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Abstract. In this paper, we embed the additive arithmetical semigroup

in a probability space Ω := (βG, σ(Ā), δ̄) where βG denote the Stone-

Čech compactification of G. We show that every additive function g on

G, g(a) =


pka

g(pk) (a ∈ G), can be identified with a sum ḡ =

p
X̄p

of independent random variables on Ω. The main result will be that the

existence of the limit distribution of a real-valued additive function g is

equivalent to the a.e. convergence of ḡ.

1. Introduction

Let (G, ∂) be an additive arithmetical semigroup. By definition, G is a free
commutative semigroup with identity element 1, generated by a countable set
P of primes and admitting an integer valued degree mapping ∂ : G→ N ∪ {0}
with the properties
https://doi.org/10.71352/ac.38.161

https://doi.org/10.71352/ac.38.161


162 K.-H. Indlekofer and E. Kaya

(i) ∂(1) = 0 and ∂(p) > 0 for all p ∈ P ,
(ii) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,
(iii) the total number G(n) of elements a ∈ G of degree ∂(a) = n is finite for

each n ≥ 0.
Obviously, G(0) = 1 and G is countable. Let

π(n) := # {p ∈ P : ∂(p) = n}

denote the total number of primes of degree n in G. We obtain the identity, at
least in the formal sense,

Z(y) := 1 +
∞
n=1

G(n)yn =
∞
n=1

(1− yn)−π(n) .

In a monograph [9], Knopfmacher, motivated by earlier work of Fogels [3] on
polynomial rings and algebraic function fields, developed the concept of an
additive arithmetical semigroup satisfying the following axiom.

Axiom A#. There exist constants A > 0, q > 1 and ν with 0 ≤ ν < 1 (all
depending on G), such that

G(n) = Aqn +O(qνn), as n→∞.

If G satisfies Axiom A#, then the generating function

(1.1) Z(y) =
∞
n=0

G(n)yn,

is holomorphic in the disc |y| < q−ν up to a pole of order one at y = q−1, and
we get

Z(y) =
A

1− qy +H1(y),

where

H1(y) =
∞
n=0

rny
n

with
rn := G(n)−Aqn.

Putting
H(y) := A+ (1− qy)H1(y)
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gives

Z(y) =
H(y)
1− qy

with H(0) = 1 and H(q−1) = A. H and H1 are holomorphic for |y| < q−ν .
Z can be considered as the zeta-function associated with the semigroup

(G, ∂), and it has an Euler-product representation (cf. [9], Chapter 2):

Z(y) =
∞
n=1

(1− yn)−π(n), |y| < q−1.

Obviously

log
∞

m=1

(1− ym)−π(m) =

=
∞

m=1

π(m)
∞

j=1

j−1zjm =
∞

m=1

1
m



d|m
dπ(d)ym =

∞
m=1

λ(m)
m

ym,

where
λ(m) =



d|m
dπ(d)

denotes the von Mangoldt coefficients. Then, because of the Möbius inversion
formula

π(n) =
1
n



d|n
λ(d)µ

n
d


.

Defining the von Mangoldt function Λ : G→ R by

Λ(a) =




∂(p), if a is a prime power pr = 1,

0, otherwise,

we see
λ(n) =


a∈G

∂(a)=n

Λ(a)

and
∂(a) =


b∈G
b|a

Λ(b) (a ∈ G).
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Further

Λ#(y) :=
∞
n=1

λ(n)yn = y
Z (y)
Z(y)

.

Chapter 8 of [9] deals with a theorem called the abstract prime number
theorem:

If the additive arithmetical semigroup G satisfies Axiom A#, then

π(n) =
qn

n
+O


qn

nα


, n→∞,

or equivalently,

λ(n) = qn +O


qn

nα−1


, n→∞,

is true for any α > 1.

But this result is only valid if Z(−q−1) = 0.
In [8], Indlekofer, Manstavičius and Warlimont gave (in a more general

setting) much sharper results valid also in the case Z(−q−1) = 0. For instance,
if Z(−q−1) = 0 and Axiom A# holds, then there exists some θ, max{ 12 , v} <
< θ < 1 such that

λ(n)
qn

= 1− (−1)n +O

q(θ−1)n


.

In both cases, the Chebyshev inequality

λ(n) qn or equivalently π(n) qn

n

holds.

Let us move to the investigation of the mean-value properties of complex
valued multiplicative functions f̃ satisfying |f̃(a)| ≤ 1 for all a ∈ G. Indlekofer
and Manstavičius [7] proved analogues of the results of Delange, Wirsing and
Halász (in the case of multiplicative function on the natural numbers N) for
arithmetical semigroups satisfying Axiom A#.

Here, as in the classical case, an arithmetical function f̃ on G is called
additive if f̃(ab) = f̃(a)+ (̃b) for all coprime a, b ∈ G and f̃ is called completely
additive if f̃(ab) = f̃(a) + f̃(b) for all a, b ∈ G. An arithmetical function f̃
is multiplicative if f̃(ab) = f̃(a)f̃(b) whenever a, b ∈ G are coprime and f̃ is
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completely multiplicative if f̃(ab) = f̃(a)f̃(b) for all a, b ∈ G. The general aim
is to characterize the asymptotic behaviour of the summatory function

M(n, f̃) :=





1
G(n)


a∈G

∂(a)=n

f̃(a), if G(n) = 0,

0, if G(n) = 0.

We say that the function f̃ possesses an (arithmetical) mean-value M(f̃),
if the limit

M(f̃) := lim
n→∞

M(n, f̃)

exists.

The simple and seemingly appropriate choice of Axiom A# as a basic
assumption has been regarded as an incomplete encoding of the fundamental
situation and rather loose (and appropriate) conditions have been introduced
(cf. Knopfmacher-Zhang [10], Indlekofer [6], Barát-Indlekofer [1]) so as to
include the results about the asymptotic behaviour of the summatory function
M(n, f̃) (n→∞) for multiplicative functions f of modulus ≤ 1. (see [6]). The
main consequence of these weak conditions is that the circle {y ∈ C : |y| = q−1}
may be a natural boundary for Z(y).

At present the weakest hypothesis can be summarized as follows. If the
function Z in (1.1) can be represented in the form

Z(y) = exp

 ∞
m=1

λ(m)
m

ym



for |y| < q−1, then the basic conditions will be

(1.2) 0 ≤ λ(m) = O(qm) (m ∈ N)

and

(1.3) |Z(y)|  Z(|y|)

1− q|y|
1− qy


ε

(|y| < q−1)

for some ε > 0. Further, let

B(n) = exp


 

m≤n

λ(m)
m

q−m


 .
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Then we assume that

(1.4) nG(n)  qnB(n)

and

(1.5) B(m) = o(B(n)) if m = o(n) (n→∞).

Definition 1. We say that the function Z in (1.1) belongs to the exp-log
class F in case (1.2), (1.3), (1.4) and (1.5) hold.

Example 1. Let Z(y), defined in (1.1), have the form

(1.6) Z(y) =
∞
n=0

G(n)yn =
H(y)

(1− qy)τ (|y| < q−1),

where τ > 0 and H(y) = O(1) for |y| < q−1 and

(1.7) H(r)  1 for 0 < r < q−1.

Further, we assume
G(n)  qnnτ−1.

Observe, that if Z(y) is defined by (1.6) with (1.7), respectively, and 0 ≤
≤ λ(m) qm then, for r = q−1 − 1

n ,

B(n) = exp


 

m≤n

λ(m)
m

q−m


 

 exp

 

m≤n

λ(m)
m

q−mrm


  Z(r)  (1− qr)−τ = nτ ,

which implies (1.4) and

B(m)
B(n)


m
n

τ
= o(1) if m = o(n)

as n→∞ and (1.5) is satisfied.

Example 2. Assume that

0 < c1qm ≤ λ(m) ≤ c2qm <∞
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holds for all m ∈ N. Then, obviously

|Z(y)| = Z(|y|) exp
 ∞
m=1

λ(m)
m

|y|m(cos(mt)− 1)

≤

≤ Z(|y|) exp

c1

∞
m=1

qm|y|m
m

(cos(mt)− 1)

=

= Z(|y|)

1− q|y|
1− qy


c1

and

B(m)
B(n)

= exp


−



m<l≤n

λ(l)
l
q−l


  exp


c1 log

m

n


= o(1)

if m = o(n) (n→∞). Elementary estimates immediately yield

qnG(n)  B(n)
n
,

where the constants involved in  only depend on c1 and c2 (see Manstavičius
[11], Lemma 3.1).

In this paper we deal with real-valued additive functions defined on
arithmetical semigroups G which are described in Example 1 and Example
2, respectively. We show how G can be embedded in a probability space
(βG, σ(Ā), δ̄) such that g̃ can be identified with a sum of independent random
variables on βG. Here βG denotes the Stone-Čech compactification of G.

To be more specific, for each n ∈ N we define the distribution function

Dn(y) :=
1

G(n)
#{a ∈ G : ∂(a) = n, g̃(a) ≤ y},

where
g̃ =



p∈P
Xp

with

Xp(a) :=




g̃(pk), if pka,

0, otherwise.

(Here ba means that b|a and a = b.c implies that (b, c) = 1.)
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Extending, for each p ∈ P the function Xp uniquely to a function Xp on
βG we show that the {Xp} are independent and

g̃ :=


p∈P
Xp

converges a.e. if and only if Dn converge weakly to some limit distribution
D. To ease notational difficulties we restrict ourselves to completely additive
functions g̃.

2. Lemmata

Let us assume f : N0 → C with f(0) = 1. Further, we assume that the
generating function

F (y) :=
∞
n=0

f(n)yn

can be written in the form

(2.1) F (y) :=
∞
n=0

f(n)yn = exp

 ∞
m=1

λf (m)
m

ym



for |y| < q−1, and in addition, we assume |λf (m)| = O(1) for all m ∈ N. With
these notations we have

Proposition. (Cf. [6], Theorem 2) Let Z be an element of the exp-log
class F and let the coefficients in (2.1) satisfy

λf (m) = λf,1(m) + λf,2(m), m ∈ N,

with
|λf,1(m)| ≤ λ(m) for all m ∈ N

and
∞

m=1

|λf,2(m)|
m

q−m <∞.

Put
F (y) = FI(y) · FII(y),
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where

FI(y) := exp

 ∞
m=1

λf,1(m)
m

ym


,

FII(y) := exp

 ∞
m=1

λf,2(m)
m

ym



for |y| < q−1. Then the following two assertions hold.

(i) Let

(2.2)
∞

m=1

λ(m)− Reλf,1(m)eima

m
· q−m

converge for some a ∈ R. Put

An = exp


−ina+



m≤n

λf,1(m)eima − λ(m)
m

· q−m

FII(q−1).

Then
f(n) = AnG(n) + o(G(n)) as n→∞.

(ii) Let (2.2) diverge for all a ∈ R. Then

f(n) = o(G(n)) as n→∞.

An application to completely multiplicative function on G is contained in
Lemma 1.

Lemma 1. Let (G, ∂) be an additive arithmetical semigroup such that

(2.3) Z(y) =
∞
n=0

G(n)yn = exp

 ∞
m=1

λ(m)
m

ym


=

H(y)
(1− qy)τ , τ > 0

where H(y) = O(1) for |y| < q−1, H(r)  1 for 0 < r < q−1. Assume that

(2.4) λ(m) = O(qm) and G(n)  qnnτ−1.

Suppose |f̃(a)| ≤ 1 for all a ∈ G and f̃ is a completely multiplicative function
on G.
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If there exists a real number a such that

(2.5)


p∈P
q−∂(p)


1− Re(f̃(p)q−iϑ∂(p))



converges for ϑ = a, then 
a∈G

∂(a)=n

f̃(a) =

= qina


∂(p)≤n
(1− q−∂(p))


1 +

∞

k=1

f̃(pk)q−k∂(p)(1+ia)


G(n) + o(G(n)).

If (2.5) diverges for all ϑ ∈ R then


a∈G

∂(a)=n

f̃(a) = o(G(n)).

Remark 1. Obviously

M(f̃) exists and is = 0

if and only if 

p∈P
q−∂(p)(1− f̃(p)) converges.

A further consequence of proposition leads to Lemma 2.

Lemma 2. Let (G, ∂) be an additive arithmetical semigroup satisfying the
condition of Lemma 1. Further, let {pk11 , ..., p

kr
r } be a finite set of prime powers

such that pi = pj if i = j. Suppose ∂(pi) ≥ log 2
log q for all pi ∈ P, i = 1, ..., r and

define a multiplicative function f̃ by

f̃(pj) :=




0, if pj ∈ {pk11 , ..., p

kr
r },

1, otherwise.

Then f̃ possesses the mean-value M(f̃) =
r
i=1


1− q−∂(p

ki
i

)(1− q−∂(pi))

.



The three-series theorem in additive arithmetical semigroups 171

Proof. We use Proposition. If f̃ is described in the above form we write

F (y) =

p


1 +

∞

j=1

f̃(pj)yj∂(p)


 =

=
r

i=1


1 +

∞
j=1

j =ki

yj∂(pi)





p=pi

i=1,...,r


1− y∂(p)

−1

=

= exp

 ∞
n=1

λf (n)
n

yn


.

Since

1 +
∞

j=1
j =ki

yj∂(pi) =
1− yki∂(pi)(1− y∂(pi))

1− y∂(pi)
,

we get

F (y) =
r

i=1


1− yki∂(pi)(1− y∂(pi))


· Z(y).

Because of

|y∂(pi)ki


1− y∂(pi)


| ≤ q−∂(pi)ki |1 + q−∂(pi)| ≤ 3

4

for all ∂(pi) ≥ log 2
log q the function F (y) is non-zero in |y| < q−1. So

F (y) = Z(y)
r

i=1


1 +

∞
j=1

j =ki

yj∂(pi)


 =

= exp

 ∞
m=1

λf̃ (m)
m


,

where
λf̃ = λf̃,1 + λ ˜f,2

such that

λf̃,1 = λ and
∞

m=1

|λf̃,2(m)|
m

q−m <∞.

Applying Proposition gives Lemma 2.
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In the case of completely multiplicative functions Lemma 2 reads as

Lemma 2

. Let (G, ∂) be an additive arithmetical semigroup satisfying

the condition of Lemma 1. Further, let {p1, ..., pr} be a finite set of different
primes. If we define a completely multiplicative function f̃ by

f̃(p) :=




0, if p ∈ {p1, ..., pr},

1, otherwise,

then f̃ possesses the mean-value M(f̃) =
r
i=1


1− q−∂(pi)


.

3. The Stone-Čech compactification of G

Suppose that A is an algebra of subsets of G, i.e.
(i) G ∈ A,
(ii) A,B ∈ A ⇒ A ∪B ∈ A,
(iii) A,B ∈ A ⇒ A \B ∈ A.
Embedding G, endowed with the discrete topology, in the compact space

βG, the Stone-Čech compactification of G. This implies

Ā := {Ā : A ∈ A}

is an algebra in βG, where Ā := closβGA (for details see K.-H. Indlekofer [4],
[5]).

Let δ(A) be a content on A and define δ̄ on Ā by

δ̄(Ā) = δ(A), Ā ∈ Ā,

then δ̄ is a pseudo-measure in Ā and measure in σ(Ā). We have then the
measure (probability) space (βG, σ(Ā), δ̄).

Let us consider the following examples. For primes p ∈ P and k ∈ N0 let

Apk := {a ∈ G : pk | a}

be the set of all elements of G divisible by pk. Let A be the algebra generated
by the sets {Apk}.



The three-series theorem in additive arithmetical semigroups 173

We assume that (1.4) holds, i.e.

(3.1) G(n)  qnB(n)
n

and we consider for A ∈ A the means

M(n, 1A) =


a∈A

∂(a)=n

1


a∈G

∂(a)=n

1

where the characteristic function 1A of A is defined by

1A(a) :=

 1, if a ∈ A,

0, otherwise

for all A ∈ A.
Note that the following relation of the characteristic functions

1A∩B = 1A · 1B ,
1A\B = 1A − 1A · 1B
1A∪B = 1A + 1B − 1A · 1B

implies that the characteristic function of a set A ∈ A is a finite linear
combination of products of 1A

p
k1
1

· · · 1A
p

kr
r

. Let a1, a2, ... be the sequence of

the elements from G, such that ∂(a1) ≤ ∂(a2) ≤ · · ·. If we consider M(n, 1Aaj
)

where Aaj
:= {a ∈ G : aj | a}, then we obtain by (3.1) that

M(n, 1Aaj
)  q

n−∂(aj)

qn
·


n

n− ∂(aj)

· B(n− ∂(aj))

B(n)


 q−∂(aj) for n ≥ 2∂(aj).

This means that there exists a subsequence {nk} such that

(3.2) lim
k→∞

M(nk, 1Aaj
) =: δ1(Aaj )

exists for all Aaj . If we define δ1(A) for every A ∈ A by

δ1(A) := lim
k→∞

M(nk, 1A),
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then we have a content on A which is well-defined for all sets A ∈ A. The
above construction leads to the probability space (βG, σ(Ā), δ̄1).

Now, in addition, we assume that Z(y) belongs to the exp-log class F . Let
p ∈ P , k ∈ N0 and let

A

pk := {a ∈ G : pk || a}

be the set of all elements of G divisible exactly by pk, i.e. a can be written in
the form a = pk.b where p|/b. Further, let A be the algebra generated by the
sets {Apk}. Because of 1A

pk
= 1A

pk
− 1A

pk+1 it follows A
 ⊂ A. If we define a

multiplicative function f̃pk for all p ∈ P and j ∈ N by

f̃pk(pj) :=




0, if p = p, j = k,

1, otherwise,

then 1A
pk
= 1 − f̃pk . By Lemma 2 we obtain for all p ∈ P with ∂(p) ≥ log 2

log q

that
M(f̃pk) = 1 + q−∂(p)(k+1) − q−∂(p)k.

For this p we put
δ2(Apk) :=1−M(f̃pk) =

=q−k∂(p) − q−(k+1)∂(p).

Let a1, a2, ... be the sequence of the elements from G, such that ∂(a1) ≤
≤ ∂(a2) ≤ · · ·. If we consider M(n, 1Aaj

) where Aaj
:= {a ∈ G : aj || a}, then

M(n, 1Aaj
) =

1
G(n)


a∈Aaj
∂(a)=n

1 =

=
1

G(n)


baj∈G

(b,aj)=1, ∂(baj)=n

1 =

=
G(n− ∂(aj))

G(n)
· 1
G(n− ∂(aj))


b∈G

∂(b)=n−∂(aj), (b,aj)=1

1.

Now define the completely multiplicative function f̃ for all p ∈ P by

f̃(p) :=




1, p|/aj ,

0, p | aj ,



The three-series theorem in additive arithmetical semigroups 175

then

M(n, 1Aaj
) =

G(n− ∂(aj))
G(n)  
I

· 1
G(n− ∂(aj))


b∈G

∂(b)=n−∂(aj)

f̃(b)

  
II

.

By Lemma 2

we obtain that II tends to


p|aj


1− q−∂(p)


as n → ∞. Since I

equals M(n, 1Aaj
), we observe (see (3.2)) that there exists a subsequence nk

such that

lim
k→∞

M(nk, 1Aaj
) = δ1(Aaj )



p|aj

(1− q−∂(p)) =: δ2(Aj)

exists for all j ∈ N. If we define δ2(A) for every A ∈ A by

δ2(A) = lim
k→∞

M(nk, 1A),

then we have a content on A . Thus (βG, σ(Ā), δ̄2) is a probability space.
Since

Apk =
∞

j=k

A

pj

where A

pi ∩ Apj = ∅ (i = j), we obtain σ(Ā) = σ(Ā), which implies

(βG, σ(Ā), δ̄1) = (βG, σ(Ā), δ̄2).
Now we can formulate the three series theorem for additive arithmetical

semigroups.

4. The Three Series Theorem

Theorem. Let G be an additive arithmetical semigroup such that Z(y)
belongs to exp-log class F . Assume g̃ : G→ R is completely additive. Then the
following assertions are equivalent:

(i) g̃ =

p
Xp possesses a limit distribution,

(ii) ¯̃g =

p
Xp converges δ̄-almost everywhere,

(iii) the series
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
p

|g̃(p)|≥1

δ̄(Āp),


p
|g̃(p)|<1

E[Xp],


p
|g̃(p)|<1

V ar[Xp]

converge,
(iv) the series



|g̃(p)|≥1

q−∂(p),


|g̃(p)|<1

g̃(p)q−∂(p),


|g̃(p)|<1

g̃2(p)q−∂(p)

converge.

Remark 2. The equivalence of (i) and (iv) has been proven by W.-B.
Zhang [12], in the case when the zeta function of G has the form

Z(y) =
A

1− qy +
∞
n=0

r(n)yn

with
∞
n=0

|r(n)|q−n <∞ and the inequality λ(n) = O(qn) holds.

Proof of Theorem.
(i)⇒ (iv)

Suppose that the function

g̃ =

p

Xp

has a limit distribution function D(x). By the continuity theorem of Levy (see
Billingsley, [2]) there exists a function ϕ(t) which is the characteristic function
of D(x) and is continuous at t = 0 such that

(4.1)

∞

−∞
eitxd(Dn(x)) =

1
G(n)



∂(a)=n

eitg̃(a) → ϕ(t)

n→∞ for −∞ < t <∞. Since ϕ(t) is continuous at t = 0 and ϕ(0) = 1, there
exist constants T > 0 and C ∈ (0, 1) such that

|ϕ(t)| > C for |t| ≤ T.

Put
f̃t(a) := eitg̃(a),
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then the limit in (4.1) exists. This limit is equal to M(f̃t) and is non-zero for
|t| ≤ T . By Remark 1 the series

(4.2)

p

q−∂(p)(1− f̃t(p))

converges for |t| ≤ T . Now we show that the three series in (iv) are convergent.
We write (4.2) in the following form

(4.3)

p

q−∂(p)(1− f̃t(p)) =

p

q−∂(p)(1−cos(tg̃(p)))−i

p

q−∂(p) sin(tg̃(p)).

The convergence of (4.3) implies

(4.4)

p

q−∂(p)(1− cos(tg̃(p))) = 2

p

q−∂(p) sin2


tg̃(p)
2


≤ K

for |t| ≤ T . We note that
2
π
t ≤ sin t

holds for t ∈ [0, π2 ]. Therefore, by (4.4),

2


T |g̃(p)|≤π
2

q−∂(p)


2
π

2
T 2g̃2(p)
4

≤ K,

and 

|g̃(p)|<1

q−∂(p)g̃2(p) 1
T 2
.

Thus, the convergence of the third series in (iv) is proved.

Integrating (4.4) from 0 to T gives


p

q−∂(p)

T

0

(1− cos(tg̃(p))dt ≤ KT,

and we obtain 
p

q−∂(p)


T − sin(T g̃(p))

g̃(p)


≤ KT.
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We observe that
sin t ≤ 2

π
t

holds for t ∈ [π2 ,∞). Then



|g̃(p)|≥1

q−∂(p)T


1− 2

π


≤ KT,

and 

|g̃(p)|≥1

q−∂(p)  1,

which proves the convergence of the first series in (iv).

The last (convergent) series in (4.3) can be written as

(4.5)

p

q−∂(p) sin(tg̃(p)) =


p
|g̃(p)|<1

q−∂(p) sin(tg̃(p))+


p
|g̃(p)|≥1

q−∂(p) sin(tg̃(p)).

The estimate | sin(tg̃(p))| ≤ 1 and the convergence of the first series in (iv)
imply that the last series in (4.5) converges for |t| < T . Therefore

(4.6)


p
|g̃(p)|<1

q−∂(p) sin(tg̃(p))

must be convergent for |t| ≤ T . We note that

| sin(tg̃(p))− tg̃(p)| ≤ |tg̃(p)|3
3!

≤ t
2g̃2(p)
3

,

for |tg̃(p)| ≤ 2. The series in (4.6) can be written as
(4.7)

p
|g̃(p)|<1

q−∂(p) sin(tg̃(p)) =


p
|g̃(p)|<1

q−∂(p)(sin(tg̃(p))−tg̃(p))−


p
|g̃(p)|<1

q−∂(p)tg̃(p).

Since the second series in (4.7) can be estimated by

 t2


p
|g̃(p)|<1

q−∂(p)g̃2(p),

the last sum in (4.7) must converge, too. This ends the proof of the implication
(i)⇒ (iv).
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(iv)⇒ (i)

We assume that the three series in (iv) converge and show that the series
in (4.2) is convergent, too, for all t ∈ R. This implies, by Lemma 1 and Remark
1, that

(4.8) M(f̃t) =

p

(1− q−∂(p))


1 +

∞

k=1

q−k∂(p)f̃t(pk)


,

where M(f̃t) is non-zero and continuous at t = 0, and which is equivalent to
the existence of the limit distribution.

We write the series (4.2) in the form


p

q−∂(p)(1− f̃t(p)) =


p
|g̃(p)|<1

q−∂(p)(1− f̃t(p)) +


p
|g̃(p)|≥1

q−∂(p)(1− f̃t(p)) =

(4.9)

=


p
|g̃(p)|<1

q−∂(p)(1−f̃t(p) + itg̃(p))−

−


p
|g̃(p)|<1

q−∂(p)(itg̃(p)) +


p
|g̃(p)|≥1

q−∂(p)(1− f̃t(p)).

and observe that

|eitg̃(p) − 1− itg̃(p)| ≤ t
2g̃2(p)
2

holds for each real number t. The absolute value of the first series on the right
side of (4.9) is smaller than

T 2

2


p

|g̃(p)|<1

q−∂(p)g̃2(p)

which is convergent by assumption. The second series on the right side of
(4.9) converges by assumption. The absolute value of the last series in (4.9) is
obviously smaller than

2


p
|g̃(p)|≥1

q−∂(p),

and therefore the series (4.2) is convergent.

The equivalence of (iv) and (iii) is obvious. The assertions (ii) and (iii)
are equivalent by the three series theorem. This ends the proof of the theorem.
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139, Birkhäuser, 1996, 839-884.



The three-series theorem in additive arithmetical semigroups 181

K.-H. Indlekofer
Faculty of Computer Science,
Electrical Engineering and Mathematics
University of Paderborn
Warburger Straße 100
D-33098 Paderborn, Germany
k-heinz@math.uni-paderborn.de

E. Kaya
Tarsus Vocational School
University of Mersin
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