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Abstract. For positive integers r computable formulas for the partial
fraction decomposition of the function 1/ sinr will be presented. Some of
the calculations can be found in our attached Mathematica notebook.

1. Partial fraction decomposition

Let us denote the set of nonnegative integers, positive integers and complex
numbers, by N0, N and C respectively.

For r ∈ N the function 1/ sinr is a meromorphic function on the entire
complex plane C, i.e. it is analytic in C except for isolated singularities that
are poles. For the fundamental facts about the complex function theory we
refer to [1], [3], [4], [7], [9] or [12]. Here we only mention the following facts.

Let us start with a rational function f := p/q, where p and q are polynomials
without common factors. Then the poles of f are exactly the zeros of q, and
the order of each pole of f is equal to the multiplicity of the corresponding zero

Key words and phrases: Meromorphic functions, Mittag-Leffler theorem, partial fraction
decomposition, computable formulas.
2010 Mathematics Subject Classification: 30B10, 33B10, 33F10.

https://doi.org/10.71352/ac.38.093

https://doi.org/10.71352/ac.38.093


94 L. Szili and T. Tóth

of q. If a1, a2, . . . , an are the different roots of q (the poles of f), then there
exist uniquely determined polynomials P and Gk (k = 1, 2, . . . , n) such that

(1) f(z) =
p(z)

q(z)
= P (z) +

n
k=1

Gk


1

z − ak


(z ∈ C \ {a1, a2, . . . , an}).

The degree of Gk (k = 1, 2, . . . , n) is equal to the multiplicity of the root ak.

Moreover, Gk


1

z−ak


(k = 1, 2, . . . , n) is the principal part of f at ak, consisting

of the part of its Laurent expansion which contains the negative powers of
(z − ak). (1) is the partial fraction decomposition of f . There are several
algorithms for its computation (see [6, §7.1.]).
A similar decomposition is true if we only suppose that the function f is

meromorphic in C and it has only finitely many poles a1, a2, . . . , an. In this
case the function P is analytic in C.
Let us consider now a function f which is meromorphic in C with infinitely

many poles. In this case f has exactly countable many poles, since f has only
finitely many poles in every bounded subset of C (see [9, p. 240] or [6, p. 655]).
Consequently we can suppose that the poles are ak (k ∈ N) and

|a1| ≤ |a2| ≤ |a3| ≤ · · · with lim
k→+∞

|ak| = +∞.

Then the following question arises naturally: Can we get an analogue of (1), if
we replace the finite sum by an infinite sum? The problem is that, in this case
the series of the principal parts of f at ak’s, i.e. the series


k∈N Gk(1/(z−ak))

does not converge in general.

The main idea of Mittag-Leffler was that convergence is obtained if we sub-
tract an appropriate analytic function gk from each principal part Gk. The
Mittag-Leffler theorem asserts that one can arbitrarily prescribe the poles and
principal parts of a function meromorphic on the whole complex plane. Fur-
thermore, there is an explicit form describing all these functions (see [1], [3], [7]
or [12]). The theorem in this form is mainly of theoretical significance since it
is not easy to apply in special cases. It turned out, however, that it is possible
to obtain more useful formulas in concrete cases if a further assumption (see
(2)) is made on the function.

Theorem A. ([9, p. 243], [7, p. 309]) Let f be a meromorphic function
having poles at the points a1, a2, . . . different from ∞, analytic at z = 0, and
such that

f is uniformly bounded on a sequence of circles Cn := C(0; rn)

with radii rn increasing to +∞.
(2)
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Then for every point z ∈ C \ {a1, a2, . . .} we have

f(z) = f(0) + lim
n→+∞


Cn


Gk


1

z − ak


−Gk


− 1

ak


,

where Gk(1/(z − ak)) denotes the principal part of the function f at the point
ak and the index Cn under the summation sign indicates that only the poles
lying in the disc K(0; rn) are considered.

This statement was used to obtain the partial fraction decomposition of the
cot function in [9, p. 244] and in [7, p. 309] (see also [12, p. 135]).

2. Partial fraction decomposition of 1/ sinr

In this section we shall derive formulas for the partial fraction decomposition
of the function

fr(z) :=
1

sinr z
(z ∈ D),

where r is a fixed positive integer and

D := C \ {kπ | k ∈ Z}.

The function fr has a pole of order r at the point ak := kπ for every k ∈ Z,
and it is analytic on D. Thus fr is a meromorphic function on C.

Let us consider first the auxiliary function

Fr(z) :=
 z

sin z

r

(|z| < π),

where r is a positive integer.∗ Since Fr(0) = 1 and Fr is differentiable at the
point z = 0 we have that Fr is an even analytic function on the disc |z| < π.
Therefore it has a Taylor series expansion about the point z = 0, and the
coefficients can be computed.

Theorem 1. The MacLaurin expansion of the function Fr is of the follow-
ing form

Fr(z) =
 z

sin z

r

=

+∞
j=0

F
(j)
r (0)

j!
zj =

+∞
j=0

F
(2j)
r (0)

(2j)!
z2j (|z| < π),

∗Here and below at points z0 ∈ C for which the function is formally undefined but has a
finite limit, it is defined to be f(z0) := lim

z0
f , i.e. f is continuously extended.
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where
F (2j+1)
r (0) = 0 (j ∈ N0),

and

(3)





F (0)
r (0) = Fr(0) = 1,

F (2j)
r (0) =

r

2j

j−1
l=0

(−1)j+1−l


2j

2l


22(j−l)F (2l)

r (0)B2(j−l), if j ∈ N,

where the B2l’s (l ∈ N0) are the Bernoulli numbers.

We recall that the Bernoulli numbers Bn (n ∈ N0) satisfy the recurrence
relation

B0 = 1,
n

0


B0 +


n

1


B1 +


n

2


B2 + · · ·+


n

n− 1


Bn−1 = 0 (n = 2, 3, . . .)

(see [13] or [10, I, p. 682]). The first few Bernoulli numbers Bn are

B0 = 1, B1 = −1
2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30

with B2n+1 = 0 for n ∈ N \ {1}.

The first few coefficients obtained from the recurrence formula (3) are as
follows

F (0)
r (0) = 1, F (2)

r (0) =
r

3
, F (4)

r (0) =
5r2 + 2r

15
.

From Theorem 1 we obtain that the principal part of fr at the pole a0 = 0
of order r has the following form

(4) G0,r


1

z


=

r−1
j=0

F
(j)
r (0)

j!

1

zr−j
=

r
j=0

F
(2j)
r (0)

(2j)!

1

zr−2j
(z ∈ C \ {0}),

where

r :=


r − 1
2



([x] denotes the integer part of x ∈ R).
We say that the doubly (or in two direction) infinite complex series


k∈Z uk

is convergent and its sum is S ∈ C, if

lim
m,n→∞

n
k=−m

uk = S =:

+∞
k=−∞

uk.
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It is equivalent to the fact that both the (in one direction) infinite series
k∈N0

uk and


−k∈N u−k are convergent and

S =

+∞
k=0

uk +

+∞
k=1

u−k.

In this case the doubly infinite sequence of the symmetric partial sums
n

k=−n uk

of the series


k∈Z is convergent and tends to S if n → +∞. We remark that
from the convergence of the symmetric partial sums of


k∈Z uk its convergence

does not follow, see for example the series


k∈Z 1/k with 1/0 := 1.

We shall frequently use the notation

+∞

k=−∞

uk,

where the prime signifies that the term k = 0 is omitted in the summation.

The partial fraction decomposition of the function fr = 1/ sin
r is given in

the following statement.

Theorem 2. Let r be a fixed positive integer, and r = [(r − 1)/2]. Then
for every point z ∈ D we have

fr(z) =
F

(r)
r (0)

r!
+G0,r


1

z


+

+∞

k=−∞

(−1)rk

G0,r


1

z − kπ


−G0,r


− 1

kπ


=

=
F

(r)
r (0)

r!
+

r
j=0

F
(2j)
r (0)

(2j)!
· 1

zr−2j
+

+

+∞

k=−∞

(−1)rk
r

j=0

F
(2j)
r (0)

(2j)!


1

(z − kπ)r−2j
+
(−1)r−1

(kπ)r−2j


,

where G0,r is given in (4), as the principal part of fr at the pole 0. The
convergence is absolute on the domain D ⊂ C, and uniform in every compact
subset of D.

The formulas in Theorem 2 may be simplified as follows.

Theorem 3. Let r be a fixed positive integer. Then using the notation of
Theorem 2 we have

fr(z) =
1

sinr z
=

+∞
k=−∞

(−1)rkG0,r


1

z − kπ


=

=

+∞
k=−∞

(−1)rk
r

j=0

F
(2j)
r (0)

(2j)!
· 1

(z − kπ)r−2j
.
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The convergence is absolute in every point z ∈ D and uniform in every compact
subset of D.

The formulas are different for even and odd exponents:

1

sin2r z
=

+∞
k=−∞

G0,2r


1

z − kπ


=

+∞
k=−∞

r−1
j=0

F
(2j)
2r (0)

(2j)!
· 1

(z − kπ)2(r−j)
,

1

sin2r+1 z
=

+∞
k=−∞

(−1)kG0,2r+1


1

z − kπ


=

=

+∞
k=−∞

(−1)k
r

j=0

F
(2j)
2r+1(0)

(2j)!
· 1

(z − kπ)2(r−j)+1
.

Remark 1. Let us emphasize that Theorem 3 states that for the compu-
tation of the partial fraction decomposition of 1/ sinr it is enough to determine
only the polynomial G0,r. One can obtain the partial fraction decomposition
of similar functions (for example of 1/ cosr), too.

Let us see a few special cases of the above theorem. The formulas below
are valid at all points z ∈ C \ {kπ | k ∈ Z} = D. The convergence is absolute
in every point z ∈ D and uniform in every compact subset of D.

1

sin z
=

+∞
k=−∞

(−1)k 1

z − kπ
,

1

sin2 z
=

+∞
k=−∞

1

(z − kπ)2
,

1

sin3 z
=

+∞
k=−∞

(−1)k


1

(z − kπ)3
+
1

2

1

z − kπ


,

1

sin4 z
=

+∞
k=−∞


1

(z − kπ)4
+
2

3

1

(z − kπ)2


,

1

sin5 z
=

+∞
k=−∞

(−1)k


1

(z − kπ)5
+
5

6

1

(z − kπ)3
+
3

8

1

z − kπ


,

1

sin6 z
=

+∞
k=−∞


1

(z − kπ)6
+

1

(z − kπ)4
+
8

15

1

(z − kπ)2


.

Using the attached Mathematica notebook [11] further special cases can be
calculated.
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3. Some other formulas

From Theorem 3 we can obtain closed forms for the sum of the doubly
infinite series



k∈Z

1

(z − kπ)2r
and



k∈Z

(−1)k

(z − kπ)2r−1

(z ∈ D, r = 1, 2, . . .),

which are absolutely convergent on the domain D ⊂ C and uniformly conver-
gent in every compact subset of D. Set

A2r(z) :=

+∞

k=−∞

1

(z − kπ)2r
,

A±
2r−1(z) :=

+∞

k=−∞

(−1)k

(z − kπ)2r−1
,

(z ∈ D, r = 1, 2, . . .).

The following statement is an immediate consequence of Theorem 3.

Corollary 1. For the functions A2r we have the following recursive relation

A2(z) =
1

sin2 z
,

A2r(z) =
1

sin2r z


1−

r−1

j=1

F
(2j)
2r (0)

(2j)!
(1− cos2 z)j · sin2r−2j z ·A2r−2j(z)



(z ∈ D, r = 2, 3, . . .),

where the coefficients F
(2j)
2r (0) are given in Theorem 1.

The main advantage of the above representation of A2r is that the functions
sin2j(z) ·A2j(z) (z ∈ C, j = 1, 2, . . .) are algebraic polynomials of the function
cos2 z (z ∈ C). Consequently, their exact lower and upper bounds can be seen
very easily.

For the first few values of r we get the following formulas, which are valid
for every z ∈ D
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A2(z) =

+∞
k=−∞

1

(z − kπ)2
=

1

sin2 z
,

A4(z) =

+∞
k=−∞

1

(z − kπ)4
=

1

sin4 z


1
3 +

2
3 cos

2 z

,

A6(z) =

+∞
k=−∞

1

(z − kπ)6
=

1

sin6 z


2
15 +

11
15 cos

2 z + 2
15 cos

4 z

.

Here the convergence is uniform in every compact subset of D.

From Theorem 3 we also immediately obtain closed forms for the functions
A±

2r−1, too.

Corollary 2. For the functions A±
2r−1 we have the following recursive re-

lation

A±
1 (z) =

1

sin z
,

A±
2r−1(z) =

1

sin2r−1 z


1−

r
j=1

F
(2j)
2r−1(0)

(2j)!
(1− cos2 z)j · sin2r−1−2j z ·A±

2r−1−2j(z)



(z ∈ D, r = 2, 3, . . .),

where the coefficients F
(2j)
2r−1(0) are given in Theorem 1.

It is clear that the functions sin2j−1(z) ·A±
2j−1(z) (z ∈ C, j = 1, 2, . . .) are

odd algebraic polynomials of the function cos z (z ∈ C).

For the first few values of r we get the following formulas, which are valid
for every z ∈ D and the convergence is uniform in every compact subset of D.

A±
1 (z) =

+∞
k=−∞

(−1)k

(z − kπ)
=

1

sin z
,

A±
3 (z) =

+∞
k=−∞

(−1)k

(z − kπ)3
=

1

sin3 z


1
2 +

1
2 cos

2 z

,

A±
5 (z) =

+∞
k=−∞

(−1)k

(z − kπ)5
=

1

sin5 z


5
24 +

18
24 cos

2 z + 1
24 cos

4 z

,

A±
7 (z) =

+∞
k=−∞

(−1)k

(z − kπ)7
=

1

sin7 z


61
720 +

479
720 cos

2 z + 179
720 cos

4 z + 1
720 cos

6 z

.

Using the attached Mathematica notebook [11] further special cases can be
calculated.
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Remark 2. In the theory of wavelet analysis the exact lower and upper
bounds for the functions sin2r x · A2r(x) (x ∈ R) have important applications
(see [2, p. 90], [8, p. 24]). Using the fact that these functions are algebraic
polynomials of cos2 one can easily obtain the corresponding bounds.

4. Proofs

4.1. Proof of Theorem 1. Let

h(z) :=
z

sin z
, i.e. Fr(z) = hr(z) (|z| < π),

and

H(z) :=
h(z)

h(z)
=
1

z
− ctg z (|z| < π).

The functions h and H are analytic on the disc |z| < π. It is known that ([10,
Volume II, p. 512])

h(z) =
z

sin z
= 1 +

+∞

j=1

(−1)j−1 (2
2j − 2)B2j

(2j)!
z2j (|z| < π),

and (see [6, p. 111], [10, Volume II, p. 512] or [11])

H(z) =
1

z
− ctg z =

+∞

j=1

(−1)j+1 2
2jB2j

(2j)!
z2j−1 (|z| < π).

Therefore

H(2j)(0) = 0 (j = 0, 1, 2, . . .),

H(2j−1)(0) = (−1)j+1 2
2jB2j

2j
(j = 1, 2, 3, . . .).

Since Fr = hr we get

F 
r(z) = rhr−1(z)h(z) = r hr(z)

h(z)

h(z)
= rFr(z)H(z).
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Using the Leibniz formula we obtain

F (2j)
r (0) = (rFrH)

(2j−1)(0) = r

2j−1
l=0


2j − 1

l


F (l)
r (0)H(2j−1−l)(0) =

= r

j−1
l=0


2j − 1
2l


F (2l)
r (0)H(2(j−l)−1)(0) =

= r

j−1
l=0

(−1)j+1−l


2j − 1
2l


22(j−l)

2(j − l)
F (2l)
r (0)B2(j−l) =

=
r

2j

j−1
l=0

(−1)j+1−l


2j

2l


22(j−l)F (2l)

r (0)B2(j−l),

which proves the statement. 

4.2. Proof of Theorem 2. For a positive integer r the poles of the
function fr = 1/ sin

r are the zeros of the function sin, i.e. the points ak := kπ
(k ∈ Z).
Let us consider the pole a0 = 0 first. From Theorem 1 it follows that its

order is r and the principal part of the function fr at the point a0 is G0,r(1/z)
(see (4)).

Let us take the pole ak = kπ for a fixed k ∈ Z \ {0} and determine the
principal part of fr at this pole. Observe that

1

sinr z
=


(−1)k

sin(z − kπ)

r

= (−1)rk 1

sinr(z − kπ)

(z ∈ C \ {kπ | k ∈ Z}).

Consider the function

Fr(z − kπ) =


z − kπ

sin(z − kπ)

r

(|z − kπ| < π).

It is analytic on the whole disc |z − kπ| < π. Therefore it has a power series
expansion about the point ak = kπ

Fr(z − kπ) =

+∞
j=0

dj

dzj Fr(z − kπ)|z=kπ

j!
(z − kπ)j =

+∞
j=0

F
(j)
r (0)

j!
(z − kπ)j

(|z − kπ| < π),
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i.e. 
z − kπ

sin(z − kπ)

r

=

+∞
j=0

F
(j)
r (0)

j!
(z − kπ)j .

From this it follows that on the disc |z − kπ| < π we have

1

sinr z
= (−1)rk 1

sinr(z − kπ)
= (−1)rk

r−1
j=0

F
(j)
r (0)

j!

1

(z − kπ)r−j
+ Ur(z),

where Ur is an analytic function on C. This means that (see (4)) the principal
part of the function fr at the pole ak = kπ is

(5) (−1)rkG0,r


1

z − kπ


.

Let us define the function

fr(z) :=
1

sinr z
−G0,r


1

z


(z ∈ D).

We verify that the conditions of Theorem A hold for the function fr.

First we note that from the Theorem 1 it follows that the function fr is
analytic on the disc |z| < π. Indeed, it has the Taylor series expansion about
the point a0 = 0, which means that a0 = 0 is not a pole of fr, moreover

fr(0) =
F

(r)
r (0)

r!
.

For the proof of condition (2) of Theorem A a more delicate argument is
needed. It can be found in [9, p. 245] or in [7, p. 310].

The poles of fr are exactly the points ak = kπ (k ∈ Z \ {0}). The function
G0,r(1/z) (z ∈ D) is analytic around the point ak = kπ (k ∈ Z\{0}), therefore
its principal part at ak is identically zero. This means that the principal parts
of the functions fr and fr at the poles ak (k ∈ Z \ {0}) are equal. By (5) they
can be written in the following form

Gk,r


1

z − kπ


= (−1)rkG0,r


1

z − kπ


(z ∈ D, k ∈ Z \ {0}).

Therefore

Gk,r


1

z − kπ


−Gk,r


− 1

kπ


= (−1)rk


G0,r


1

z − kπ


−G0,r


− 1

kπ


=

= (−1)rk
r

j=0

F
(2j)
r (0)

(2j)!


1

(z − kπ)r−2j
+
(−1)r+1

(kπ)r−2j



(z ∈ D, k ∈ Z \ {0}).
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We shall show that the doubly infinite series generated by the above doubly
infinite sequence is absolutely convergent at every point z ∈ D and uniformly
convergent in every compact subset of D.

The sequence in question contains terms which have the form

1

(z − kπ)r−2j
+
(−1)r+1

(kπ)r−2j
.

Now separate the cases when the exponent r is even or odd.

First let us suppose that r = 2l (l = 1, 2, . . .) is an even number, i.e.
r =


r−1
2


= l − 1. The exponents

p := r − 2j = 2(l − j) (j = 0, 1, . . . , l − 1; p = 2l, 2l − 2, . . . , 2)

are also even. Since for every z ∈ D we have

1

(z − kπ)p
:

1

(kπ)p
=

1�
z
kπ − 1

p → 1 (k → +∞)

and


k=1 1/(kπ)
p < +∞ (p ≥ 2), thus the series


k=1 1/(z−kπ)p is absolute

convergent for every z ∈ D. Consequently the doubly infinite series

(6)

+∞

k=−∞

(−1)rk

G0,r


1

z − kπ


−G0,r


− 1

kπ



is absolutely convergent on D and uniformly convergent in every compact sub-
set of D.

Now let r = 2l + 1 (l = 0, 1, . . .) be an odd number, i.e. r =

r−1
2


= l.

The exponents

q := r − 2j = 2(l − j) + 1 (j = 0, 1, . . . , l; q = 2l + 1, . . . , 3, 1)

are also odd. The series


k=1 1/(z − kπ)q (q ≥ 3) is absolute convergent for
every z ∈ D. If q = 1, then using the inequality


1

z − kπ
+
1

kπ

 =


z

kπ(z − kπ)

 ≤
1

(kπ)2
|z| z

kπ − 1


we obtain that the doubly infinite series

+∞

k=−∞


1

z − kπ
+
1

kπ
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is absolutely convergent for every z ∈ D, i.e. the series (6) is absolutely con-
vergent on D for every odd exponent r, too.

We have shown that the function fr satisfies the conditions of Theorem A,
thus Theorem 2 follows from Theorem A. 

4.3. Proof of Theorem 3. Let us first consider the case of even indices,
i.e. consider the functions f2r. Using the fact that F

(2j+1)
2r (0) = 0 (j ∈ N0) we

have
2r−1
j=0

F
(j)
2r (0)

j!

1

z2r−j
=

r−1
j=0

F
(2j)
2r (0)

(2j)!

1

z2(r−j)
,

2r−1
j=0

F
(j)
2r (0)

j!


1

(z − kπ)2r−j
+
(−1)2r−1−j

(kπ)2r−j


=

=
r−1
j=0

F
(2j)
2r (0)

(2j)!

1

(z − kπ)2(r−j)
−

r−1
j=0

F
(2j)
2r (0)

(2j)!

1

(kπ)2(r−j)
.

Since the series in Theorem 2 is absolutely convergent it can be rearranged as

1

sin2r z
=

+∞
k=−∞

r−1
j=0

F
(2j)
2r (0)

(2j)!

1

(z − kπ)2(r−j)
+

+


F

(2r)
2r (0)

(2r)!
−

+∞

k=−∞

r−1
j=0

F
(2j)
2r (0)

(2j)!

1

(kπ)2(r−j)


.

Denote by A the part between the brackets {. . .}. For the proof of the statement
it is enough to show that A = 0. Using that

+∞
k=1

1

k2(r−j)
= (−1)r−j−1 (2π)

2(r−j)

2 (2(r − j))!
B2(r−j)

(see and [10, Vol. I., p. 685]) we get

+∞

k=−∞

r−1
j=0

F
(2j)
2r (0)

(2j)!

1

(kπ)2(r−j)
= 2

+∞
k=1

r−1
j=0

F
(2j)
2r (0)

(2j)!

1

(kπ)2(r−j)
=

= 2
r−1
j=0

F
(2j)
2r (0)

(2j)!

+∞
k=1

1

(kπ)2(r−j)
=

r−1
j=0

(−1)r−j−1F
(2j)
2r (0)

(2j)!

22(r−j)

(2(r − j))!
B2(r−j) =

=
1

(2r)!

r−1
j=0

(−1)r+1−j


2r

2j


22(r−j)F

(2j)
2r (0)B2(r−j) =

F
(2r)
2r (0)

(2r)!
.
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Thus A = 0, which proves that

1

sin2r z
=

+∞
k=−∞

G0,2r


1

z − kπ


=

+∞
k=−∞

r−1
j=0

F
(2j)
2r (0)

(2j)!
· 1

(z − kπ)2(r−j)
.

Let us now consider the odd cases, i.e. consider the functions f2r+1 and the

doubly infinite series in Theorem 2. We already know that F
(2r+1)
2r+1 (0) = 0, and

it is easy to observe that the terms

Ak : = −(−1)(2r+1)kG0,2r+1


− 1

kπ


,

Bk : = −(−1)(2r+1)(−k)G0,2r+1


− 1

(−k)π


,

have opposite signs for every k ∈ Z \ {0}. Indeed,

Bk := (−1)k+1G0,2r+1


1

kπ


,

moreover by (4)

G0,2r+1


− 1

kπ


=

r
j=0

F
(2j)
2r+1(0)

(2j)!


− 1

kπ

2r+1−2j

=

=
r

j=0

F
(2j)
2r+1(0)

(2j)!


(−1)

(kπ)2r+1−2j


= −G0,2r+1


1

kπ


,

so we obtain that

Ak = (−1)k+1G0,2r+1


− 1

kπ


= (−1)k+2G0,2r+1


1

k


,

which shows that Ak +Bk = 0 for every k ∈ Z \ {0}.
The series in Theorem 2 is absolutely convergent. After sorting its terms

we have

1

sin2r+1 z
=

+∞
k=−∞

(−1)kG0,2r+1


1

z − kπ


=

=

+∞
k=−∞

(−1)k
r

j=0

F
(2j)
2r+1(0)

(2j)!
· 1

(z − kπ)2(r−j)+1
,

which proves the statement in the odd cases, too. 
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