THE DISTRIBUTION OF ADDITIVE FUNCTIONS IN SHORT INTERVALS ON THE SET OF SHIFTED INTEGERS HAVING A FIXED NUMBER OF PRIME FACTORS

J.-M. De Koninck (Québec, Canada) I. Kátai (Budapest, Hungary)

Dedicated to Dr. Bui Minh Phong on his sixtieth birthday

Communicated by K.-H. Indlekofer

(Received September 9, 2012)

Abstract. Given a strongly additive function f, we establish short interval estimates for f on the set of shifted primes. We also consider similar sums, but running on sets of integers m + 1, where each integer m has a fixed number of prime factors.

1. Introduction

Given integers $q \ge 2$ and $a \ge 0$, let

$$\psi(x;q,a) = \sum_{\substack{n \le x \\ n \equiv a \pmod{q}}} \Lambda(n),$$

The first author supported in part by a grant from NSERC, the second author supported by ELTE IK. https://doi.org/10.71352/ac.38.057

where $\Lambda(n)$ stands for the von Mangoldt function. Let also ϕ stand for the Euler function. The well known Bombieri-Vinogradov theorem (see Bombieri [3] and Vinogradov [16]) provides an estimate for the error term in the Prime Number Theorem for arithmetic progressions, averaged over the moduli $q \leq Q$; it can be stated as follows.

Bombieri-Vinogradov theorem. Given an arbitrary number A > 0, there exists B = B(A) > 0 such that

$$\max_{\substack{1 \le q \le Q\\ (a,q)=1}} \left| \psi(x;q,a) - \frac{x}{\phi(q)} \right| = O\left(\frac{x}{\log^A x}\right)$$

where $Q = \frac{\sqrt{x}}{\log^B x}$.

The problem of finding an estimate similar to the Bombieri-Vinogradov theorem for short intervals was first studied by Jutila [9] who obtained an estimate of the form

(1.1)
$$\sum_{q \le Q} \max_{\substack{1 \le a \le q \\ (a,q)=1}} \max_{h \le y} \max_{\frac{x}{2} \le z \le x} \left| \psi(z+h;q,a) - \psi(z;q,a) - \frac{h}{\phi(q)} \right| \ll \frac{y}{\log^A x},$$

where, if we set $y = x^{\theta}$ and $Q = x^{\eta} / \log^{B} x$, the exponent η is bounded by a certain value which depends on θ and on

$$\inf\left\{\xi:\zeta\left(\frac{1}{2}+it\right)\ll t^{\xi}\right\},\,$$

where ζ is the Riemann zeta function. This estimate was later improved by various authors, namely Huxley & Iwaniec [8], Ricci [14], Perelli, Pintz & Salerno [12], [13], Zhan [17] and Timofeev [15]. Using the estimate obtained by Perelli, Pintz & Salerno [13], one can replace $\psi(x; q, a)$ by

$$\pi(x;q,a) := \#\{p \le x : p \equiv a \pmod{q}\}$$

in order to obtain the following version of the Bombieri-Vinogradov theorem for short intervals.

Theorem A.

(1.2)
$$\sum_{q \le Q} \max_{\substack{1 \le a \le q \\ (a,q)=1}} \max_{2 \le h \le y} \max_{\frac{x}{2} \le z \le x} \left| \pi(z+h;q,a) - \pi(z;q,a) - \frac{\mathrm{li}(h)}{\varphi(q)} \right| \ll \frac{y}{\log^A x},$$

where
$$y = x^{\frac{7}{12} + \varepsilon}$$
, $Q = x^{1/40}$ and $\operatorname{li}(x) := \int_{0}^{x} \frac{dt}{\log t}$. Here $A > 0$ and $\varepsilon > 0$ are arbitrary constants, with the implied constants in \ll depending only on A and

arbitrary constants, with the implied constants in \ll depending only on A and ε .

Recall the well known Erdős-Kac and Erdős-Wintner theorems.

Erdős-Kac theorem. Let f(n) be a strongly additive function and let $\Phi(z) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^{2}/2} dt \text{ stand for the normal Gaussian distribution. Further}$

set

$$A(x) := \sum_{p \le x} \frac{f(p)}{p} \quad and \quad B(x) := \sqrt{\sum_{p \le x} \frac{f^2(p)}{p}}$$

and assume that $B(x) \to \infty$ as $x \to \infty$. Then,

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{f(n) - A(x)}{B(x)} \le z \right\} = \Phi(z).$$

The above result was established by Erdős and Kac in 1939 [5].

Erdős-Wintner theorem. Let f(n) be an additive function. Then, f possesses a distribution function if and only if each of the three series

$$\sum_{|f(p)|>1} \frac{1}{p}, \qquad \sum_{|f(p)|\le 1} \frac{f(p)}{p}, \qquad \sum_{|f(p)|\le 1} \frac{f^2(p)}{p}$$

are convergent.

This result was established by Erdős and Wintner in 1939 [6].

2. First series of main results

Let $\varepsilon > 0$ be a fixed small number. Let $\pi(x)$ stand for the number of prime numbers not exceeding x. Let $I_{x,y} = [x, x + y]$, where $x^{\frac{7}{12} + \varepsilon} \leq y \leq x$, and let $\pi(I_{x,y}) := \sum_{p \in I_{x,y}} 1$. By using standard techniques, we can prove the following theorems. **Theorem 1.** Let g be a strongly multiplicative function such that $|g(p)| \leq \leq 1$ and $g(p) \to 1$ as $p \to \infty$. Assume that the infinite sum $\sum_{p} \frac{1-g(p)}{p}$ converges. Letting

$$M(g) := \prod_{p} \left(1 + \frac{g(p) - 1}{p - 1} \right).$$

Then,

$$\max_{x^{7/12+\varepsilon} \le y \le x} \left| \frac{1}{\pi(I_{x,y})} \sum_{p \in I_{x,y}} g(p+1) - M(g) \right| \to 0 \quad asx \to \infty.$$

Theorem 2. Let f be a strongly additive function such that $f(p) \neq 0$ for all primes p and such that $f(p) \to 0$ as $p \to \infty$. Let $A(x) = \sum_{n \leq x} \frac{f(p)}{p-1}$ and

assume that
$$\sum_{p} \frac{f^2(p)}{p} < \infty$$
. Moreover, let

$$\varphi(\tau) := \prod_{p} \left(1 + \frac{e^{i\tau f(p)} - 1}{p - 1} \right) e^{-i\tau f(p)/(p-1)}$$

and let F(u) be the distribution function whose characteristic function is $\varphi(\tau)$. Finally, let

$$F_{I_{x,y}}(u) := \frac{1}{\pi(I_{x,y})} \# \left\{ p \in I_{x,y} : f(p+1) - A(x) < y \right\}.$$

Then,

$$\lim_{x \to \infty} \max_{x^{7/12+\varepsilon} \le y \le x} \max_{u \in \mathbb{R}} \left| F_{I_{x,y}}(u) - F(u) \right| = 0.$$

Theorem 3. Let f be a strongly additive function and set $A(x) = \sum_{p \le x} \frac{f(p)}{p-1}$ and $B(x) = \sqrt{\sum_{p \le x} \frac{f^2(p)}{p-1}}$. Assume that $B(x) \to \infty$ and that $\max_{p \le x} \frac{|f(p)|}{B(x)} \to 0$ as $x \to \infty$. Then,

$$\lim_{x \to \infty} \max_{x^{7/12 + \varepsilon} \le y \le x} \max_{u \in \mathbb{R}} \left| \frac{1}{\pi(I_{x,y})} \# \left\{ p \in I_{x,y} : \frac{f(p+1) - A(x)}{B(x)} < u \right\} - \Phi(u) \right| = 0.$$

The second author proved [10] that if g is a multiplicative function satisfying $|g(n)| \leq 1$ for all $n \geq 1$, and

(2.1)
$$\sum_{p \in \mathcal{P}} \frac{1 - g(p)}{p} \quad \text{is convergent,}$$

and if N(g) is the product

$$N(g) = \prod_{p} \left(1 - \frac{1}{p-1} + \sum_{k=1}^{\infty} \frac{g(p^k)}{p^k} \right),$$

then

(2.2)
$$\lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p \le x} g(p+1) = N(g).$$

Hence, he deduced that if f is additive and satisfies the 3-series conditions (1.3), then the limit

$$\lim_{x \to \infty} \frac{1}{\pi(x)} \#\{p \le x : f(p+1) < z\} = F(z)$$

exists for almost all $z \in \mathbb{R}$, meaning in other words that f has a limiting distribution on the set of shifted primes.

In the proof of this result, the Bombieri-Vinogradov inequality was used. However, the full strength of the inequality was not necessary. In fact, the inequality due to Barban [1] was sufficient, namely the following:

For a certain constant $\delta > 0$ and every fixed A > 0,

$$\sum_{k < x^{\delta}} \mu^{2}(k) \max_{(\ell,k)=1} \left| \pi(x;k,\ell) - \frac{\mathrm{li}(x)}{\phi(k)} \right| < \frac{x}{\log^{A} x}.$$

In fact, any positive $\delta < \frac{3}{23}$ is admissible.

Now, the natural question is "can we deduce from Theorem A a short interval version of the Erdős-Wintner theorem for shifted primes or not?"

In fact, one could easily construct a strongly additive function f which is 0 on a set of primes \wp_0 such that $\sum_{p \in \wp_0} 1/p < \infty$ and such that $f(p) \in \{-1, 1\}$ for all $p \in \wp \setminus \wp_0$, while the short interval version of the Erdős-Wintner theorem for shifted primes does not hold. Let us now assume that the condition (2.1) is complemented by the fact that $g(p) \to 1$ as $p \to \infty$. Then, the short interval version of (2.2) can be proved by the method of the second author applying Theorem A (see Theorem 1). Hence, we can deduce the following assertion:

Let f is an additive function such that $f(p) \to 0$ as $p \to \infty$. Further assume that both series

$$\sum_{p} \frac{f(p)}{p}$$
 and $\sum_{p} \frac{f^{2}(p)}{p}$ converge.

Then, the function $F_{I_{x,y}}(u) := \frac{1}{\pi(I_{x,y})} \#\{p \in I_{x,y} : f(p+1) < u\}$ has a limit distribution F(u). Moreover, the characteristic function of F is given by

$$\varphi_F(\tau) = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p-1} + \sum_{k=1}^{\infty} \frac{e^{i\tau f(p^k)}}{p^k} \right)$$

Theorem 4. Let f be a strongly additive function such that $|f(p)| \leq 1$ for all primes p. Let $h \in \mathbb{Z}[x]$. For each integer $d \geq 1$, let $\eta(d)$ denote the number of residue classes $r \pmod{d}$ which are coprime with d and which satisfy $h(r) \equiv 0 \pmod{d}$. Let also

(2.3)
$$A(x) = \sum_{p \le x} \eta(p) \frac{f(p)}{p-1}$$
 and $B(x) = \sqrt{\sum_{p \le x} \eta(p) \frac{f^2(p)}{p-1}}.$

Assume that $B(x) \to \infty$ as $x \to \infty$. Then,

$$\lim_{x \to \infty} \max_{x^{7/12+\varepsilon} \le y \le x} \max_{u \in \mathbb{R}} \left| \frac{1}{\pi(I_{x,y})} \# \left\{ p \in I_{x,y} : \frac{f(|h(p)|) - A(x)}{B(x)} < u \right\} - \Phi(u) \right| = 0.$$

Theorem 5. Let f be a strongly additive function such that $f(p) \to 0$ as $p \to \infty$. Let h and η be as in Theorem 4. Assume also that the two series

$$\sum_{p} \eta(p) \frac{f(p)}{p-1} \qquad and \qquad \sum_{p} \eta(p) \frac{f^2(p)}{p-1}$$

are convergent. It is known that the limit distribution

$$F(z) := \lim_{x \to \infty} \frac{1}{\pi(x)} \#\{p \le x : f(|h(p)|) < z\}$$

exists (see Theorem 12.14 in the book of Elliott [4]). Then,

$$\lim_{x \to \infty} \max_{x^{7/12+\varepsilon} \le y \le x} \max_{z \in \mathbb{R}} \left| \frac{1}{\pi(I_{x,y})} \# \left\{ p \in I_{x,y} : f(|h(p)|) < z \right\} - F(z) \right| = 0.$$

Since the proofs of Theorems 1-5 can be obtained on the same way as their non short versions, we shall omit them.

Remark 1. The condition $f(p) \to 0$ as $p \to \infty$ in Theorems 1, 2 and 5 and the condition $\frac{1}{B(x)} \max_{p \le x} f(p) \to 0$ as $x \to \infty$ in Theorems 3 and 4 allows us to evaluate f and g. We can prove a Turan-Kubilius type inequality and proceed in the usual way.

Remark 2. Observe that it can be shown that the above theorems remain true if we consider the values over the set ap + 1 with $p \in I_{x,y}$, where $1 \le a \le \le x^{\varepsilon/2}$, say.

Given an integer $n \geq 2$, let $\omega(n)$ stand for the number of distinct prime factors of n and $\Omega(n)$ for the number of prime factors of n counting their multiplicity, and further set $\omega(1) = \Omega(1) = 0$. We now define

$$\wp_k := \{ n \in \mathbb{N} : \omega(n) = k \},$$
$$\mathcal{N}_k := \{ n \in \mathbb{N} : \Omega(n) = k \},$$
$$\Pi_k(I_{x,y}) := \#\{ n \in I_{x,y} : \omega(n) = k \},$$
$$N_k(I_{x,y}) := \#\{ n \in I_{x,y} : \Omega(n) = k \}$$

In Kátai [11], it was proved that

$$\Pi_k(I_{x,y}) = (1+o(1))\frac{y}{\log x} \frac{(\log\log x)^{k-1}}{(k-1)!} \qquad (x \to \infty)$$

uniformly for positive integers $k \leq \log \log x + c_x \sqrt{\log \log x}$, where c_x is a function which tends to infinity, but sufficiently slowly. Using essentially the same method, it was later proved by Bassily and Kátai [2] that, in the same range of k,

$$N_k(I_{x,y}) = (1+o(1))\frac{y}{\log x} \frac{(\log\log x)^{k-1}}{(k-1)!} \qquad (x \to \infty)$$

It is highly probable that the analogues of Theorems 1 through 5 hold if we replace the set of primes by the set of integers in \wp_k uniformly for $k < B \log \log x$ for any arbitrary fixed number B or by the set of integers $n \in \mathcal{N}_k$ uniformly for $k < (2 - \varepsilon) \log \log x$ for any arbitrary small number $\varepsilon > 0$. Such a result would follow if we could prove the analogue of the short interval version of the Bombieri-Vinogradov theorem as in Theorem A, substituting p by $m \in \wp_k$ or $m \in \mathcal{N}_k$. But as of today, we cannot prove this. Nevertheless, we can prove that the analogues of Theorems 1-5 hold uniformly for $m \in \wp_k$ and $m \in \mathcal{N}_k$ uniformly for $k \leq k_x$, provided $k_x^2/\log \log x \to 0$ as $x \to \infty$. To prove this, we need the following lemma, where P(n) (resp. $P_2(n)$) stands for the largest (resp. second largest) prime factor of the integer $n \geq 2$, with $P(1) = P_2(1) = 1$.

Lemma 1. Let $2 \leq k_x \in \mathbb{N}$ be such that $\rho_x := k_x^2 / \log \log x \to 0$ as $x \to \infty$. Set $\theta_x := \sqrt{\rho_x}$ and let

$$\Pi_k^{(0)}(I_{x,y}) = \#\{n \in \mathcal{P}_k \cap I_{x,y} : P_2(n) \ge x^{\theta_x/2k}\},\$$

$$N_k^{(0)}(I_{x,y}) = \#\{n \in \mathcal{N}_k \cap I_{x,y} : P_2(n) \ge x^{\theta_x/2k}\}.$$

Then,

(2.4)
$$\max_{2 \le k \le k_x} \frac{\Pi_k^{(0)}(I_{x,y})}{\Pi_k(I_{x,y})} \to 0 \quad as \quad x \to \infty.$$

Similarly,

(2.5)
$$\max_{2 \le k \le k_x} \frac{N_k^{(0)}(I_{x,y})}{N_k(I_{x,y})} \to 0 \quad as \quad x \to \infty.$$

Proof. We first prove (2.4). Let $\delta = \theta_x/2k$. Consider the integers $n = p_1 \cdots p_k \in I_{x,y}$ with $p_1 < \cdots < p_k$ and let p_m be the largest of those prime factors satisfying $p_m < x^{\delta}$. If n is counted in $\Pi_k^{(0)}(I_{x,y})$, then $m \le k-2$ and $n = p_1 \cdots p_m \nu = a\nu$, say, where $P(\nu) > x^{\delta}$. We then have $a \le x^{\delta m} < x^{1/2}$. Hence, for fixed p_1, \ldots, p_m , the number of such ν 's is, by Mertens' theorem,

$$<\#\left\{\nu:\left(\nu,\prod_{\pi\leq x^{\delta}}\pi\right)=1,\quad \frac{x}{a}\leq\nu\leq\frac{x}{a}+\frac{y}{a}\right\}\leq \\ \leq \frac{cy}{a}\prod_{\pi< x^{\delta}}\left(1-\frac{1}{\pi}\right)\leq\frac{c_{1}y}{a\delta\log x}.$$

Summing over m = 0 (that is, when a = 1) and m = 1, ..., k-1 and observing that, for fixed m,

$$\sum_{\substack{a=0\\\omega(a)=m}}^{k-1} \frac{1}{a} < \frac{1}{(m-1)!} (\log \log x + c)^{m-1},$$

we obtain that

$$\Pi_k^{(0)}(I_{x,y}) \le \frac{c_2 y}{\delta \log x} \sum_{m=0}^{k-2} \frac{(\log \log x + c)^m}{m!} \le \frac{c_3 y}{\delta \log x} \frac{(\log \log x + c)^{k-2}}{(k-2)!} \le c_4 \Pi_k(I_{x,y}) \frac{k-1}{\log \log x} \cdot \frac{1}{\delta}.$$

Since

$$\frac{k}{\log\log x} \cdot \frac{1}{\delta} \le \frac{2k_x^2}{\log\log x} \cdot \frac{1}{\theta_x} = 2\sqrt{\rho_x} \to 0 \quad as \quad x \to \infty,$$

estimate (2.4) follows immediately.

The proof of (2.5) is similar and will therefore be omitted.

3. Second series of main results

We can prove the following generalizations of Theorems 1 through 5. **Theorem 6.** Let g be as in the statement of Theorem 1 and let

$$M_a(g) := \prod_{(p,a)=1} \left(1 + \frac{g(p) - 1}{p - 1} \right) \quad for \quad 1 \le a \le x^{\varepsilon}.$$

Then,

$$\max_{1 \le a \le x^{\varepsilon/2}} \max_{x^{7/12+\varepsilon} \le y \le x} \left| \frac{1}{\pi(I_{x,y})} \sum_{p \in I_{x,y}} g(ap+1) - M_a(g) \right| \to 0 \quad as \quad x \to \infty.$$

Theorem 7. Let f, φ and F be as in Theorem 2 and let A(x) be as in Theorem 2. Moreover, let

$$F_{I_{x,y}}^{(k)}(u) := \frac{1}{\prod_{k}(I_{x,y})} \#\{m \in I_{x,y} \cap \wp_k : f(m+1) - A(x) < u\}.$$

Then,

$$\lim_{x \to \infty} \sup_{k \le k_x} \max_{x^{7/12+\varepsilon} \le y \le x} \max_{u \in \mathbb{R}} \left| F_{I_{x,y}}^{(k)}(u) - F(u) \right| = 0$$

Theorem 8. Let f, A(x) and B(x) be as in Theorem 3, with $B(x) \to \infty$ as $x \to \infty$. Moreover, let

$$G_{I_{x,y}}^{(k)}(u) := \frac{1}{\prod_k (I_{x,y})} \# \left\{ m \in I_{x,y} \cap \wp_k : \frac{f(m+1) - A(x)}{B(x)} < u \right\}.$$

Then,

$$\lim_{x \to \infty} \sup_{k \le k_x} \max_{x^{7/12+\varepsilon} \le y \le x} \sup_{u \in \mathbb{R}} \left| G_{I_{x,y}}^{(k)}(u) - \Phi(u) \right| = 0.$$

Theorem 9. Let f, h, η , A(x) and B(x) be as in Theorem 4, with $B(x) \rightarrow \infty$ as $x \rightarrow \infty$. Moreover, let

$$H_{I_{x,y}}^{(k)}(u) := \frac{1}{\prod_{k} (I_{x,y})} \# \left\{ m \in I_{x,y} \cap \wp_k : \frac{f(|h(m)|) - A(x)}{B(x)} < u \right\}.$$

Then,

$$\lim_{x \to \infty} \sup_{k \le k_x} \max_{x^{7/12 + \varepsilon} \le y \le x} \sup_{u \in \mathbb{R}} \left| H_{I_{x,y}}^{(k)}(u) - \Phi(u) \right| = 0.$$

Theorem 10. Let f, h and η be as in Theorem 5. Moreover, assume that the two series

$$\sum_{p} \eta(p) \frac{f(p)}{p-1} \qquad and \qquad \sum_{p} \eta(p) \frac{f^2(p)}{p-1}$$

are convergent, and let

$$F(z) := \lim_{x \to \infty} \frac{1}{\pi(x)} \#\{p \le x : f(|h(p)|) < z\}.$$

Then,

$$\lim_{x \to \infty} \max_{x^{7/12+\varepsilon} \le y \le x} \max_{z \in \mathbb{R}} \left| \frac{1}{\pi_k(I_{x,y})} \# \{ m \in I_{x,y} \cap \wp_k : f(|h(m)|) < z \} - F(z) \right| = 0.$$

Remark 3. Using the result of Germán [7], one can prove the analogue of Theorems 6 and 7 for the non short interval case.

4. Proof of Theorem 6

Since the proof of Theorem 6 is essentially a model for the proofs of Theorems 7-10, we will only prove Theorem 6.

Let $K_1(x) < K_2(x)$ be two numbers such that $\lim_{x\to\infty} K_1(x) = \infty$ and set $K_2(x) = x^{\delta}$, where $\delta > 0$ is a small number. For each number H > 0, set

$$g_H(p) = \begin{cases} g(p) & \text{if } p \le H, \\ 1 & \text{if } p > H. \end{cases}$$

Define implicitly the strongly additive function f by $g(p) = \exp\{if(p)\}$ for $f(p) \in [-\pi, \pi)$. Further define

$$f_H(p) = \begin{cases} f(p) & \text{if } p \le H, \\ 0 & \text{if } p > H. \end{cases}$$

In light of the condition $\lim_{p\to\infty}g(p)=1,$ we obtain that

$$\max_{n \in I_{x,y}} |g(n) - g_{K_2(x)}(n)| \to 0 \quad \text{as} \quad x \to \infty.$$

Let x be a large number with corresponding numbers $K_1 < K_2$. Finally, set

$$u(n) = \sum_{\substack{p \mid n \\ K_1 \le p < K_2}} f(p).$$

Using (1.2), we can obtain a Turán-Kubilius type inequality. Indeed, letting

$$A_a := \sum_{\substack{p \in [K_1, K_2] \\ p \mid a}} \frac{f(p)}{p-1}, \qquad B_a^2 = \sum_{\substack{p \in [K_1, K_2] \\ p \mid a}} \frac{f^2(p)}{p-1},$$

we have

$$\sum_{p \in I_{x,y}} \left(u(ap+1) - A_a \right)^2 \le c\pi (I_{x,y}) B_a^2.$$

Now

$$A_a = A_1 - \sum_{\substack{p \in (K_1, K_2]\\p|a}} \frac{f(p)}{p-1} = A_1 - D_a,$$

say. From the conditions stated in the theorem, we obtain that $B_a \to 0$ and $A_a \to 0$ uniformly for $a \leq x^{\varepsilon}$ as $x \to \infty$. We have thus obtained that, uniformly for $a \in [1, x^{\varepsilon}]$,

$$\frac{1}{\pi(I_{x,y})} \sum_{p \in I_{x,y}} \left| g(ap+1) - g_{K_1}(ap+1)e^{-iD_a} \right| \to 0 \quad \text{as} \ x \to \infty$$

Now, let $g_{K_1}(n) = \sum_{d|n} h_{K_1}(d)$. Since g is strongly multiplicative, it follows

that $h(p^{\alpha}) = 0$ if $\alpha \ge 2$ and also that $h_{K_1}(p) = 0$ if $p > K_1$.

Let us now choose $K_1 = \delta \log x$, where δ is a small positive number. Then, if $h_{K_1}(d) \neq 0$, we then have that

$$d \mid \prod_{\pi \le K_1} \pi \le e^{2K_1} = x^{2\delta}, \quad \text{so that} \quad d \le x^{2\delta}.$$

On the other hand,

(4.1)
$$\sum_{p \in I_{x,y}} g_{K_1}(ap+1) = \sum_{(d,a)=1} h_{K_1}(d) \pi(I_{x,y}|d, \ell_d),$$

where ℓ_d is the solution of $a\ell_d + 1 \equiv 0 \pmod{d}$. Since $g(p) \to 1$ as $p \to \infty$, it follows that $h(p) \to 0$ as $p \to \infty$. Thus, $h_{K_1}(d)$ is bounded. Hence, from (1.2) and (4.1), we have (4.2)

$$\sum_{p \in I_{x,y}} g_{K_1}(ap+1) = \sum_{(d,a)=1} \frac{h_{K_1}(d)}{\phi(d)} \pi(I_{x,y}) + o(\pi(I_{x,y})) = E_a \pi(I_{x,y}) + o(\pi(I_{x,y})),$$

say. But it is clear that

$$E_a = \prod_{\substack{p \le K_1 \\ p \nmid a}} \left(1 + \frac{g(p) - 1}{p - 1} \right).$$

Using this last estimate in (4.2) and recalling the definition of D_a , we obtain that

$$\frac{1}{\pi(I_{x,y})} \sum_{p \in I_{x,y}} g(ap+1) = e^{-iD_a} \prod_{\substack{p \le K_1 \\ p/a}} \left(1 + \frac{g(p) - 1}{p - 1} \right) + o(1) \qquad (x \to \infty).$$

Now, observe that

$$\prod_{\substack{p>K_1\\p\mid a}} \left(1 + \frac{g(p) - 1}{p - 1}\right) = \prod_{\substack{p>K_1\\p\mid a}} \left(1 + \frac{e^{if(p)} - 1}{p - 1}\right) = \prod_{\substack{p>K_1\\p\mid a}} \left(1 + \frac{if(p)}{p - 1} + O\left(\frac{f^2(p)}{(p - 1)^2}\right)\right) = e^{-iD_a}(1 + o(1)).$$

Since

$$\prod_{p>K_1} \left(1 + \frac{g(p) - 1}{p - 1} \right) \to 1 \quad \text{as} \ x \to \infty,$$

the proof of Theorem 6 is complete.

References

- Barban, M.B., New applications of the large sieve of Yu.V. Linnik, Akad. Nauk. Uzk. SSR Trudy Inst. Mat. V.I. Romanov, Teor. Ver. Mat. Stat., 22 (1961), 1-20. (in Russian)
- [2] Bassily, N.L. and Kátai, I., Some further remarks on a paper of K. Ramachandra, Annales Univ. Sci. Budapest. Sect. Comp., 34 (2011), 33-44.
- [3] Bombieri, E., On the large sieve, *Mathematika*, **12** (1965), 201-225.
- [4] Elliott, P.D.T.A., Probabilistic number theory II: Central limit theorems, Springer-Verlag, 1980.
- [5] Erdős, P. and Kac, M., On the Gaussian law of errors in the theory of additive functions, Proc. Nat. Acad. Sci. USA, 25 (1939), 206-207.
- [6] Erdős, P. and Wintner, A., Additive arithmetical functions and statistical independence, Amer. J. Math., 61 (1939), 713-721.
- [7] Germán, L., The distribution of an additive arithmetical function on the set of shifted integers having k distinct prime factors, Annales Univ. Sci. Budapest. Sect. Comp., 27 (2007), 187-215.
- [8] Huxley, M.N. and Iwaniec, H., Bombieri's theorem in short intervals, Mathematika, 22 (1975), 188-194.
- [9] Jutila, M., A statistical density theorem for L-functions with applications, Acta Arith., 16 (1969), 207-216.

- [10] Kátai, I., On the distribution of arithmetical functions on the set of prime plus one, *Compositio Math.*, 19 (1968), 278-289.
- [11] Kátai, I., A remark on a paper of K. Ramachandra, Number theory (Ootacamund, 1984), Lecture Notes in Math. 1122, Springer, Berlin, 1985, 147-152.
- [12] Perelli, A., Pintz, J. and Salerno, S., Bombieri's theorem in short intervals, Ann. Scvola Normale Sup. Pisa, Serie IV, 11 (1984), 529-539.
- [13] Perelli, A., Pintz, J. and Salerno, S., Bombieri's theorem in short intervals II., *Invent. Math.*, 79 (1985), 1-9.
- [14] Ricci, S.J., Mean-value theorems for primes in short intervals, Proc. London Math. Soc. 37 (2) (1978), 230-242.
- [15] Timofeev, N.M., Distribution of arithmetic functions in short intervals in the mean with respect to progressions, *Izv. Akad. Nauk. SSSR Ser. Mat.*, **51** (1987), 341-362, 447. (in Russian)
- [16] Vinogradov, A.I., The density conjecture for Dirichlet L-series, Izv. Akad. Nauk. SSSR Ser. Mat., 29 (1965), 903-934.
- [17] Zhan, T., Bombieri's theorem in short intervals, Acta Math. Sinica, 5 (1989), 37-47.

J.-M. De Koninck

Département de mathématiques et de statistique Université Laval Québec Québec G1V 0A6, Canada jmdk@mat.ulaval.ca

I. Kátai

Department of Computer Algebra Eötvös Loránd University Pázmány Péter s. 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu