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Abstract. Given a strongly additive function f , we establish short interval
estimates for f on the set of shifted primes. We also consider similar sums,

but running on sets of integers m + 1, where each integer m has a fixed

number of prime factors.

1. Introduction

Given integers q ≥ 2 and a ≥ 0, let

ψ(x; q, a) =

n≤x

n≡a (mod q)

Λ(n),
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where Λ(n) stands for the von Mangoldt function. Let also φ stand for the
Euler function. The well known Bombieri-Vinogradov theorem (see Bombieri
[3] and Vinogradov [16]) provides an estimate for the error term in the Prime
Number Theorem for arithmetic progressions, averaged over the moduli q ≤ Q;
it can be stated as follows.

Bombieri-Vinogradov theorem. Given an arbitrary number A > 0,
there exists B = B(A) > 0 such that

max
1≤q≤Q
(a,q)=1

ψ(x; q, a)−
x

φ(q)

 = O


x

logA x


,

where Q =
√
x

logB x
.

The problem of finding an estimate similar to the Bombieri-Vinogradov
theorem for short intervals was first studied by Jutila [9] who obtained an
estimate of the form

(1.1)


q≤Q
max
1≤a≤q
(a,q)=1

max
h≤y

max
x
2≤z≤x

ψ(z + h; q, a)− ψ(z; q, a)−
h

φ(q)


y

logA x
,

where, if we set y = xθ and Q = xη/ logB x, the exponent η is bounded by a
certain value which depends on θ and on

inf

ξ : ζ


1
2
+ it


 tξ


,

where ζ is the Riemann zeta function. This estimate was later improved by
various authors, namely Huxley & Iwaniec [8], Ricci [14], Perelli, Pintz &
Salerno [12], [13], Zhan [17] and Timofeev [15]. Using the estimate obtained
by Perelli, Pintz & Salerno [13], one can replace ψ(x; q, a) by

π(x; q, a) := #{p ≤ x : p ≡ a (mod q)}

in order to obtain the following version of the Bombieri-Vinogradov theorem
for short intervals.

Theorem A.

(1.2)


q≤Q
max
1≤a≤q
(a,q)=1

max
2≤h≤y

max
x
2≤z≤x

π(z + h; q, a)− π(z; q, a)−
li(h)
ϕ(q)


y

logA x
,
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where y = x
7
12+ε, Q = x1/40 and li(x) :=

x

0

dt

log t
. Here A > 0 and ε > 0 are

arbitrary constants, with the implied constants in  depending only on A and
ε.

Recall the well known Erdős-Kac and Erdős-Wintner theorems.

Erdős-Kac theorem. Let f(n) be a strongly additive function and let

Φ(z) :=
1√
2π

z

−∞
e−t

2/2 dt stand for the normal Gaussian distribution. Further

set

A(x) :=


p≤x

f(p)
p

and B(x) :=




p≤x

f2(p)
p

and assume that B(x)→∞ as x→∞. Then,

lim
x→∞

1
x
#


n ≤ x :

f(n)−A(x)
B(x)

≤ z


= Φ(z).

The above result was established by Erdős and Kac in 1939 [5].

Erdős-Wintner theorem. Let f(n) be an additive function. Then, f
possesses a distribution function if and only if each of the three series



|f(p)|>1

1
p
,



|f(p)|≤1

f(p)
p
,



|f(p)|≤1

f2(p)
p

are convergent.

This result was established by Erdős and Wintner in 1939 [6].

2. First series of main results

Let ε > 0 be a fixed small number. Let π(x) stand for the number of prime
numbers not exceeding x. Let Ix,y = [x, x + y], where x

7
12+ε ≤ y ≤ x, and let

π(Ix,y) :=


p∈Ix,y

1. By using standard techniques, we can prove the following

theorems.
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Theorem 1. Let g be a strongly multiplicative function such that |g(p)| ≤
≤ 1 and g(p) → 1 as p → ∞. Assume that the infinite sum


p

1− g(p)
p

converges. Letting

M(g) :=

p


1 +

g(p)− 1
p− 1


.

Then,

max
x7/12+ε≤y≤x


1

π(Ix,y)



p∈Ix,y

g(p+ 1)−M(g)


→ 0 asx→∞.

Theorem 2. Let f be a strongly additive function such that f(p) = 0 for

all primes p and such that f(p) → 0 as p → ∞. Let A(x) =


p≤x

f(p)
p− 1

and

assume that

p

f2(p)
p

<∞. Moreover, let

ϕ(τ) :=

p


1 +

eiτf(p) − 1
p− 1


e−iτf(p)/(p−1)

and let F (u) be the distribution function whose characteristic function is ϕ(τ).
Finally, let

FIx,y (u) :=
1

π(Ix,y)
# {p ∈ Ix,y : f(p+ 1)−A(x) < y} .

Then,
lim
x→∞

max
x7/12+ε≤y≤x

max
u∈R

FIx,y
(u)− F (u) = 0.

Theorem 3. Let f be a strongly additive function and set A(x) =


p≤x

f(p)
p− 1

and B(x) =




p≤x

f2(p)
p− 1

. Assume that B(x)→∞ and that max
p≤x

|f(p)|
B(x)

→ 0 as

x→∞. Then,

lim
x→∞

max
x7/12+ε≤y≤x

max
u∈R


1

π(Ix,y)
#


p ∈ Ix,y :

f(p+ 1)−A(x)
B(x)

< u


− Φ(u)

 = 0.
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The second author proved [10] that if g is a multiplicative function
satisfying |g(n)| ≤ 1 for all n ≥ 1, and

(2.1)


p∈P

1− g(p)
p

is convergent,

and if N(g) is the product

N(g) =

p


1− 1

p− 1
+

∞

k=1

g(pk)
pk


,

then

(2.2) lim
x→∞

1
π(x)



p≤x
g(p+ 1) = N(g).

Hence, he deduced that if f is additive and satisfies the 3-series conditions
(1.3), then the limit

lim
x→∞

1
π(x)

#{p ≤ x : f(p+ 1) < z} = F (z)

exists for almost all z ∈ R, meaning in other words that f has a limiting
distribution on the set of shifted primes.

In the proof of this result, the Bombieri-Vinogradov inequality was used.
However, the full strength of the inequality was not necessary. In fact, the
inequality due to Barban [1] was sufficient, namely the following:

For a certain constant δ > 0 and every fixed A > 0,



k≤xδ
µ2(k) max

(,k)=1

π(x; k, )−
li(x)
φ(k)

 <
x

logA x
.

In fact, any positive δ < 3
23 is admissible.

Now, the natural question is “can we deduce from Theorem A a short
interval version of the Erdős-Wintner theorem for shifted primes or not?”

In fact, one could easily construct a strongly additive function f which is 0
on a set of primes ℘0 such that


p∈℘0

1/p <∞ and such that f(p) ∈ {−1, 1} for

all p ∈ ℘ \ ℘0, while the short interval version of the Erdős-Wintner theorem
for shifted primes does not hold.
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Let us now assume that the condition (2.1) is complemented by the fact
that g(p) → 1 as p → ∞. Then, the short interval version of (2.2) can be
proved by the method of the second author applying Theorem A (see Theorem
1). Hence, we can deduce the following assertion:

Let f is an additive function such that f(p) → 0 as p → ∞. Further
assume that both series


p

f(p)
p

and

p

f2(p)
p

converge.

Then, the function FIx,y (u) :=
1

π(Ix,y)
#{p ∈ Ix,y : f(p+ 1) < u} has a limit

distribution F (u). Moreover, the characteristic function of F is given by

ϕF (τ) =


p∈P


1− 1

p− 1
+

∞

k=1

eiτf(p
k)

pk


.

Theorem 4. Let f be a strongly additive function such that |f(p)| ≤ 1
for all primes p. Let h ∈ Z[x]. For each integer d ≥ 1, let η(d) denote the
number of residue classes r (mod d) which are coprime with d and which
satisfy h(r) ≡ 0 (mod d). Let also

(2.3) A(x) =


p≤x
η(p)

f(p)
p− 1

and B(x) =




p≤x
η(p)

f2(p)
p− 1

.

Assume that B(x)→∞ as x→∞. Then,

lim
x→∞

max
x7/12+ε≤y≤x

max
u∈R


1

π(Ix,y)
#


p ∈ Ix,y :

f(|h(p)|)−A(x)
B(x)

< u


−Φ(u)

 = 0.

Theorem 5. Let f be a strongly additive function such that f(p)→ 0 as
p→∞. Let h and η be as in Theorem 4. Assume also that the two series


p

η(p)
f(p)
p− 1

and

p

η(p)
f2(p)
p− 1
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are convergent. It is known that the limit distribution

F (z) := lim
x→∞

1
π(x)

#{p ≤ x : f(|h(p)|) < z}

exists (see Theorem 12.14 in the book of Elliott [4]). Then,

lim
x→∞

max
x7/12+ε≤y≤x

max
z∈R


1

π(Ix,y)
# {p ∈ Ix,y : f(|h(p)|) < z} − F (z)

 = 0.

Since the proofs of Theorems 1-5 can be obtained on the same way as their
non short versions, we shall omit them.

Remark 1. The condition f(p) → 0 as p → ∞ in Theorems 1, 2 and 5

and the condition
1

B(x)
max
p≤x

f(p) → 0 as x → ∞ in Theorems 3 and 4 allows

us to evaluate f and g. We can prove a Turan-Kubilius type inequality and
proceed in the usual way.

Remark 2. Observe that it can be shown that the above theorems remain
true if we consider the values over the set ap+ 1 with p ∈ Ix,y, where 1 ≤ a ≤
≤ xε/2, say.

Given an integer n ≥ 2, let ω(n) stand for the number of distinct prime
factors of n and Ω(n) for the number of prime factors of n counting their
multiplicity, and further set ω(1) = Ω(1) = 0. We now define

℘k := {n ∈ N : ω(n) = k},
Nk := {n ∈ N : Ω(n) = k},

Πk(Ix,y) := #{n ∈ Ix,y : ω(n) = k},
Nk(Ix,y) := #{n ∈ Ix,y : Ω(n) = k}.

In Kátai [11], it was proved that

Πk(Ix,y) = (1 + o(1))
y

log x
(log log x)k−1

(k − 1)!
(x→∞)

uniformly for positive integers k ≤ log log x+cx
√
log log x, where cx is a function

which tends to infinity, but sufficiently slowly. Using essentially the same
method, it was later proved by Bassily and Kátai [2] that, in the same range
of k,

Nk(Ix,y) = (1 + o(1))
y

log x
(log log x)k−1

(k − 1)!
(x→∞).
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It is highly probable that the analogues of Theorems 1 through 5 hold if
we replace the set of primes by the set of integers in ℘k uniformly for k <
< B log log x for any arbitrary fixed number B or by the set of integers n ∈ Nk

uniformly for k < (2−ε) log log x for any arbitrary small number ε > 0. Such a
result would follow if we could prove the analogue of the short interval version of
the Bombieri-Vinogradov theorem as in Theorem A, substituting p by m ∈ ℘k
or m ∈ Nk. But as of today, we cannot prove this. Nevertheless, we can prove
that the analogues of Theorems 1-5 hold uniformly for m ∈ ℘k and m ∈ Nk

uniformly for k ≤ kx, provided k2x/ log log x → 0 as x → ∞. To prove this,
we need the following lemma, where P (n) (resp. P2(n)) stands for the largest
(resp. second largest) prime factor of the integer n ≥ 2, with P (1) = P2(1) = 1.

Lemma 1. Let 2 ≤ kx ∈ N be such that ρx := k2x/ log log x→ 0 as x→∞.
Set θx :=

√
ρx and let

Π(0)
k (Ix,y) = #{n ∈ Pk ∩ Ix,y : P2(n) ≥ xθx/2k},

N
(0)
k (Ix,y) = #{n ∈ Nk ∩ Ix,y : P2(n) ≥ xθx/2k}.

Then,

(2.4) max
2≤k≤kx

Π(0)
k (Ix,y)
Πk(Ix,y)

→ 0 as x→∞.

Similarly,

(2.5) max
2≤k≤kx

N
(0)
k (Ix,y)
Nk(Ix,y)

→ 0 as x→∞.

Proof. We first prove (2.4). Let δ = θx/2k. Consider the integers n =
= p1 · · · pk ∈ Ix,y with p1 < · · · < pk and let pm be the largest of those prime

factors satisfying pm < xδ. If n is counted in Π(0)
k (Ix,y), then m ≤ k − 2 and

n = p1 · · · pmν = aν, say, where P (ν) > xδ. We then have a ≤ xδm < x1/2.
Hence, for fixed p1, . . . , pm, the number of such ν’s is, by Mertens’ theorem,

<#



ν :


ν,



π≤xδ
π


 = 1,

x

a
≤ ν ≤ x

a
+
y

a



 ≤

≤cy
a



π<xδ


1− 1

π


≤ c1y

aδ log x
.
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Summing over m = 0 (that is, when a = 1) and m = 1, . . . , k−1 and observing
that, for fixed m,

k−1
a=0

ω(a)=m

1
a
<

1
(m− 1)!

(log log x+ c)m−1,

we obtain that

Π(0)
k (Ix,y) ≤ c2y

δ log x

k−2
m=0

(log log x+ c)m

m!
≤

≤ c3y

δ log x
(log log x+ c)k−2

(k − 2)!
≤ c4Πk(Ix,y)

k − 1
log log x

· 1
δ
.

Since
k

log log x
· 1
δ
≤ 2k2x

log log x
· 1
θx

= 2
√
ρx → 0 as x→∞,

estimate (2.4) follows immediately.

The proof of (2.5) is similar and will therefore be omitted.

3. Second series of main results

We can prove the following generalizations of Theorems 1 through 5.

Theorem 6. Let g be as in the statement of Theorem 1 and let

Ma(g) :=


(p,a)=1


1 +

g(p)− 1
p− 1


for 1 ≤ a ≤ xε.

Then,

max
1≤a≤xε/2

max
x7/12+ε≤y≤x


1

π(Ix,y)



p∈Ix,y

g(ap+ 1)−Ma(g)


→ 0 as x→∞.

Theorem 7. Let f , ϕ and F be as in Theorem 2 and let A(x) be as in
Theorem 2. Moreover, let

F
(k)
Ix,y

(u) :=
1

Πk(Ix,y)
#{m ∈ Ix,y ∩ ℘k : f(m+ 1)−A(x) < u}.
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Then,

lim
x→∞

sup
k≤kx

max
x7/12+ε≤y≤x

max
u∈R

F (k)
Ix,y

(u)− F (u)
 = 0.

Theorem 8. Let f , A(x) and B(x) be as in Theorem 3, with B(x)→∞
as x→∞. Moreover, let

G
(k)
Ix,y

(u) :=
1

Πk(Ix,y)
#


m ∈ Ix,y ∩ ℘k :

f(m+ 1)−A(x)
B(x)

< u


.

Then,

lim
x→∞

sup
k≤kx

max
x7/12+ε≤y≤x

sup
u∈R

G(k)
Ix,y

(u)− Φ(u)
 = 0.

Theorem 9. Let f , h, η, A(x) and B(x) be as in Theorem 4, with B(x)→
→∞ as x→∞. Moreover, let

H
(k)
Ix,y

(u) :=
1

Πk(Ix,y)
#


m ∈ Ix,y ∩ ℘k :

f(|h(m)|)−A(x)
B(x)

< u


.

Then,

lim
x→∞

sup
k≤kx

max
x7/12+ε≤y≤x

sup
u∈R

H(k)
Ix,y

(u)− Φ(u)
 = 0.

Theorem 10. Let f , h and η be as in Theorem 5. Moreover, assume that
the two series 

p

η(p)
f(p)
p− 1

and

p

η(p)
f2(p)
p− 1

are convergent, and let

F (z) := lim
x→∞

1
π(x)

#{p ≤ x : f(|h(p)|) < z}.

Then,

lim
x→∞

max
x7/12+ε≤y≤x

max
z∈R


1

πk(Ix,y)
# {m ∈ Ix,y ∩ ℘k : f(|h(m)|) < z} − F (z)

 = 0.

Remark 3. Using the result of Germán [7], one can prove the analogue
of Theorems 6 and 7 for the non short interval case.
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4. Proof of Theorem 6

Since the proof of Theorem 6 is essentially a model for the proofs of
Theorems 7-10, we will only prove Theorem 6.

Let K1(x) < K2(x) be two numbers such that lim
x→∞

K1(x) = ∞ and set

K2(x) = xδ, where δ > 0 is a small number. For each number H > 0, set

gH(p) =




g(p) if p ≤ H,

1 if p > H.

Define implicitly the strongly additive function f by g(p) = exp{if(p)} for
f(p) ∈ [−π, π). Further define

fH(p) =




f(p) if p ≤ H,

0 if p > H.

In light of the condition lim
p→∞

g(p) = 1, we obtain that

max
n∈Ix,y

|g(n)− gK2(x)(n)| → 0 as x→∞.

Let x be a large number with corresponding numbers K1 < K2. Finally, set

u(n) =

p|n

K1≤p<K2

f(p).

Using (1.2), we can obtain a Turán-Kubilius type inequality. Indeed, letting

Aa :=


p∈[K1,K2]
p|/a

f(p)
p− 1

, B2
a =


p∈[K1,K2]

p|/a

f2(p)
p− 1

,

we have 

p∈Ix,y

(u(ap+ 1)−Aa)2 ≤ cπ(Ix,y)B2
a.

Now

Aa = A1 −


p∈(K1,K2]
p|a

f(p)
p− 1

= A1 −Da,
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say. From the conditions stated in the theorem, we obtain that Ba → 0 and
Aa → 0 uniformly for a ≤ xε as x→∞. We have thus obtained that, uniformly
for a ∈ [1, xε],

1
π(Ix,y)



p∈Ix,y

g(ap+ 1)− gK1(ap+ 1)e−iDa
 → 0 as x→∞.

Now, let gK1(n) =


d|n
hK1(d). Since g is strongly multiplicative, it follows

that h(pα) = 0 if α ≥ 2 and also that hK1(p) = 0 if p > K1.

Let us now choose K1 = δ log x, where δ is a small positive number. Then,
if hK1(d) = 0, we then have that

d




π≤K1

π ≤ e2K1 = x2δ, so that d ≤ x2δ.

On the other hand,

(4.1)


p∈Ix,y

gK1(ap+ 1) =


(d,a)=1

hK1(d)π(Ix,y|d, d),

where d is the solution of ad +1 ≡ 0 (mod d). Since g(p)→ 1 as p→∞, it
follows that h(p)→ 0 as p→∞. Thus, hK1(d) is bounded. Hence, from (1.2)
and (4.1), we have
(4.2)


p∈Ix,y

gK1(ap+1) =


(d,a)=1

hK1(d)
φ(d)

π(Ix,y)+o(π(Ix,y)) = Eaπ(Ix,y)+o(π(Ix,y)),

say. But it is clear that

Ea =


p≤K1
p|/a


1 +

g(p)− 1
p− 1


.

Using this last estimate in (4.2) and recalling the definition of Da, we obtain
that

1
π(Ix,y)



p∈Ix,y

g(ap+ 1) = e−iDa


p≤K1

p|/a


1 +

g(p)− 1
p− 1


+ o(1) (x→∞).



The distribution of additive functions in short intervals 69

Now, observe that


p>K1

p|a


1 +

g(p)− 1
p− 1


=


p>K1

p|a


1 +

eif(p) − 1
p− 1


=

=


p>K1
p|a


1 +

if(p)
p− 1

+O

f2(p)

(p− 1)2


=

= e−iDa(1 + o(1)).

Since 

p>K1


1 +

g(p)− 1
p− 1


→ 1 as x→∞,

the proof of Theorem 6 is complete.
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