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1. Introduction

The analogues of some theorems for additive and multiplicative functions
are proved for Beurling type integers.

1.1. Notation and preliminary results

Let P be the whole set of the primes, w (n) and € (n) be the number of
prime factors, and the number of prime power factors of n, respectively. w (n)
is strongly additive, Q (n) is completely additive function. Let
(1.1) Ni(2) :=#{n <z | Q(n) =k}

Let A (p) be a sequence of real numbers such that
(1.2) 0<A(p) <Cp ™2,

where C and A < 1 are arbitrary positive numbers.

Financially supported by a DFG project.
https://doi.org/10.71352/ac.38.043


https://doi.org/10.71352/ac.38.043

44 K.-H. Indlekofer and I. Katai

Let
P ={p+A({) |peP}

and Np- be the multiplicative semigroup with unit element 1 generated by P*.
Let ¥ (p) = p+ A(p), and ¥ be a completely multiplicative function over N, i.e.
ifn=p"...p%  (p1,...,pr € P), then ¥ (n) =9 (p1)™* ... 9 (p,)"".

Let

(1.3) Ny (x) = #{0 (n) <z},
i.e. the number of those elements of A/p- which are not greater than z.
Let
I(n) T ( A(m))‘)‘] ,
k(n)=——== 1+ , ifn=p.. . por.
== =T+ =) ;
Then ) )
Ey(s)=) ——s =] 7———=
n*k (n) peP 1- pk*(p)
1-— L
pEP p*r(p)”
where
(=Y
ns’
i.e.
(1.4) Fy (s) = Hy (s)C(s),
where
1-— 1L
(1.5) Hy (s) =] 1_71}1-
P p°r(p)°

By using the argument of Bateman (see in Tenenbaum [1], II.5, Theorem
4, page 186) we obtain that

(1.6) [Ny (@) = Hy (1) 2] = O (wexp (~e1/logz) ).

where ¢ is a suitable positive constant.
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Let Y be an arbitrary positive number, dy (n) = nky (n), ky (n) =
= [I Ky (p%). Then, similarly as above,

p||n
p<Y

Foy (=3 ﬁ = Hyy ()¢ (5),

1_1

Hyy ()= [ —5—

p<Y 1- pr(p)°

Then, for Ny, (z) = #{Jy (n) <z} we have

(1.7) Ny, () — Hy, (1) z| = O (m exp (fc1 \/@)) .

1.2. Main theorems

r h
Let « = [[9(p)™, B =11 ﬁ(qj)bj. We say that U : Np- — C is
i=1 j=1

completely multiplicative, if U (a8) = U («) - U () holds for every «, 3 € Np+,
and U (1) = 1. We say that V : Np- — R is completely additive, if V (a) =
=V (a) + V (B) holds for every a, 8 € Np«, and V (1) = 0.

Assume that U is completely multiplicative in N (P*). Let us define
u(n) := U (¥ (n)). Then u(n) is completely multiplicative in N. Similarly,
if V' is completely additive in A (P*), then v (n) := V (J(n)) is completely
additive in N.

The following analogue of the theorem of Halasz holds.

Theorem 1. Let P*, Np- be defined as in 1.1. Let G : Np« — C be
completely multiplicative, |G (9 (n))| =1 (VI (n) € Np-).

Let

(1.8) S(x):= Z G (9 (n)).

I(n)<z

Then there exist a complex constant C1, a real number T, a slowly oscillating
function Lo (u), such that |Lo (u) | = 1, LL”U(("LI)) — 1 uniformly as u — oo, u <
< uy < 2u, such that

(1.9) S (z) = Crz' T Ly (log x) + o ().
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Moreover, % — 0 as x — oo if and only if

1=Re (G0 @) )"
9 (p)

(1.10) >

I (p)EP*

diverges for every real T.

Assume that (1.10) is convergent for some 1. Then

S(JI) _ T
(1.11) Ny () Cax'" Lo (log ) + 0, (1) (x — 0).
The condition
. Sz
1.12 1 =M#0
(1.12) P 7#

holds if and only if

18 convergent.

Remark 1. Theorem 1 remains true without almost any restriction for
multiplicative, not only for completely multiplicative functions. The proof
becomes somewhat more complicated.

Remark 2. A reformulation of Theorem 1 is the following

Theorem 1°. Assume that the conditions of Theorem 1 hold. Let g (n) :=
;=G (9 (n)). Then g is completely multiplicative in N, |g(n)| =1 (n €N),

(1.14) S (z) = Z g(n).

The sum

(1.15) > 5 (p; -
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is absolutely convergent, consequently (1.10) is divergent for some T, if and
only if

(1.16) ) 1-Re(g(p) »p")

peEP* p

is divergent. The condition (1.13) is equivalent to the convergence of (1.17),
where

(1.17) 3 L=9()

peEP* p

Moreover, % — 0 as ¢ — oo, if (1.15) is divergent for every real T.

Assume that (1.16) is convergent for some T. Then

(1.18) 519(?2) = 2’ Lo (logz) + 05 (1) (2 — 00).
The condition
(1.19) lim ]\fﬂ(z) =M #£0

holds if only if (1.13) is convergent.

2. Proof of Theorem 1’

Let Y be fixed, Q = [] p,

PSY
pEP

Jy (n)<z
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Let

(2.3) E@|Q= Y gn).

It is clear that

n<z 5\(Q,n)
(2.4) "
:ZM((S)Q(é)E(g)
5lQ
and furthermore
(2.5) Sy (z)=>_g(D) >  g(m),
D 7n(DrcégD)):%m

where D runs over the integers, the largest prime factor of which is at most Y.
Thus

T
2.6 S = D)E|——— ‘ .
(26) v@) =2 g(D) (5571 @)
Let us assume first that E(x) — 0 as x — oo. Then lim w =0,
Tr— 00

furthermore

: Sy (z) | 1 1
2.7 lims < — <
(2.7) im sup - < E Dr(D) = Y2’

D>YY

say. Since k (n) > ky (n), therefore ¥y (n) < (n), consequently

2.8) IS (x) =Sy (2)] < |Hy, (1) — Hy (1) |z + O (x exp (—01 \/@))

(see (1.6), (1.7)).

Let us observe furthermore that Hy, (1) — Hy (1) as ¥ — oco. We have

5y ($)| 1S (z) =Sy (@)| _
Ny 93) Ny () N
|SY (z)] JrC2|5(»’1?) — Sy (z) |

X

‘Nﬁ ()|~

)
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with constants ci, co which may depend only on .

From (2.7), (2.8) we obtain that

|5 (2)|

C1

(29) hinﬂSip ng (m) < y2 + CQ|H19 (1) - Hqu (1) |
Since the inequality (2.9) remains true for Y — oo, it follows that ]\”29(8)

=0 (z— o0).
Assume that (1.16) is divergent for 7. Then E (z) = Cz'*7 L (logx) +

+o(z) (z — 00), according to the theorem of G. Haldsz.

From (2.4) we obtain that

(2.10) E(x|Q)=Ca"""Ly(logx) [] (1 - gl(fi)T) ,
p<Y p
: g(D) g9 (p)
Sy (z) =Ca' ™t — 2 Iy (logx) (1 - )+
D§y (Dr (D) Hy P
xr
+0 (W) .
Thus
Sy (z) . g9 (p) 1
o+ =Ca'Lo(oga) [T (1= 552 ) 11 | s—m— | +
p<Y p<Y PIFTR(p) T

Let
1- 5%
_ pItiT
n(Y)= H _ 9(p)
p<Y piHiTR(p) T

Since £ (p) = 1+ O (p2~1), it follows that Ylim n(Y) = n exists and n # 0.
Continuing as in the proof of the first assertion, we obtain that

S ()

= T Lo (1 2 (1)
Ny (@) Cinz'" Lo (log x) + 0, (1)

Here Cy = C lim NﬁT(x)

Tr—00
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In the case (1.17) we have

im 28 20,

r—00 €T

Arguing as above we obtain (1.19).
3. Analogues of the Erdés-Wintner and Erdés-Kac theorems

From Theorem 1’ one can deduce the analogues of the Erdés-Wintner and
the Erdés-Kac theorems.

Theorem 2 (Erdds-Wintner). Let F' be a completely additive function in
Np+«. Let

(3.1) H, (y) = Nﬁ( )#{?9( n) <z | F(J(n) <y}.
Then
(3.2) lim H, (y) =: H (y)

r—00

exists for almost all y € R, and H (y) is a distribution function if and only if
the next three series are convergent:

F (9 (p))
(3.3) FO®)
|F(ﬂ%>|§1 7 ()
F2 (0 (p))
F(ﬁ%;nsl v (p)
1
(3.5) .
s P

Let D, be a sequence of real numbers, such that

(3.6) Te(y) = 7= #{0(n) <z | F(9(n) - D <y}

Nﬂ()
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tends to a distribution function T (y) for almost ally € R. Then D, =Y, +
+c+ o, (1), where ¢ is an arbitrary real constant,

_ E ()
(3.7) Y, = wg@ )
|F(9(p))|<1

furthermore (3.4), (3.5) are convergent.

In the opposite direction, if (3.4), (3.5) are convergent, then (3.6) has a
limit for almost all y.

Theorem 3 (Erdés-Kac). Let F be a completely additive function in
Np-, F(0(p))=0(@1) (J(p) €P). Let

v, = Y F (0 (p)) -y F2 (9 (p))
T d(p)<z v ’ 02 N v (p) .
Then

lim ## {19(71) <z ‘

F (9 (p)) — M,
w50 Ny (@) <y}

Ox

= (y)

holds for every y € R. Here ¢ is the Gaussian law.

Theorems 2 and 3 can be proved by reformulating these theorems for
additive functions in N, defining f (n) := F (¢ (n)), and applying Theorem 1’
for the characteristic function g, (n) = ¢7/("). We omit the details.

4. Counting J(n) when n has a fixed number of prime factors

Let
(4.1) N (z) = #{0 (n) <z | (n) = k}.

Assume in this section that A, > 0.

k—1
We shall write § = & (z) = loém . %. Assume that for some
positive constants o, 0 < ﬁ <2—p. Letn= ﬁ.

As we know

(4.2) Ni () = (14 0, (1)) & ()
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uniformly in the interval n € [9,2 — o]. (See [1], Theorem 5, page 205.)
We shall prove that

(4.3) Ny (xz) = (140, (1)) wNg (x)

uniformly in 7 € [p,2 — g]. Here

d"@\d

(4.4) P = H -

2
Z‘;

P
It is easy to show that in the interval n € [p,2 — ¢],
(4.5) Newt () = (1+ 0, (1)) Ni (2)
for every fixed [, furthermore

(4.6) Ni; (ax) = aNg (z) (1 + 0y (1))

for every fixed a > 0.
Let Y be a large constant, @ = [] p. Let

(4.7) Ni(z|Q)=#{m <z | (m,Q) =1}
Since
@@= > n

r=r 8lmQ)

(4.8) )
= 1(8) Ne—u(s) (5)

slQ

from (4.5), (4.6) we have
w(d)
(1.9) N | @)= (10, (1)) Vi () Y0 AU
5lQ
Let
Ap i n) = Ap i n)=mnk

wo =TT (1+5)+ am=T1 (1+5) . nm =
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(4.10) Nyy i () = #{0y (n) <=z, Q(n) =k}

Counting the elements in (4.10), write n = Dm, where the largest prime factor
of D is less than Y, (m,Q) = 1. We have

Noyi(z)= Y 1—ZNM < \Q)

ky (D)Dm<a
Q(m)=k—Q(D)

=X + Mo,

where in ¥; we sum over D <Y, and in £y over D > Y.

From (4.9) we obtain that

1
=040, (1) ]] (1 — > P DD N (z) =

p|lQ
11
=(1+0, (1) (L +oy () [ +——2—Ni ().
2|Q Ky (p)p

To estimate X5, we subdivide X5 as X9 1 4 X2 2, where in Y5 ; we sum over
YY < D < /z, and in ¥p5 over D > /z. Y55 is clearly less than O (m%),
say. Using the Hardy-Ramanujan inequality according to which

Ny (z) < 12y (2),

uniformly as k < (2 — p)loglogz, ¢ = ¢1 (o), we obtain that

n
Yo < N,
2,150 Z xy (D) D K (2)
D>YY
Since
Z SS¥ S o7 T <
DYY"W(D)D Y= VD Y7p<yl—7

1

we have X971 = oy (1) Ni ().

Hence it follows that

(4.11) Ny, & () = (140, (1)) (1 + oy (1)) %Nk (z),
plo - P
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uniformly as 7 € [9,2 — g].
We shall overestimate

20 .= Z log g2 (n) .

n<x

Q(n)=k
Since logga (n) <2 3 A;a, we have
p*lIn
A
5O <o 3 Ay (l;) <
Y <p<z p p
aA A
(4.12) <2 Yy AN (o) + Ve pl <
S v
¢Ny ()

Thus

(4.13) #{ngx, Qn)==Fk | loggs(n) > ylﬁ} <c B
To estimate Ny, (x) we observe that 9 (n) > ¥y (n), and so Ny, (z) > Ny (z).
(4.14)  (0<) Nay (x) = Ny (2) = #{n [ Q(n) =k, dy (n) <z < (n)}.

If n is counted in the right hand side of (4.14), then either

(a) log g3 (n) > Yl%’ le. g2(n)= o F >y Y1%
or
(b) T _<dy(m)<wz, ga(n)—1< L

g2 (n) Ys

The size of the integers in (a) is less than % From (b) we obtain that
2

Jy (n) € [m— YQ—Z,;U], and so the size of the integers in (b) is less than
2

oy (1) Ni (x). This follows from (4.11). Let us observe that

n

Hilf—wp as Y — oo.

plQ ~ prv(p)
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Collecting our results we obtain that

Nﬁvk (x)

w‘ <oy (1)

uniformly as 7 € (p,2 — p). Since Y is arbitrary large, therefore (4.3) is true.
By using the same method we are able to prove the following assertions.

Theorem 4. Let g be a multiplicative function, |g(n)| =1 (n€N),

assume that
Z 1—g(p)
p

is convergent. Let

2 2
My () =[Ten(m. enn) = (1_’7) <1+9<P>"+9(p3” +>

p p p
We have
. 1
Jm o swp g D g(n) =My (g) =0
n=rogisgz €le2—el | RO ) 5002,
Q(n)=k

Theorem 5. Let f be an additive function, assume that the “three series”,

i.e. ) .
3 f) 3 -f;PX v oL

smi<t P i< =1 P

are convergent.
For some n € (0,2) let €, = &, (n) be the random variable distributed by

P&, =f(")) = (1 - g) (%)a (=0,1,2,...). Assume that &, (p € P)
are completely independent, 0 () :== > &, (n). Let F,, (y) := P (0 (n) <vy). Let
P

furthermore
1
F = <z, Q)= .
o 4) = o O () 2. Q) =, £ (n) <)
Let 0 < p < % Then
lim max sup |Fre0 (y) — F, (y) | =0.

T = s €le.2—el yeR
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Theorem 6. Let f be an additive function bounded on the set of prime

powers p*. Let Ay = > %, Let f (p) be additive defined on prime powers
p<z

* 2
P by f*(p%) = f () — oot Let B2 = 3 L0 pet B, — 00, n=

p<z
= loglkogr. Then
lim max |——— I(n) <z, Qn) =k, < B _o.
z—00nelo,2—0] | Nk,9 (x)#{ (n) < (n) B/l Y o (y)

Here (0 <) p(< 1) is an arbitrary constant, ¢ is the standard Gaussian law.

5. Further remarks

Let A>1, B >0 be fixed numbers, P = {0 (p) = Ap + B}, Nj be the

semigroup with unit elements 1 generated by the elements of P.

We can obtain analogue theorems of Theorem 3, 4, 5 in this case. It is
enough to observe that
d(n) <z, Qn)=Ek

holds if and only if ¥ (n) < 4%, Q(n) = k, where ¥ (p) = p + %.
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