
then the function e defined in (1.5) is the unity in the ring (A, +, ). Further,
if Y(x,y) > max{x,y} for all x,y € T and for each k € Z*, ¢(z,k) = k if and
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only if x = 1, by Lemma 2.2, it follows that f € A is invertible with respect to
¥ if and only if f(1) # 0.

Definition 2.1. If ¢ satisfies (1.9) - (1.12), then ¢ is said to be
multiplicativity preserving if f g is multiplicative whenever f and g are (see
[10]).

The following results (Lemmas 2.3 and 2.4) give a characterization of

multiplicativity preserving ¥-functions which are onto:

Lemma 2.3. (cf. [11], Theorem 3.1) Suppose that the binary operation
W oin (1.12) is multiplicativity preserving and for each k € Z7, the equation

T T
Y(x, k) =k has a solution. Letx = [] pi andy = [[ p;* ., where py,p2,...,pr
i=1 i=1

are distinct primes, «; and 3; are non-negative integers. Then we have

(a) (z,y) € T if and only if(p?i,pfi) eT fori=1,2,...,r.
(b) If (z,y) € T then

. 0p,; (ci,Bi
(2.2) Y(z,y) = pr”( )

i=1

where O, (a, B) is a non-negative integer satisfying the following properties:

(i) 0,(v, B) is a non-negative integer defined for non-negative integers o, 3
such that (p®,p®) € T.

(i1) For each integer v > 0, 0,(a, B) = v has a finite number of solutions.

(i) 0,(cv, B) = 0 if and only if « = = 0.

(iv) Oyl B) = 0 (8, ).

(v) For each v > 0, 8,(a,v) =~ has a solution.

(vi) For non-negative integers «, 3, v and for any prime p, the statements
“pP,p") T, (p*,p? BNy e T” and 7(p*, p°) € T and (p%(*P) p7) € T” are
equivalent; if one of these conditions holds, we have

gp(av 0[’(577)) - 910(01’(0‘35)7’7)'

Lemma 2.4. (cf. [11], Theorem 3.2) Let T C Z* x Z* be such that

(a) (z,y) € T if and only if (y,z) € T.

(b) If x and y are given as in Lemma 2.3 then (x,y) € T if and only if
P, PP eT fori=1,2,...,r.

Further, for each prime p and non-negative integers «, such that
(p®,p?) €T, let 0,(c, B) be a non-negative integer satisfying (i) - (vi) of Lemma
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2.8. If for (z,y) € T, ¥(x,y) is defined by (2.2), then o is mulitiplicativity
preserving and for each k € Z, (x, k) = k has a solution.

Lemma 2.5. (cf. [11], Theorem 3.3) Let ¢ be given as in Lemma 2.4 and
Y(x,y) > max{xz,y} for all (x,y) € T. If M denotes the set of all multiplicative
functions which are invertible with respect to v then (M,v) is a commutative
group in which the function g defined in (2.1) is the identity.

Remark 2.3. For ¢ and 6, given in Lemma 2.4, we have that ¥ (z,y) >
> max{x,y} for all (z,y) € T is equivalent to saying that 0,(c, §) > max{«, 3}
for all non-negative integers o and 3 such that (p®,p®) € T. In such a case,
it is clear that ¥ (x,y) = n implies that x|n and y|n; it may also be noted that
if v(1,n) =n for all n € Z*, then (z,y) = zy whenever (z,y) =1 (see also
[10], Lemmas 2.1 and 2.2) and 6,(0,a) = « for all non-negative integers c.

Definition 2.2. (see [12]) Let v be multiplicativity preserving with
Y(x,y) > max{z, y} for all (z,y) € T and ¢(1,k) =k forallk € Z". Let T and
0, be as in Lemma 2.4. Then 1 is called a Lehmer-Narkiewicz convolution or
simply an L-N convolution if 6, satisfies the following conditions for all primes

p:

(1) (Op(a,B) = 0p(a, 7)) implies that (5 =),

a=0,(v,c) for some ¢ > 0,
(13)  (Op(c, B) = Op(v,9)) implies that
or f=0,(6,d) for somed > 0.

Definition 2.3. (see Narkiewicz [4]) A binary operation B in A is called
a regular convolution if the following conditions hold:

(i) The triple (F',+,B) is a commutative ring with unity (here ' + ’
denotes the usual point-wise addition).

(ii) B is multiplicativity preserving; that is f B g are multiplicative when-
ever f,g € A are multiplicative.

(iii) The function 1 € A defined by 1(n) =1 for all n € Z* has an inverse
up with respect to B and pp is 0 or -1 at prime powers.

Definition 2.4. (cf. [12]) Let ¢ satisfy (1.9) - (1.12). The binary
operation 1 in (1.12) is called a regular ¢»—convolution if it satisfies Definition
2.3.

Remark 2.4. Let ¢ satisfy (1.9) - (1.12) and ¢ (z,y) > max{z,y}, for all
(x,y) € T. It has recently been established (cf. [6], Theorem 3.1) that v is
regular convolution if and only if ¢ is a Lehmer-Narkiewicz convolution.
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In what follows ¢ denotes a Lehmer-Narkiewicz convolution. For conve-
nience, we now enlist the properties of these convolution (cf. [12] and [6]):

Theorem 2.1. We have

(1) The triple (A,+,) is a commutative ring with unity e given by (1.5).

(II) Y(x,y) > max{x,y}, for all (z,y) € T.

(III) For each k € Z% ,4)(x, k) = k if and only if x = 1.

(IV) (x, k) = (x, ) implies k = £.

(V) f € A is invertible with respect to v if and only if f(1) # 0.

(VI) 4 is multiplicativity preserving, that is, whenever f,g € A are
multiplicative, then so is f g.

(VII) The set of multiplicative functions forms a group with respect to
and with e as identity. In particular, if f is multiplicative then the inverse of
f with respect to 1, namely, f~1 is also multiplicative.

(VIII) The v-analogue of the Mébius function denoted by ., is the inverse
of the constant function 1 and .y is multiplicative. Clearly

(2.4) Y nula) =e(n),

Y(z,y)=n
for allm € Z+.
(IX) For each prime p and non-negative integers o and 3 with (pa,pﬁ) €

€T let Op(a, B) = 0(cv, B) be the non-negative integer given in Lemma 2.3. By
taking n = p® > 1 in (2.4), we obtain

(2.5) > () =0.

0(a,b)=a

(X) For each prime p and any non-negative integer o let Spo C
C (ZTU{0}) x (Z*U{0}) be defined by

(2.6) Sp.oa =Sa ={(a,b) :0(a,b) =a}.
(a) If
(2.7 Sa={0=ay<a1<ax<...<ap=a}l,

then fori=1,2,... k

Sai Z{ao,al,... ,ai}.
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(b) p* is called —primitive if So = {0, a}. From (a) it is clear that p™
is Y—primitive and p* is not Y—primitive for i =2,3,... k, if k > 2.

(¢) The least positive integer in S, is denoted by Ty (p®). The rank of p*
denoted by rp(a) or simply by r(a) is the number of elements in S, — {0}.
Clearly, a1 = 1y(p®) and r(a;) =1 fori=1,2,... k. Also,

oy ) =1, if p® is -primitive,
(2:8) o (%) = {0, otherwise.
In particular,
(2.9) py(p™) = —1 and py (p™') = 0,

fori=2,3,... k.

(d) 0(a, B) = O(ct,y) implies = .

(e) O(x, ) = « if and only if x = 0.

(f) If ai,ajand a;yj € Sa, then 0(a;,a;) = a;4; (i and j need not be
distinct).

(g9) If 0 < £ < k then the solutions of 0(z,y) = a¢ are precisely {(a;,a;) :
i+j=41ij>0.}

The following theorem characterizes the Lehmer-Narkiewicz convolutions
(or simply L-N convolutions ) in a very effective way:

Theorem 2.2. (cf. [12], Corollary 4.1) For each prime p, let m, denote a
class of subsets of non-negative integers such that

(i) the union of all members of m, is the set of non-negative integers;
(i1) each member of m, contains zero;
(111) no two members of m, contain a positive integer in common.

If S € mp and S = {ap,a1,a2,...} with 0 = ap < a1 < az < ---, we define
Op(ai,a;) = aiyj, if a;, aj and a;+; € S (i and j need not be distinct). If
and T are as given in Lemma 2.4 then ¢ is an L-N convolution and is also a
reqular convolution. Also, every L-N convolution can be obtained in this way.

For each prime p, if m, : {0,2,3};{0,4,5};{0,6};{0,7};{0,8};.... then
the corresponding 1 convolution is an L-N convolution, but not a regular
Narkiewicz convolution [4].
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3. Y-analogues of some results of Rearick

We recall that if ¢ satisfies the conditions (1.10) and (1.11) then h € A is
called ¢—additive if h (¢(x,y)) = h(xz) + h(y), for all (z,y) € T. It is clear that
h(1) =0if ¢(1,1) =1 and h is y-additive.

The following results (Theorems 3.1-3.4) can be established on lines similar
to Theorems 1 to 4 in Rearick [7]:

Theorem 3.1. Let ¢ satisfy (1.9)-(1.12) and ¥ (z,y) > max{z,y}, for
all (z,y) € T. Further suppose that for each k € Z 4(x, k) = k if and only if
x = 1. Let h € A be Y—additive and L : (P',¢) — (A1, +) be the logarithmic
operator gwen in (1.13) - (1.14). Then L is a homomorphism.

Theorem 3.2. (under the hypothesis of Theorem 3.1) If h(n) # 0, for all
n > 1, then L is an isomorphism.

Theorem 3.3. (under the hypothesis of Theorem 3.2) Let 1 be multi-
plicativity preserving. Then f € P’ is multiplicative if and only if Lf(n) =0,
whenever n is not a prime power.

Theorem 3.4. (under the hypothesis of Theorem 3.3) The groups (M, )
and (A1, +) are isomorphic.

Remark 3.1. Suppose that ¢ satisfies (1.9)-(1.12) and ¢ (z,y) >
max{xz,y} for all (z,y) € T. It can be shown that a necessary and sufficient
condition for every f € P’ is invertible with respect to v is that for each k € ZT,
Y(x,k) = k if and only if = 1. Since the logarithmic operator defined in
(1.13) and (1.14) involves f~! for f € P’, this condition imposed in Theorem
3.1 is justified.

Remark 3.2. If ¢ is multiplicativity preserving, 1(1,k) = k for all k €
€ Z", and ¢(z,y) > max{z,y} for all (z,y) € T, then by Remark 2.3 we
have ¢(z,y) = zy whenever (z,y) = 1. If § = 0, is as given in Lemma 2.3,
then an additive arithmetic function h is i-additive if and only if h (pe(o‘ﬁ)) =
=h(p*)+h (pﬁ) , for all non-negative integers o and /3 such that (p®,p?) € T.

Example 3.1. Let T = ZT x Z* and let r > 0 be an integer. For each
prime p, let 8,(, 5) = o + 5 + raf, for non-negative integers o and §. If =

k k
[Ipi" and y =[] piﬁi, where p1,ps2,...,pr are distinct primes, «; and 3; are
i=1 i=1

k
non-negative integers for i = 1,2,... , k, we define ¢, (x,y) = []| p?i+'6i+raiﬁi.
i=1

Then 1, satisfies the hypothesis of Theorems 3.1 - 3.4. Let # = 6,. We note
that 0(«, 3) = n if and only if rn +1 = (ra+ 1)(r@ + 1). For a completely
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additive function g define the additive function h at prime powers p" > 1 by
h(p™) = g(rn +1). Then h (p” @) = h(p™) 4+ h (p?), for all non-negative
integers o and 3. Hence by Remark 3.2, h is ¢, additive. If g(x) > 0 for all
x > 1, it follows that h(n) > 0 for n > 1. One can take g(n) = Q(n) or logn,
where €2(n) is the total number of prime factors of n if n > 1 and Q(1) = 0. It
follows that the groups (P’,v,.), (M, ;) and (A;,+) are isomorphic. Clearly
g is the Dirichlet convolution; ¢ is due to D.H. Lehmer [3] and ¢, for r > 2
is due to V. Sitaramaiah and M.V. Subbarao [10]. It is not difficult to see that
1, is not a regular convolution for r > 2.

Example 3.2. Let T = Z" X Z" and ¢(z,y) = x+y—1 for all (z,y) € T.
It is not difficult to see that h € A is ¢p—additive if and only if h(n) = (n—1)h(2)
for all n > 1. In particular, if A(2) # 0 then h(n) # 0 for all n > 2. Hence 1
satisfies Theorems 3.1 and 3.2 so the groups (P’,v) and (A1, +) are isomorphic.
Here, ¢ is not multiplicativity preserving.

Example 3.3. Let ¢ be an L-N-convolution. On lines similar to that
of Theorem 4.1 in [6], it can be shown that an additive arithmetic function
h is t-additive if and only if h(p®) = r(a)h (p™) where a1 = 74 (p®) and
r(a) = |Sp,a —{0}]. It is clear that one can find a 1-additive function h not
vanishing on Z* —{1}. For example the additive function i defined at any prime
power p® > 1 by h (p®) = r(«) serves the purpose. Hence Theorems 3.1-3.4 are
applicable so the groups (P’,1), (A1,+) and (M, 1)) are isomorphic. We may
note that Dirichlet and unitary convolutions are L-N-convolutions.

Example 3.4. Let 3 C ZT x Z*. 3 is said to be a basic sequence if (i)
(a,b) € § implies that (b,a) € B; (i) (a,bc) € 3 if and only if (a,b) and (a,c)
are in 3; (i17) (1,n) € B for every n € Z*. If we take T' = 8 and ¥(z,y) = xy
for all (z,y) € T, then it is easily seen that ¢ satisfies Theorems 3.1 and 3.2.
If h(n) = logn for all n € ZT, then h is v—additive. The 1)-convolution in this
example reduces to the basic convolution introduced by Smith [2]. It follows
by Theorems 3.1 and 3.2 that the groups (P’, %) and (A, +) are isomorphic;
these results were originally due to Smith (cf. [2], Theorem 2).

4. A characterization

Throughout this section we assume that 1 is a Lehmer-Narkiewicz con-
volution and L is the logarithmic operator defined in (1.13) and (1.14). We
make use of the multiplicativity properties of the functions dy = 191, 1y,

and d;l = [y Y ptyp . We recall that 1 denotes the constant function 1 and fuy
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denotes the inverse of the function 1 with respect to v, the ¥-analogue of the
Mbobius function p. We shall write L(f) instead of Lf.

We begin with

Lemma 4.1. Suppose h is an arithmetic function. If pi™*,p5*...,pd are
any r distinct ¥ primitive elements, then

(4.1) L(dy) (p7'P5* .. .py7) =

T T T
= 2 e (1w )t (ITof |0 | 1107 | =
Jj=1 j=1 j=1

0(z;,y;)=ay
1<i<r

r—1
=230t > R (e e ) + (SR

k=0 1<i1<i0<...<tp_p<r

Proof. We shall prove (4.1) by induction on r. If r = 1,

S dyef)dy (8 h(p) =
‘9(3317?!1)_@1
=dy(1)dy (P )h(1) + dy (p )dy, ' (DA(pS) =
=2{h(p$") — h(1)}

since p{"* is ¢-primitive. Thus the identity in (4.1) holds good when r = 1. We
assume (4.1) for some positive integer r. Suppose that pi™*, p32..., por, pf_ﬁl are
any r + 1 distinct ¢ primitive elements. If ¥ denotes the sum on the left hand

side of (4.1) for r 4+ 1, we obtain

D= ) dy H ) ayt Hpjyj x
=

6(z;,y;)=a;
1<i<r

(4.1)

r+1
X > dy (py 5 )dy (ol )b Hp =

9(7«'7‘+1 sYr+1 ):a7‘+1

T T
= > dy ([ IIp7 )ast | TIPP | %
j=1 j=1

0(z;,y;)=o;
1<i<r

(4.2)

x ¢ —2h ﬁpj-f +2h pr'+1Hp7 =

=2{%; — X5},



Rearick’s isomorphism and a characterization of 1-additive functions 195

where
T T
z; | -1 j .
43)  mi= > dy | []w gt (T2 )0 ?ﬁfﬂp
0(z;,y;)=0ay j=1 j=1
1<i<r
and

44) = > dy ([Iwy |agt | TI2Y |0 | T1 25
j=1 Jj=1 J=1

0(zi,y;)=0c;
1<i<r

For non-negative integers =1, %o, ..., x, if we define

gpi*ps* - pr7) = h(pi'p5? - P,
noting that g(1) = h(p,;"), we obtain from (4.1),

T T
(4.5) Y, = Z dy Hp;va' d,' Hp?j (p7'p5?...pEr) =
j=1 =1

0(xi,y;)=a;

1<i<r
r—1
YOS R (e ) + R ()
k=0 1<ip<io<..<ip_p<r
Substituting (4.5) and (4.1) into (4.2), we obtain
(4.6) N =2 (8, + (=1)"h(1)),
where
r—1 )
Sa=) (-1)F > h (p“” -~~pifﬂi;’“p?ff) +
k=0 1< <ig <o <y <1
(4.7)

i Qi q
+ (=1)"h (pi") Z > h(pzl---pir+fikk)~

k=01<i1 <0< .. <ty <T
In view of (4.6), (4.7) and considering the right hand side of (4.1) when r is
replaced by r 4 1, it remains to prove that

T

(4.8)  Ey=Y (-1F 3 h (pz” .‘.pzttgﬂ .

k=0 1<y <in <. i1 <r+1
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Let X5 denote the sum on the right hand side of (4.8). Splitting the inner sum
in ¥5 according to ¢y41- =7+ 1 or 4,41 < r we obtain

r

a; Yip g
N D D 1 R S R

k=0 1<i) <o <<y <7

. k a; Qgpyq o
+Y ) Yo a(elemin) =
k=0

1<y <ig < o<1 —p <77

=X + X7,

say. Consider the sum Xg. In this sum the term corresponding to k = r is
(=1)"h (p;;F") . Hence

(4.10)
r—1
a; QXip o iy r
D=3 (-0F 3 (e el ) (DR G
k=0 1<i1<i9<...<tp_ <71
In the sum X7, the inner sum is empty when & = 0. Hence by using the

substitution £ < k — 1, we see that
k a; Qg
(@11)  Zr=-Y (-1 3 n(pnt o).
k=0 1<ii<io<...<ip_p<r

Putting (4.10) and (4.11) into (4.9), we obtain (4.8). The induction is complete.
Hence Lemma 4.1 follows.

Lemma 4.2. (under the hypothesis of Lemma 4.1) We have

L(1) (py"pe* .. .py7) =

- (I ) e (1) -
j=1 j=1

(4.12) 9(7119%)?%
r—1
a; Qg r
=SS0t () + R,
k=0 1<i1 << .. <t <1

Proof. We shall prove Lemma 4.2 by induction on r. The identity in
(4.12) is true when r = 1. We assume (4.12) for some positive integer r. We
consider the left hand side of (4.12) when r is replaced by r + 1. Suppose that
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PIt PSR, ., por ,prll are any r + 1 distinct -primitive elements. Since piy, is

multiplicative, we have

(4.13) L(1) (pSps? ... p2rpiyyt) =
r+1 r+1
= Z h Hp;”a [y Hpgy _
O(zq,y;)=ay j=1 j=1
1<i<r+1
r r+1
= 2w |1lpy > IIw | me () =
dip=es \j=1l ) O@rsye)=ara 5=l

s T
DO | Pl RS B | B0 R Poney Hp =
j=1 j=1

0(z;,y;)=ay
1<i<r

—Yg + 2o,

where

(4.14) Ss= > b ]p7 | e [TV ).
j=1 j=1

0(x; y;)=oy
1<i<r

and

(4.15) So= Y ?erp] po | TT 27
j=1

0(z;,u;)=ay
1<i<r

We can directly apply our induction hypothesis to the sum .

As in the proof of Lemma 4.1 let g (H pj ) =h <p:‘f11 11 pfj> . We
j=1

replace h by ¢ in the sum g and apply (4.12). Substituting these results in
(4.13), we obtain

(4.16) L(1) (P52 . p2rpyi i) = Sa + (=1)"F1h(1),

where ¥4 is given in (4.7). By (4.8), the left hand side of (4.16) is precisely
the left hand side of (4.12) when r is replaced by r + 1. This completes the
induction and the proof of Lemma 4.2.
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Definition 4.1. Let h be an arithmetic function with A(1) = 0. Let
t be a fixed positive integer. We say that h is additive of order t, if

t t
h (H pf) = > h(p;"), for all distinct primes p1,po, ..., p; and non-negative
i=1 i=1
integers 1, s, ...,2; such that pf" is ¢-primitive if z; > 0.

Lemma 4.3. Let v > 2 and let h be an additive arithmetic function of

order v — 1. If p{*, p52....p& are any 1 distinct ¢ primitive elements, then
(4.17)

r—1

L(1) (7952 . pp) = Y (= 1) > Bt ) =

k=0 1<i1 <0< .. <ip_p<r
r r
_ g _ j
=n | []# > n@).
Jj=1 Jj=1

Proof. The first equality in (4.17) is (4.12) since h(1) = 0. For each integer
t > 2, let P(t) denote the proposition that (4.17) holds (when r is replaced by
t) for any additive arithmetic function h of order ¢t — 1. Clearly P(2) is true.
We assume P(t) for 2 < t < r. Let h be an additive function of order r. We
have

T

_ k Qg Xipp1ok | _

Y= E (-1) E h (pil e Piy ) =
k=0 1< <ip< . <dpy1—p <r+1

T

k Qg Vi T
=) (-1) Z h (pl-l ! ...pipk"pfﬁl) +

k=0 1<ii<io<..<ip_p<r

" ; Qi g
LD ICLED DI Y (G Sess b
k=0

1<y <ig<...<ipp1—p <1

(4.18)

= Y10 + Y11,

say. The inner sum of 17 is empty for & = 0. Also, the term corresponding to
kE=1in Xy is —h(p{'p3?...p%"). Hence

(4.19) Y=
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Qo . o iy
:—h(p11p22...pgT)+Z(—1)k Z h(pill ) +1 k) _
k=2

gk
1<iy <io<...<bpp1-p <7
r—1
— 1 02 QU k Qg R
= —h (s ptn) = S (1) S n(pi ) =
k=1 1<ii<io<...<ip_p<r

<
—

D (D > (ot ) =

k=0 1<y <in<...<ip_p<r

== oh(IIP7 ) =22 @) ¢ =0,
j=1 j=1

by our induction hypothesis.

r+1 )
In X1, the term corresponding to k = 0 is h (H pj%> . Also, since h is
i=1

additive function of order r, we obtain

(4.20)
r+1

Sw=h|]]ry |+
=1

+ i(—l)k 3 {h (p‘;‘jl ...pZijj) +h( “"“)} -
k=1

pr+1
1<iy <io<. .. <bp_p <7
r+1 T
_ aj k o i, g,
=h Hpj + E (-1) E h(pi1 N )—I—
Jj=1 k=1 1<i1 <9< <tp_p <71

+h (i) Y (1) > 1=
k=1 1<y <ig<n. < g <7

r+1
=h H Py’ | + T2+ b (pr) Tus,
j=1

say. The inner sum in X5 is empty when k& = r. Further, the term correspond-

ingtok=0in X5 is h (H p?j> . Hence by (4.17),
j=1

(4.21) Siz=—> h(p’).
j=1
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From (4.20) we have
(4.22)

s :i(_l)k > 1=i(—1)k(rrk) = 14+(1-1)" =-1.

k=1 1<i) <o <. .. <bp_p <1 k=1

Lemma 4.3 now follows from (4.22), (4.21), (4.20), (4.19) and (4.18).

Lemma 4.4. Assume that the logarithmic operator L : (P',¢) — (A1, +)
defined in (1.13)-(1.14) is a homomorphism and let h € A and h(1) = 0. If
Pyt et are any r distinct Y—primitive elements, then

(4.23) AR EDNACOE
j=1 j=1

Proof. Since L is a homomorphism we have
(4.24) L(dy) =L(14¢1)=L(1)+ L(1) = 2L(1).

We can assume that r > 2. Since h(1) = 0, by Lemmas 4.1, 4.2 and (4.24), we
obtain

(4.25) S (- 3 h@ﬁ“”4ﬁfj):0.

k=0 1<i1 <ia<...<ip_p <7

We now show that h is additive of order ¢ for 1 < t < r and this proves
(4.23). Clearly h is additive of order 1. Suppose that h is additive of order
r — 1. It follows from Lemma 4.3 and (4.25) that (4.23) holds. This completes
the induction and the proof of Lemma 4.4.

Theorem 4.1. Let h € A and h(1) = 0. Then we have the following :
(a) If L : (P',¢) — (A1,4) is a homomorphism, then h is v-additive.
(b) If L is an injection, then h(n) # 0 for all n > 1.

Proof. The proof of (b) is not difficult. Suppose that h(k) = 0 for some
k > 1. We define f € P’ by

0, ifn#k,
-1
1, ifn=1ork.
Since h(1) = 0, it follows that f(x)h(z) =0 for all z € ZT. Hence

(Lf)(1) =log f(1) =0,
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and
(LHM) = > fla)h@)f (y) =0,

¥(z,y)=n

for all n > 1. Thus Lf = 0. Since Le = 0, where e is as given in (1.5) and L
is an injection, we must have f = e. But f # e. This contradiction proves that
h(n) # 0 for all n > 1. Hence (b) follows.

Proof of (a). We assume that L is a homomorphism. First we prove that
h is additive. For each non-negative integer m, let P(m) denote the proposition
that

(4.26) h (Hp?i> = > hw),

whenever py,ps,...,p, are r distinct primes where r > 2 and a1, as,...q;
are non-negative integers with oy + s + ... + o, = m.

Clearly P(0) is true. We assume P(t) for 0 < ¢ < m. We prove P(m). Let
a1,Q9,...,q,. be non-negative integers such that oy +as+. ..+, = m. First
we prove that

I
(4.27) ¥ = > 1w @) ] =o.
z1+Tot.. Frr<ajtagt...fop j=1
0(wi,yi)=c;
1<i<r
zp<apr
Indeed,
(4.28) S= Y () SiT. S,
0y ar) e
where for j=1,2,... ,r—1,
(4.29) Y= Z p (D7)
x5 <'mj
Olzjvj)=ej
and

Jj—1 r—1

(4.30) mi =Y (ar—2k)+ Y g+ (ar — 7).

k=1 k=j
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We show that ¥,_; = 0, from which (4.27) follows by (4.28). By (4.29) (j =
=r — 1) we have

(4.31) S = > py (/1)

Tp—1<Mp_1
(@ 1,ypr—1)=p_1

where

(g — ) + g + (0 — 24).
k=1

My—1

The conditions under the sum on the right hand side of (4.27) imply that
rp <ap fork=1,2,...,r and z, < .. Hence m,_1 > 0. Let

(4.32) Spr vy =Sar, ={0<a1<az<...ap=a,_1}.

In the sum >, _; given in (4.31) the possible choices of y,_1 are y,—; = 0 and
Yr—1 = a1 (for the other choices of yr_1, fy (pffll) = 0). For these choices of
yr—1 the corresponding choices of x,_1 are x,_1 = a1 < my_1and z,_1 =
= a1 < ap_1 < my_1. Hence in the sum X,_; both the choices, namely,
yr—1 = 0 and y,_1 = a; are admissible. Then

S =14 py (prty) =1-1=0,

since pyt | is ¢-primitive. Thus (4.27) follows.

We now prove that

(4.33) = > H py (p) | = -1

zidwot. . Frp<agtag+t...+an
O(x;,y;)=ay
1<i<r
Tp=ap

Let r = 2. We have

(4.34) Sh= >y (08 ey (05?)

z14ao<altas
0(zq1,y1)=ay
0(x2,y2)=ag
rg=ag

Let So, be as given in (4.32) (r = 2). In (4.34), the conditions zp =
= ag and 0(z2,y2) = ay imply that yo = 0. Hence

(4.35) Sh= Y e (pY).

xy <o
O(w1,y1)=0a1
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In the sum in (4.35), the possible choices of y; for which puy (p}')) # 0 are
y1 = 0 and ay. The choice y; = 0 is forbidden since this implies 1 = ;. The
choice y; = a7 implies that 1 = a;—1 < a; = 1. Hence y; = a; is admissible.
Then from (4.35), we obtain

2 = g (31) = 1.
Thus (4.33) is true when r = 2. We assume (4.33). We have

r+1
T = > [Lme 7)) =
j=1

2y tzot. . tertaapg <aytestotaptanyy
0(z,y3)=0;
1<i<r+1
Trp1=oryl

(4.36) =y (0)1) > ﬁwW)—

z1tzot... frxpr<aytagt...tap
0(xi,y;)=0y
1<i<r

T
_ Yj
- 2 e (7)) +
xz)Fxo+.. . trp<a]tagt...Ffap Jj=1
O0(x;,y;)=ay
1<i<r

Tr=agp

(4.37) + 3 [Lme @) | =

z1+zo+...trp<ajtagt...far
0(x;,y;)=c;
1<i<r
zp<op

(4.38) =—140=—1,

by our induction hypothesis and (4.27).
The passage from (4.36)-(4.38) also proves that

(4.39) > [Twe )] =1
j=1

z1tzot...trp<ajtagt...tap
0(x;,y;)=a;
1<i<r

We shall now evaluate L(1) (p7'p5?...p%"). We have

r r
s o= Y o (T T 62) -
(440) 0(zi,yi)=c; Jj=1 j=1

1<i<r

= 533 +’§:éﬂ
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where

z1teat..xp=ajtagt...ar

R 0 ) | U
j=1 j=1

0(x;,y;)=cy

(4.41) 1<i<r

=h ﬁp}” ,
j=1

since the conditions in the sum ¥} imply x; = «; and consequently y; = 0 for
7 =1,2,3,...,r; also,

(4.42) S = > h{TTe5 | T e 7))
z1tzot...xp<aytagt...ap j:1 j:1

0(x;,y;)=a;
1<i<r

The conditions under the sum ) are favourable to apply the induction
hypothesis (4.26). By doing so we obtain,

T

= > h(p%f[lw%):

j:l ) tzot+...xpr<aytagt...apr
O(zq,y)=ay

(4.43) 1<i<r

T
} : 7
Jj=1

say. We now evaluate ©/. The same procedure is applicable for the general
sum Y7. We have

r
"o_ 1 Yk
1= § h(P1)Hﬂw(pk)+
z1tegt...wp<ajtazt...ar k=1
O(zi,y;) =0y
1<i<r
ri=a

r
T Y\
+ > h(pt) [T e b)) =
z1tzot.zr<ajtagt...ap k=1
0(z;,y;)=a
1<i<r
z]<aj

(4.44)

:Zl + 227



Rearick’s isomorphism and a characterization of 1-additive functions 205

say. We have

S1=h(of) e (p9) > 1T e 1) =

zot...xp<agt..ap k=2
(4.45) 0(zs95) s
1<i<r

=—h (),

by (4.39). From (4.44), we have

(446) So = > h(pP) py (BY) > 11 e ) =0,

xy <ag zot...zp<a]—xz]tast...ar k=2
0(xy,y1)=0 0(x;, y;)=oy
1<i<r

since the inner sum vanishes as in the proof of (4.27).

It follows from (4.46), (4.45) and (4.44) that ¥/ = —h (p]!) . In a similar
way, we can show that X7 = —h (p?j) , for 5 =2,3,...,r. Hence from (4.43)
it follows that

(4.47) = — Z h(p§?).

Substituting the results in (4.47) and (4.41) into (4.40), we obtain

(4.48) L) (o ps® o) =h | [Tof7 | =D n(57)-
j=1 j=1

We now prove that for r > 2,
(4.49) L) (p5p5? ... p2") = 0.

Fori=1,2,... ,r, let 3 :m(p?").Sincepfi is ¢-primitive fori = 1,2 ... ,r,
by Lemma 4.4 and h(1) = 0, we have

(4.50) h (Hp?) = > hr),

if each z; = 0 or ;. We have

(451)  Llwy) 0ps*pp) = >0 b\ ITe5" | TLee (077)-
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Since py (p®) = 0 if p® is not ¢-primitive, in (4.51) we can assume that each
2;=0or B fori=1,2,...r. Hence from (4.50), we obtain

L(py) (p'po® .. .007) =

0(x;,y;)=0c;y
0(w;:95) tcier k.
]

Z > ) 7) S [T ] -

r

2_: h(pfj)uw(p?j)ﬂ Yo )| =

0(z;,y;)=0 z: 0(zi,yi)=a;

:0,

since for a > 0,

> @) =0.

0(a,b)=c

py =171 and L is a homomorphism, therefore
(4.52) Liuy) = L(17Y) = —L(1).

Now (4.26) follows from (4.52), (4.48) and (4.49). The induction is complete.
Hence h is additive.

We now prove that h is y-additive. Fix a prime p and a positive integer
a. Let
Spa=1{0<a1 <ay<...<ar=a}.

Following the discussion in Example 3.3, to prove that h is -additive, it is
enough to show that

(4.53) h(p®) =rh(p™).
In fact we prove that
(4.54) h (p®) = kh (p*)

for 1 < k <r. From this (4.53) follows by taking k = r.
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Clearly (4.54) is true when k& = 1. We assume (4.54) for 1 < k < t where
t < r. We have

Lipy) (0) = Y py(@)h(z) =

P(x,y)=p*t

> (@) h(p") =
(455) 0(u,v)=a

= Y @R =

UESp,ay

=—h(").

On the other hand,

LAY (™) = > h(@)ne(y) =
P(z,y)=p*t

(4.56) = Z h(p*) py (p°) =

0(u,v)=a¢
= (™)~ h() =
=h(@")—(t—1Dh(p").

Evaluating both sides of (4.52) at p®, and making use of (4.54), (4.55), we
obtain that h (p®) = th (p® ). This completes the proof of Theorem 4.1.

In connection with Theorem 4.1 we note that ¢ that the condition that
is an L-N-convolution is only a sufficient condition but not a necessary one.

Indeed, let

Fi={fehA: f(1)=1}, F={fchA: [f(1)=0}

and let 3 be a basic sequence (see Example 3.4). Let T'= 8 and ¢(z,y) = a2y
on T. Let h € A with h(1) = 0 and L be defined as in (1.13) and (1.14). If
L : (P',v) — (Ay,+) is a homomorphism then L is also a homomorphism
from (Fy,%) to (Fo,+); now, a result of K.P.R. Sastry and P. Suvarna Kumari
(Characterization of certain homomorphisms on groups of arithmetic functions,
Bull.  Calcutta Math. Soc., 90 (5) (1998), 319-324) extended to complex-
valued functions, implies that h is ¢ — additive. If L : (P',¢) — (Ay,+) is
an injection, by using the same proof as in (a) of Theorem 4.1, it follows that
h(n) # 0 for n > 1. Thus Theorem 4.1 is valid when ¢ is a basic convolution. If
8 ={(1,n),(n,1) : n € Z}, then the corresponding basic convolution ¢ (T' = 3
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and Y (z,y) = zy on T) is not a multiplicativity preserving convolution and
hence is not an L-N-convolution. Also, for each prime p, if

mp :{0,2,3};{0,4,5};{0,6};{0,7};{0,8}; ...

then the corresponding ¢ convolution (see Theorem 2.2) is an L-N convolution
but not a basic convolution since ¥ (x,y) # xy for at least one pair (x,y) € T.
For instance 9 (p?, p?) = p?, for each prime p.

1]
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