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Abstract. In [1] we investigated the distribution of the values of q-additive
functions defined on multiplicative semigroups which are generated by an

infinite sequence of primes satisfying Wirsing’s condition. In this work we

extend our investigations started in [1] to polynomial sequences of such

semigroups and its subsets which contain integers with a given number of

prime divisors.
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N,R,C are the sets of natural, real, complex numbers, respectively. N0 =
= N ∪ {0}. Let e(x) := e2πix; ω(n) = number of distinct prime divisor of n;
Ω(n) = number of prime power divisors of n. Let {x} = fractional part of n,
||x|| = min({x}, 1 − {x}). For the sake of brevity let x1 = log x, x2 = log x1,
and in general, let xk+1 = log xk (k = 1, 2, . . .). Let γ be the Euler’s constant,
Γ be the gamma function and

Φ(x) :=
1√
2π

x

−∞
e−u2/2du.

1.2.

Let q ∈ N, q ≥ 2 be fixed, E = {0, 1, . . . , q − 1}. The q-ary expansion of
n ∈ N0 is defined by

(1.1) n =
∞

j=0

aj(n)qj , aj(n) ∈ E.

A function f : N0 → R is said to be q-additive, if f(0) = 0 and

(1.2) f(n) =
∞

j=0

f(aj(n)qj), aj(n) ∈ E.

Let Aq be the set of q-additive functions. Let N(= Nx) =


log x
log q


,

mk =
1
q



b∈E
f(bqk), σ2

k =
1
q



b∈E
f2(bqk)−m2

k,(1.3)

M(x) =
N

k=0

mk, D2(x) =
N

k=0

σ2
k.(1.4)

1.3.

Let

(1.5) νx(n) :=
f(n)−M(x)

D(x)
.

In our recent paper [1] we proved the following
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Theorem A. Let P be an infinite sequence of primes, satisfying

(1.6) πP(x) := #{p ≤ x | p ∈ P} = (τ + o(1))
x

log x
(x → ∞),

where τ > 0 is a constant. Let N be the multiplicative semigroup generated by
the elements of P,

(NP(x) =)N(x) := #{n ≤ x, n ∈ N}.

Let f ∈ Aq, f(bqj) = O(1) as b ∈ E, j = 0, 1, 2 . . .. Assume that
D(x)/ logλ x → ∞ as x tends to infinity for some λ > 0. Let

(1.7) Fx(y) :=
1

N(x)
#{νx(n) < y, n ≤ x, n ∈ N}.

Then

(1.8) lim
x→∞

Fx(y) = Φ(y).

The proof is based on a theorem of Davenport for trigonometric sums (see
[2], Lemma 1) and on the method developed in [3].

We observed that by using a theorem of L.K. Hua ([3], see Lemma 6.3),
by using the method used by N.L. Bassily and I. Kátai [5] one can prove

Theorem 1. Let f ∈ Aq, f(bqj) = O(1) (b ∈ E, j = 0, 1, 2, . . .),
D(x)/ logδ x → ∞ as x tends to infinity with a suitable δ > 0. Assume that
P satisfies the condition (1.6). Let P ∈ Z[x] be a polynomial of degree t, with
positive leading coefficient. Let

(1.9) Gx(y) :=
1

N(x)
#{n ≤ x, n ∈ N , νxt(P (n)) < y}.

Then

(1.10) lim
x→∞

Gx(y) = Φ(y)

holds for every y.

1.4.

Let P ∈ Z[x] be a polynomial of degree t taking positive integer values on
N. Let q, E be as in 1.2. If n ∈ N, n = 0(n)+ 1(n)q+ · · ·+ r−1(n)qr−1, then
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write n = 0(n) · · · r−1(n) (∈ Er), r−1 = 0. Let P,N be as in Theorem A.
Let n1 < n2 < . . . be the whole sequence of the integers in N , and let

(1.11) η = 0, P (n1) P (n2) . . .

where the right hand side of (1.11) is the q-ary expansion of η.

Theorem 2. We have that {qmη} (m = 1, 2, . . .) is a sequence uniformly
distributed mod 1.

This assertion can be derived from Theorem 3, formulated in 1.5.

1.5.

Let P,N , P as earlier. Let β = b0b1 . . . bk−1 be a typical element of Ek.
We write Φ(k)

1 (n) = j(n) . . . j+k−1(n). Let Fk : Ek
1 → R be a function such

that F (0, . . . , 0) = 0. Let

αn :=
∞

j=0

Fk(Φk
j (P (n))), κ1 :=

∞

j=0

Fk(Φk
j (n)),

M := q−k


b1...bk∈Ek

Fk(b1 . . . bk),

σ2
h = q

−(k+h)


b0...bk+h−1∈Ek+h

(Fk(b0 . . . bk−1)−M)(Fk(bh . . . bh+k−1)−M)

for h = 0, 1, . . . , k − 1. Let

σ2 = σ2
0 +

k−1

h=1

σ2
h.

Theorem 3. Assume that σ = 0. Then

lim
x→∞

#

n ≤ x, n ∈ N

 αn −MNr
σ
√
Nr

< y


= Φ(y)

holds for every y ∈ R.

We can prove also

Theorem 4. Let P,N , P, f be as in Theorem 1. Let

Gx,k(y) :=
1

πk(x)
#{n ≤ x, n ∈ N , ω(n) = k, νxt(P (n)) < y}.
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Then, if k0(x)→∞, then

sup
y

sup
k0(x)≤k≤ox(1)

x2
x3

|Gx,k − Φ(y)| = 0.

Remark. Unfortunately, we cannot prove that

lim
x→∞

Gx,1(y) = Φ(y).

2. Auxiliary results

2.1.

The Erdős-Turán inequality ([6]):

The discrepancy DM of the real numbers x1, . . . , xM (mod 1) is defined
by

(2.1) sup
 1
M

M
n=1

{xn}∈[α,β)

1− (β − α)


where the supremum is taken for all intervals [α, β) ⊂ [0, 1).

Let ψm :=
M
l=1

e(mxl). We have

(2.2) DM ≤ c

 

0<h≤K

|Ψh|
h

+
M

K




for any positive integer K. c is an absolute constant.

2.2.

Lemma 6.3 of L.K. Hua ([4]):
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Let l be a positive integer (≤ xσ3
1 ), and

Ω =


d


m

e(f(ldm)),

f(z) =
h

Q
zt + α1z

t−1 + · · ·+ αt,

where (h,Q) = 1, all α being real, and xσ1 < Q < x
t · x−σ1 . The index d in Ω

runs through a set of positive integers satisfying the conditions

D < d ≤ D, 1 < D <
x

l
, D ≤ 2D.

Further, for a fixed d, the index m runs through a set of positive integers
satisfying the inequality

P /d < m ≤ x

Dl
,

where P  is a positive number. Hence, for xσ5
1 < D < x · x−σ6

1 , subject to the
conditions

σ ≥ 2tσ3 + 22t+1σ6 + 23(2t−1)

we have
Ω x

l
x−σ6

1 .

2.3.

Theorem of E. Wirsing ([7]):

Let F be a multiplicative function, satisfying the conditions: F (n) ≥
≥ 0 (n ∈ N); F (pα) ≤ c1c

α
2 , c2 < 2 for every prime p and α = 2, 3 . . ..

Assume that 

p≤x
F (p) = (τ + o(1))

x

log x
(x→ ∞),

where τ > 0 is a constant. Then, for x→ ∞,



n≤x
F (n) =


e−γτ

Γ(τ)
+ ox(1)


x

log x



p≤x


1 +

F (p)
p

+
F (p2)
p2

+ · · ·

.

Analyzing the proof, one can see easily that the following version of the theorem
of E. Wirsing is true.
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Lemma 1. Let Fλ be a family of multiplicative functions satisfying the
following conditions: Fλ(n) ≥ 0 (n ∈ N); Fλ(pα) ≤ c1c

α
2 , c2 < 2 for every

prime p and α = 2, 3 . . .. Assume that




p≤x
Fλ(p)− τλ x

log x

≤ (x) x

log x
,

where 0 < c3 < τλ, c3 is a suitable constant, (x) → 0 as x tends to infinity.
Then there exists a function 1(x)→ 0 (x→∞) such that




n≤x
Fλ(n)− e

−γτλ

Γ(τλ)
x

log x



p≤x


1 +

Fλ(p)
p

+
Fλ(p2)
p2

+ · · ·
 ≤

≤ 1(x) x

log x



p≤x


1 +

Fλ(p)
p

+
Fλ(p2)
p2

+ · · ·

.

Let P, N be as defined in Theorem A. Defining the multiplicative function F
on prime powers pα by

F (pα) =

 1, if p ∈ P,

0, if p ∈ P,

from Wirsing’s theorem we obtain that

NP(x) =

e−γτ

Γ(τ)
+ o(1)


x

log x


p≤x
p∈P

1
1− 1/p .

2.4.

Lemma 2. Let 0 < ∆ < 1
2q , χ0(x) =


cme(mx) be a (mod 1) periodic

function such that 0 ≤ χ0(x) ≤ 1,

χ0(x) =




1 if ∆ < {x} < 1

q −∆,

0 if 1
q +∆ < {x} < 1−∆,

c0 = 1
q , cjq = 0 when j = 0,

|cm| ≤ min

1
q
,

1
π|m| ,

1
∆π2m2


.
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Let χb(x) = χ0


x− b

q


=


c
(b)
m e(mx). Then c

(b)
m = cme


−mb

q


, thus |c(b)

m | =
= |cm|. See in [5].

2.5.

Let P, N be as earlier,

πk(x) = #{n ≤ x | n ∈ N , ω(n) = k}, Nk(x) = #{n ≤ x | n ∈ N , Ω(n) = k}.

Let
T (x) :=


pν≤x
p∈P

1
pν

.

Lemma 3. There is a function (x)→ 0 (x →∞) and positive constants
c1, c2 such that

(2.3)

c2(τ − (x))x
log x

T

x

1
2(k−1)

k−1

(k − 1)! − (log x)
√

x ≤ πk(x) ≤

≤ c1x

log x

T (x)k−1

(k − 1)!

holds for every k, and

(2.4) Nk(x) ≤ c3x

log x

T (x)k−1

(k − 1)!

holds for 1 ≤ k ≤ (1− δ)p0T (x), where p0 is the smallest prime in P, δ is an
arbitrary constant, 0 < δ < 1, and c3 = c3(δ) is a suitable constant.

Proof of Lemma 3. We have

n≤x

n∈Pk

log n ≤


pν m≤x
m∈Pk−1

log pν =

m≤x

m∈Pk−1



pν≤ x
m

log pν ≤

≤ 2x

m≤x

m∈Pk−1

1
m
≤ 2xT (x)k−1

(k − 1)! .

Thus

(πk(x)− πk(
√

x))
1
2
log x ≤ 2xT (x)k−1

(k − 1)! ,
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πk(x) ≤ πk(
√

x) +
4x
log x

T (x)k−1

(k − 1)! .

Iterating this, we obtain that the right hand side of (2.3) is true. Furthermore,

πk(x) log x ≥


pν m≤x
m∈Pk−1
p∈P, p|/m

m≤√x

log pν ≥


m≤√x
m∈Pk−1






pν≤ x

m
p∈P

log pν −


p|m
log pν




≥

≥ (τ − (x))


m≤√x
m∈Pk−1

x

m
− (log x)


m≤√x

m∈Pk−1



p|m
1,

and so

πk(x) ≥ (τ − (x))x
T


x

1
2(k−1)

k−1

(k − 1)! −√x log x.

To prove (2.4), write n ∈ Nk in the form n = Km, where K is the squareful
part and m is the squarefree part of n.

The size of those n ≤ x for which K > x1/2 is

≤


K>
√
x

x

K
≤ cx3/4.

Thus,

Nk(x) ≤


K≤√x

πk−Ω(K)
 x

K


+ cx3/4.

From inequality (2.3) we have

Nk(x) ≤ c1x

log
√

x



K≤√x

T (x)k−Ω(K)−1

K(k − Ω(K)− 1)! + cx3/4.

Furthermore,



K<
√
x

T (x)k−Ω(K)−1

K(k − Ω(K)− 1)! ≤
T (x)k−1

(k − 1)!


K≤√x


k

T (x)

Ω(K) 1
K

.
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Since k
T (x) ≤ (1− δ)p0,



K≤√x


k

T (x)

Ω(K) 1
K
≤



p∈P


1 +


k

T (x)


1
p2

1

1−


k
T (x)


1
p


 .

Since cx3/4 is clearly smaller than c x
log x

T (x)k−1

(k−1)! , our inequality holds.

3. Proof of Theorem 1

Let y ∈ R be fixed. Let n1 < . . . < ns (≤ x) be the set all of the
integers in N up to x, for which νxt(P (n)) < y. Then s = Gx(y) · N(x). Let
Hx = H = {{m, p}, p ∈ P, m ∈ N , m > xx , p > e(log x)

x
, mp ≤ x}. Here we

assume that x → 0 (x→∞) (slowly).
Let Rx =


p≤x

1/p. Let Z be the number of those {m, p} ∈ Hx for which

νxt(P (mp)) < y. Repeating the argument, used in [1], we obtain that

1
N(x)


Z

Rx
− s

 → 0 (x→∞).

Let H(x) = #Hx. Let (1 ≤) l1 < . . . < lh ≤ tN , b1, . . . , bh ∈ E and

H


x


l1, . . . , lh
b1, . . . , bh


= #{{m, p} ∈ Hx, lj (P (mp)) = bj , j = 1, . . . , h}.

By using the method developed in [3, 5, 1] we can prove that

(3.1) max
Nα≤l1<...<lh<tN−Nα

b1,...,bh∈E

qhH

x

 l1, . . . , lh
b1, . . . , bh


−H(x)

 ≤ c(h, λ)H(x)N−λ

holds for every fixed h, every α > 0, and every λ > 0.

By using the theorem of L.K. Hua ([4]) we can obtain that



{m,p}∈Hx
e


AM

HM
P (mp)


 H(x) log−B x
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holds for every fixed B, where

AM

HM
=

mh

qlh+1
+ · · ·+ m1

ql1+1
, q|/mj (j = 1, . . . , h),

Nα ≤ l1 < . . . < lh < tN − Nα. Continuing as in [1], by using the Frechet-
Shohat theorem, we obtain Theorem 1.

4. Proofs of Theorems 2 and 3

These can be done by the method used in [9].

5. Proof of Theorem 4

Let
πk(x) = #{n ≤ x | n ∈ N , ω(n) = k}

and
Hx,k =

= {{m, p}, m ∈ N, p ∈ P, ω(m) = k − 1, p > e(log x)x
, m > x


x , mp ≤ x},

where x → 0 (x→∞). Since

(5.1)

Σ1 :=


m≤x
x

m∈N , ω(m)=k−1


p≤ x

m
p∈P

1 x

log x



m≤x
x

m∈N , ω(m)=k−1

1
m


 x

log x

T k−1(x

x)

(k − 1)! ,

we obtain from the left hand side of (2.3) that the right hand side of (5.1) is
at most ox(1)kπk(x) uniformly for 2 ≤ k  x2

x3
. Furthermore, from (2.3) we
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deduce that

Σ2 :=


p≤e(log x)x
p∈P


m≤ x

p
m∈N , ω(m)=k−1

1


p≤e(log x)x
p∈P

πk−1


x

p




 x

log x
T k−2(x)
(k − 2)!



p≤e(log x)x
p∈P

1
p


 xkπk(x).

Thus, by the right hand side of (2.3),

#Hx,k = kπk(x) + Σ1 +Σ2 +O((k − 1)πk−1(x)) =

= kπk(x) + ox(1)kπk(x).

Let Hk(x) = #Hx,k. Let (1 ≤) l1 < . . . < lh ≤ tN , b1, . . . , bh ∈ E and

Hk


x

 l1, . . . , lh
b1, . . . , bh


= #

{m, p} ∈ Hx,k, lj (P (mp)) = bj , j = 1, . . . , h

.

In the same way as we have seen by (3.1)

max
Nα≤l1<...<lh<tN−Nα

b1,...,bh∈E

qhHk


x

 l1, . . . , lh
b1, . . . , bh


−Hk(x)

 ≤ c(h, λ)Hk(x)N−λ

holds for every fixed h, every α > 0, and every λ > 0 uniformly for 2 ≤ k  x2
x3
.

Arguing as in [5], the proof is finished.
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