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1. Introduction

Recently, many authors are interested in the theory of convolution for
integral transforms and gave several interesting applications (see [2, 8, 9, 13,
15, 16, 17, 18]). In particular, they consider integral equations with the Toeplitz
plus Hankel kernel (see [3, 6, 14])

(1.1) f(x) +

∞

0

[k1(x+ y) + k2(x− y)]f(y)dy = g(x), x > 0,

where k1, k2, g are known functions, and f is unknow function. Various special
partial cases of this equation can be solved in closed form with the help of
convolutions and generalized convolutions. However, for general case of the
Hankel kernel k1 and the Toeplitz kernel k2, solving this equation is still open.

In [5] V.A. Kakichev introduced a constructive method for defining a

polyconvolution
γ∗(f1, f2, · · · , fn)(x) of functions f1, f2, · · · , fn with a weight

function γ for the integral transforms K,K1,K2, · · · ,Kn, for which the follow-
ing factorization property holds

K[
γ∗(f1, f2, · · · , fn)](y) = γ(y)

n

i=1

(Kifi)(y), n ≥ 3.

Basing on Kakichev’s method, several polyconvolutions for integral transforms
have been constructed and studied (see [10]).

It is worth noting that this polyconvolution convolution is quite different
from the ones studied in [15, 17]. We will see in Theorem 2.1 the difficulty
in proof of this theorem. Therefore, we obtain quite interesting different
applications to solving integral equations and systems of integral equations
with Toeplitz plus Hankel kernel, which seems difficult to be solved by using
the results studied in [15, 17].

In this paper, we construct a new polyconvolution for the Fourier sine,
Fourier cosine and the Kontorovich-Lebedev transforms. The existence and
the factorization equality of this new polyconvolution is proved (Theorem 2.1).
In Section 3, we obtain several relations of this new polyconvolution with other
known convolutions (Theorem 3.1). Finally, in Section 4, we apply the new
polyconvolution (2.1) to solve a class of generalized integral equations with
Toeplitz plus Hankel kernel.
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2. Polyconvolution

Let Fc, Fs and Kiy denote the Fourier cosine, the Fourier sine and the
Kontorovich-Lebedev transforms, respectively (see [8]) defined by

(Fcf)(y) =


2
π

∞

0

cos yx.f(x)dx, y > 0,

(Fsf)(y) =


2
π

∞

0

sin yx.f(x)dx, y > 0,

Kix[f ] =

∞

0

Kix(t)f(t)dt,

here Kix(t) is the Macdonald function (see [1])

Kix(t) =

∞

0

e−t cosh u cosxu du, x ≥ 0, t > 0.

Definition 1. The polyconvolution of functions f , g and h for the Fourier
sine, Fourier cosine and the Kontorovich-Lebedev integral transforms is defined
as follows

(2.1) ∗
1
(f, g, h)(x) =

1
2
√

2π

∞

0

∞

0

∞

0

θ(x, u, v, w)f(u)g(v)h(w)dudvdw, x > 0,

where
θ(x, u, v, w) =

= e−w cosh(x−u+v) + e−w cosh(x−u−v) − e−w cosh(x+u+v) − e−w cosh(x+u−v).

Definition 2. Denote by L1(R+) and L1(β(x),R+) respectively the set of
all functions f and g defined on (0,+∞) such that

+∞

0

|g(x)|dx < +∞ and

+∞

0

β(x)|f(x)|dx < +∞.
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The norm of a function f in L1(R+) and a function g in L1(β(x),R+) are
respectively defined as follow

fL1(R+) =

∞

0

|f(x)|dx and gL1(β,R+) =

∞

0

β(x)|g(x)|dx.

Theorem 2.1. Let f , g be functions in L1(R+), and h a function in

L1


1√
w
,R+


, then the polyconvolution (2.1) belongs to L1(R+) and satisfies

the following factorization equality

(2.2) Fs(∗
1
(f, g, h))(y) = (Fsf)(y).(Fcg)(y).(Kiyh), ∀y > 0.

Proof. Since e−w cosh x ≤ 1 for all w > 0 and for all x ∈ R+ and L1


1√
w
,R+



is a subspace of L1(R+), we have

| ∗
1
(f, g, h)(x)| ≤

1
2
√

2π

∞

0

∞

0

∞

0

|f(u)||g(v)||h(w)|

e−w cosh(x−u+v) + e−w cosh(x−u−v)+

+e−w cosh(x+u+v) + e−w cosh(x+u−v)

dudvdw ≤

≤


2
π

∞

0

|f(u)|du.
∞

0

|g(v)|dv.
∞

0

|h(w)|dw < +∞.

On the other hand, note that cosh(x− u+ v) ≥ (x−u+v)2

2 , therefore

e−w cosh(x−u+v) ≤ e−w
(x−u+v)2

2 .

Using formular 3.321.3 in [1], p.321, we have

(2.3)

∞

0

e−w cosh(x−u+v)dx ≤


2
w

∞

0

e−(
√

w
2 (x−u+v))2d


w

2
(x− u+ v)


≤

≤2


2
w

∞

0

e−s2ds =


2π
w
.
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It implies that

∞

0

∞

0

∞

0

∞

0

e−w cosh(x−u+v)|f(u)||g(v)||h(w)|dudvdwdx ≤

≤
∞

0

∞

0

∞

0


2π
w

|h(w)||f(u)||g(v)|dudvdw =

=
√

2π

∞

0

1√
w
|h(w)|dw

∞

0

|f(u)|du.
∞

0

|g(v)|dv < +∞.

Similarly,

∞

0

∞

0

∞

0

∞

0

e−w cosh(x−u−v)|f(u)||g(v)||h(w)|dudvdwdx < +∞;(2.4)

∞

0

∞

0

∞

0

∞

0

e−w cosh(x+u+v)|f(u)||g(v)||h(w)|dudvdwdx < +∞;(2.5)

∞

0

∞

0

∞

0

∞

0

e−w cosh(x+u−v)|f(u)||g(v)||h(w)|dudvdwdx < +∞.(2.6)

From formulae (2.1), (2.3), (2.4), (2.5) and (2.6) we get

∞

0

| ∗
1
(f, g, h)(x)|dx < +∞.

This shows that the polyconvolution (2.1) belongs to L1(R+). We now prove
the factorization equality (2.2). Indeed, we have

(Fsf)(y)(Fcg)(y)(Kiyh) =

∞

0

∞

0

∞

0

sin(yu) cos(yv)Kiy(w)f(u)g(v)h(w)dudvdw.
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Using formula 2 in [1], p .130, we get
(2.7)

(Fsf)(y)(Fcg)(y)(Kiyh) =

=
2
π

∞

0

∞

0

∞

0

∞

0

sin(yu) cos(yv) cos(yα)e−w coshαf(u)g(v)h(w)dudvdwdα =

=
1
2π

∞

0

∞

0

∞

0

∞

0

e−w coshα[sin y(u+ v + α) + sin y(u+ v − α)+

+ sin y(u− v + α) + sin y(u− v − α)]f(u)g(v)h(w)dudvdwdα.

Note that

(2.8)

∞

0

e−w coshα[sin y(u+ v + α) + sin y(u− v + α)]dα =

=

∞

0

sinxy[e−w cosh(x−u−v) + e−w cosh(x−u+v)]dx,

and

(2.9)

∞

0

e−w coshα[sin y(u+ v − α) + sin y(u− v − α)]dα =

=−
∞

0

sinxy[e−w cosh(x+u+v) + e−w cosh(x+u−v)]dx.

From formulaes (2.7), (2.8), (2.9) and (2.1) we obtain

(Fsf)(y)(Fcg)(y)(Kiyh) = Fs(∗
1
(f, g, h))(y).

The proof is completed.

Corollary 2.1. Let f, g be functions in L1(R+), and h a function in
L1(β,R+). Then the following estimation holds

 ∗
1
(f, g, h)L1(R+) ≤ fL1(R+)gL1(R+)hL1(β,R+).



A novel polyconvolution and applications 31

Proof. From formulas (2.1), (2.3)-(2.6) we have


| ∗
1
(f, g, h)(x)|dx ≤ 2

∞

0

1√
w
|h(w)|dw.

∞

0

|f(u)|du.
∞

0

|g(v)|dv.

Therefore, by the Definition 2, the proof is completed.

Remark 1. In view of Corollary 2.1 if we fixed function h, the space
L1(R+) equipped with polyconvolution multiplication, namely f ∗g := ∗

1
(f, g, h),

is obviously a noncommutative Banach algebra.

3. Relations with known convolutions

In order to construct other properties for the polyconvolution (2.1), we
recall the following known convolutions and generalized convolutions. The
convolution of two functions f and g for the Fourier transform is given by (see
[8]):

(3.1) (f ∗
F
g)(x) =

1√
2π

∞

−∞
f(x− y)g(y)dy, x ∈ R.

This convolution satisfies the so-called factorization equality

F (f ∗
F
g)(y) = (Ff)(y)(Fg)(y), ∀y ∈ R.

The convolution of two functions f and g for the Fourier cosine is of the form
(see [8])

(3.2) (f ∗
1
g)(x) =

1√
2π

∞

0

f(y)[g(|x− y|) + g(x+ y)]dy, x > 0,

which satisfies the following factorization equality

Fc(f ∗
1
g)(y) = (Fcf)(y)(Fcg)(y), ∀y > 0, f, g ∈ L1(R+).
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The convolution with a weight function γ(x) = sinx of two functions f
and g for the Fourier sine transform was introduced in [4] as

(3.3) (f
γ∗ g)(x) =

=
1

2
√

2π

+∞

0

f(y)[sign(x+ y − 1)g(|x+ y − 1|)+

+ sign(x− y + 1)g(|x− y + 1|)−
− g(x+ y + 1)− sign(x− y − 1)g(|x− y − 1|)]dy, x > 0,

and the following factorization identity holds

Fs(f
γ∗ g)(y) = sin y(Fsf)(y)(Fsg)(y), ∀y > 0, f, g ∈ L1(R+).

The generalized convolution of two functions f, g for the Fourier sine and
Fourier cosine transforms was studied in [8] as

(3.4) (f ∗
2
g)(x) =

1√
2π

∞

0

f(u)[g(|x− u|)− g(x+ u)]du, x > 0,

and the respective factorization identity is (see [8]):

Fs(f ∗
2
g)(y) = (Fsf)(y).(Fcg)(y), ∀y > 0, f, g ∈ L1(R+).

The generalized convolution of two functions f and g for the Fourier cosine and
the Fourier sine transforms is defined in [12] as

(3.5) (f ∗
3
g)(x) =

1√
2π

∞

0

f(u)[sign(u− x)g(|u− x|) + g(u+ x)]du, x > 0.

For this generalized convolution the following factorization equality holds (see
[12])

Fc(f ∗
3
g)(y) = (Fsf)(y)(Fsg)(y), ∀y > 0, f, g ∈ L1(R+).

The generalized convolution with the weight function γ(x) = sinx for the
Fourier cosine and the Fourier sine transforms of f and g has the form

(3.6) (f
γ∗
1
g)(x) =
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=
1

2
√

2π

∞

0

f(u)[g(|x+u−1|)+g(|x−u+1|)−g(x+u+1)−g(|x−u−1|)]du, x > 0.

It satisfies the factorization property

Fc(f
γ∗
1
g)(y) = sin y (Fsf)(y)(Fcg)(y), ∀y > 0, f, g ∈ L1(R+).

The generalized convolution with the weight function γ(x) = sinx of f and g
for the Fourier sine and Fourier cosine was studied in [11] as

(3.7) (f
γ∗
2
g)(x) =

=
1

2
√

2π

∞

0

f(u)[g(|x+u−1|)+g(|x−u−1|)−g(x+u+1)−g(|x−u+1|)]du, x > 0,

and satisfies the following factorization identity

Fs(f
γ∗
2
g)(y) = sin y (Fcf)(y)(Fcg)(y), ∀y > 0, f, g ∈ L1(R+).

Next, we consider the relations of the polyconvolution (2.1) with well-known
convolutions.

Theorem 3.1. Let f, g, h, l be functions in L1(R+), and p, k functions in
L


1√
w
,R+


. Then the following properties hold

a) ∗
1
(∗
1
(f, g, p), l, k) = ∗

1
(∗
1
(f, l, k), g, p);

b) ∗
1
(f ∗

2
g, h, k) = ∗

1
(f ∗

2
h, g, k);

c) ∗
1
(f, g

γ∗
1
h, k) = ∗

1
(g, f

γ∗
1
h, k);

d) ∗
1
(f

γ∗
2
g, h, k) = ∗

1
(f

γ∗
2
h, g, k);

e) ∗
1
(f, g ∗

3
h, k) = ∗

1
(g, f ∗

3
h, k);

f) ∗
1
(f, g ∗

1
h, k) = ∗

1
(f ∗

2
∗g, h, k);

g) ∗
1
(f

γ∗ g, h, k) = ∗
1
(f, g

γ∗
1
h, k).

Here, the polyconvolution ∗
1
(·, ·, ·) is defined by (2.1), convolutions (· ∗

2
·),

(· γ∗
1
·), (· γ∗

2
·), (· ∗

3
·), (· γ∗ ·) are respectively defined by (2.1), (3.4), (3.6), (3.7),

(3.5) and (3.3). Moreover, the polyconvolution (2.1) can be presented by means
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of the Fourier convolution (3.1) and the Fourier cosine convolution (3.2) as
follow

(3.8) ∗
1
(f, g, p) =


π

2

∞

0

p(w)


(g ∗
1
e−w cosh t) ∗

F
(f(|t|)sign t)


(x)dw.

Proof. First, we prove the assertion a). From Theorem 2.1 we have

Fs(∗
1
(∗
1
(f, g, p), l, k)(y) =Fs(∗

1
(f, g, p))(y)(Fcl)(y)(Kiyk) =

=(Fsf)(y)(Fcg)(y)(Kiyp)(Fcl)(y)(Kiyk).

Again, by virtue of Theorem 2.1 we get

Fs(∗
1
(∗
1
(f, g, p), l, k))(y) = Fs(∗

1
(∗
1
(f, l, k), g, p))(y).

This shows the assertion a). The assertions b)- f) can be proved similarly.

We now prove the assertion g). From Theorem 2.1 and the factorization
equality of the convolution (3.3) we obtain

Fs(∗
1
(f

γ∗ g, h, k))(y) =Fs(f
γ∗ g)(y)(Fch)(y)(Kiyk) =

= sin y.(Fsf)(y)(Fsg)(y)(Fch)(y)(Kiyk).

Therefore, by using the generalized convolution (3.6) and the Theorem 2.1 we
have

Fs(∗
1
(f

γ∗ g, h, k))(y) =(Fsf)(y)Fc(g
γ∗
1
h)(y)(Kiyk) =

=Fs(∗
1
(f, g

γ∗
1
h, k))(y),

which implies g).
Finally, we prove the relation (3.8), from the definition (2.1) of the

polyconvolution and the convolution (3.2) we have
(3.9)

∗
1
(f, g, p)(x) =

1
2

∞

0

∞

0

f(u)p(w)[(g ∗
1
e−w cosh t)(x−u)−(g ∗

1
e− cosh t)(x+u)]dudw.

From (3.9) and changing variables we obtain (3.8). The proof is complete.
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4. Applications to solving generalized integral equations

Not many integral equations and systems of integral equations of the
second kind can be solved in closed form. The polyconvolution (2.1) introduced
in this paper allows us to get the solutions in closed form for a class of integral
equations with the Toeplitz plus Hankel kernel (1.1) and also a class of systems
of generalized integral equations.

a) First, consider the integral equation with the Toeplitz plus Hankel kernel
(1.1)

f(x) +

∞

0

[k1(x+ y) + k2(x− y)]f(y)dy = g(x), x > 0,

in case of the Hankel kernel k1 and the Toeplitz kernel k2 are defined as follow

(4.1) k1(t) =

= −λ2k(t)√
2π

− λ1

2
√

2π

∞

0

∞

0

g(v)h(w)[e−w cosh(t+v) + e−w cosh(t−v)]dvdw;

(4.2) k2(t) =

=
λ2k(|t|)√

2π
+

λ1

2
√

2π

∞

0

∞

0

g(v)h(w)[e−w cosh(t+v) + e−w cosh(t−v)]dvdw,

where g, h, k, p are known functions, λ1, λ2 are given constants. This particular
case of equation (1.1) can be solved in closed form with the help of polyconvolu-
tion (2.1), which seems to be difficult to solve by using other known generalized
convolutions.

Lemma 1. For f ∈ L1(R+) and g ∈ L1


1√
v
,R+


, the generalized

convolution (f∗g)(x) belongs to L1(R+) and the respective factorization equality
is

(4.3) Fc(f ∗ g)(y) = (Fcf)(y)(Kiyg), ∀y > 0,

where

(4.4) (f ∗ g)(x) =
1
2

∞

0

∞

0

[e−v cosh(x+u) + e−v cosh(x−u)]f(u)g(v)dudv, x > 0.
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The proof of this lemma is similar to that of Theorem 2.1, so we omit it.

Theorem 4.1. Suppose that p, g, k ∈ L1(R+) and h ∈ L1


1√
v
,R+


satisfy

the condition
1 + λ1(Fcg)(y)(Kiyh) + λ2(Fck)(y) = 0.

Then the Toeplitz plus Hankel integral equation (1.1) with Toeplitz and Hankel
kernels defined by (4.1), (4.2) has a unique solution in L1(R+) whose closed
form is

f(x) = p(x)− (p ∗
2
l)(x).

Here, l ∈ L1(R+) is defined uniquely by

(Fcl)(y) =
Fc(λ1(g ∗ h) + λ2k)(y)

1 + Fc(λ1(g ∗ h) + λ2k)(y)
,

where the convolutions (· ∗
2
·) and (· ∗ ·) are defined by (3.4) and (3.5), respec-

tively.

Proof. The Toeplitz plus Hankel integral equation (1.1) whose Toeplitz
and Hankel kernels defined by (4.1), (4.2) can be rewritten in the form

(4.5) f(x) + λ1(∗
1
(f, g, h)(x)) + λ2(f ∗

2
h)(x) = p(x), x > 0.

By Theorem 2.1 and the generalized convolution (3.4), we have

(Fsf)(y) + λ1(Fsf)(y).(Fcg)(y).(Kiyh) + λ2(Fsf)(y).(Fck)(y) = (Fsp)(y).

Therefore, by the given condition

(Fsf)(y) = (Fsp)(y)


1− λ1(Fcg)(y)(Kiyh) + λ2(Fck)(y)
1 + λ1(Fcg)(y)(Kiyh) + λ2(Fck)(y)


.

Using the Lemma 1 we obtain

(4.6) (Fsf)(y) = (Fsp)(y)


1− Fc(λ1(g ∗ h) + λ2k)(y)
1 + Fc(λ1(g ∗ h) + λ2k)(y)


.

Recall that the Wiener-Levy theorem (see [7], p. 63) states that if f is the
Fourier transform of an L1(R) function, and ϕ is analytic in a neighborhood
of the origin that contains the domain {f(y), ∀y ∈ R}, and ϕ(0) = 0, then
ϕ(f) is also the Fourier transform of an L1(R) function. For the Fourier cosine
transform it means that if f is the Fourier cosine transform of an L1(R+)
function, and ϕ is analytic in a neighborhood of the origin that contains the
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domain {f(y), ∀y ∈ R+}, and ϕ(0) = 0, then ϕ(f) is also the Fourier cosine
transform of an L1(R+) function.

By the given condition, the function ϕ(z) = z
1+z satisfies conditions of the

Wiener-Levy theorem, and therefore, there exists a unique function l ∈ L1(R+)
such that

(4.7) (Fcl)(y) =
Fc(λ1(g ∗ h) + λ2k)(y)

1 + Fc(λ1(g ∗ h) + λ2k)(y)
.

From (4.6), (4.7) and the generalized convolution (3.4) we get

f(x) = p(x)− (p ∗
2
l)(x) ∈ L1(R+).

b) Next, we consider the following system of two integral equations for
x > 0.

f(x) +
λ1

2
√

2π

∞

0

∞

0

∞

0

θ(x, u, v, w)h1(u)g(v)h(w)dudvdw+

(4.8) +
λ2√
2π

∞

0

θ1(x, u)g(u)du = p(x),

λ3

∞

0

∞

0

∞

0

θ2(x, u, v, w)f(u)k2(v)h2(w)dudvdw+

+λ4

∞

0

θ3(x, u)f(u)du+ g(x) = q(x).

Here θ(x, u, v, w) is defined as in Definition 1, and

θ1(x, u) =
1√
2π

[k(|x− u|)− k(x+ u)],

θ2(x, u) =
1
2π

∞

0

k2(v)[h2(|x+ u− v|) + h2(|x− u+ v|)− h2(|x− u− v|)−

− h2(x+ u+ v)]dv,

θ3(x, u) =
1√
2π

[sign(u− x)k1(|u− x|) + k1(u+ x)].
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h, h1, h2, k, k1, k2, p, q are known functions, λi (i = 1, 4) are constants, and f, g
are unknown functions.

Recall that the polyconvolution for the Fourier cosine and the Fourier sine
integral transforms has the form (see [11])

(4.9)

∗(f, g, h)(x) =
1
2π

∞

0

∞

0

f(u)g(v)[h(|x+ u− v|) + h(x− u+ v|)−

− h(|x− u− v|)− h(x+ u+ v)]dudv,

x > 0.

This polyconvolution satisfies the following factorization property

Fc(∗(f, g, h))(y) = (Fsf)(y).(Fsg)(y).(Fch)(y), ∀y > 0.

Theorem 4.2. Given h1, h2, k, k1, k2, p, q ∈ L1(R+) and h ∈ L1


1√
v
,R+



so that
1− (Fcξ)(y) = 0, ∀y > 0,

where

ξ(x) = λ1λ3(∗
1
(k2, h2, h) ∗

3
h1)(x) + λ2λ3(∗(k2, k, h2))(x)+

+ λ1λ4((k1 ∗
3
h1) ∗ h)(x) + λ2λ4(k ∗

3
h)(x).

Then the system (4.8) has a unique solution in L1(R+)×L1(R+) whose closed
forms are given as follow

f(x) = p(x)− ∗
1
(h1, q, h)(x)− λ2(k ∗

2
q)(x) + (p ∗

2
l)(x)− λ1(∗

1
(h1, q, h) ∗

2
l)(x)−

− λ2((k ∗
2
q) ∗

2
l)(x),

g(x) = q(x)− ∗
1
(k2, p, h2)(x)− λ4(p ∗

3
k1)(x) + (q ∗

1
l)(x)−

− λ3(∗(k2, p, h2) ∗
1
l)(x)− λ4((p ∗

3
k1) ∗

1
l)(x).

Here, l ∈ L1(R+) is defined by

(Fcl)(y) =
(Fcξ)(y)

1− (Fcξ)(y)
, y > 0,

where the convolutions (· ∗
2
·), (· ∗

1
·), (· ∗

3
·) are defined by (3.4), (3.2), (3.5), the

polyconvolutions ∗
1
(·, ·, ·) and ∗(·, ·, ·) are defined by (2.1) and (4.9).
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Proof. The system (4.8) can be rewritten in the form

f(x) + λ1

 ∗
1
(h1, g, h)(x)


+ λ2(k2 ∗

2
g)(x) = p(x),

λ3

 ∗ (k2, f, h2)(x)

+ λ4(k1 ∗

3
f)(x) + g(x) = q(x).

Using Theorem 2.1, generalized convolutions (3.4), (3.5) and the polyconvolu-
tion (4.9) we obtained

(Fsf)(y) +

λ1(Fsh1)(y)Kiyh+ λ2(Fsk)(y)


(Fcg)(y) =(Fsp)(y),

λ3(Fsk2)(y)(Fch2)(y) + λ4(Fsk1)(y)

(Fsf)(y) + (Fcg)(y) =(Fcq)(y).

By Theorem 2.1, Lemma 1 and the generalized convolution (3.5) we have

(4.10) ∆ =

=


1 λ1(Fsh1)(y)Kiyh+ λ2(Fsk)(y)
λ3(Fsk2)(y)(Fch2)(y) + λ4(Fsk1)(y) 1

 =

= 1− (Fcξ)(y).

In view of the Wiener-Levy Theorem (see [7]), and the condition of the theorem,
there is a unique function l ∈ L1(R+) such that

(4.11) (Fcl)(y) =
(Fcξ)(y)

1− (Fcξ)(y)
.

From (4.10) and (4.11) we get

(4.12)
1
∆

= 1 + (Fcl)(y).

On the other hand, using Theorem 2.1 and the generalized convolution (3.4)
gives

∆1 =

(Fsp)(y) λ1(Fsh1)(y)Kiyh+ λ2(Fsk)(y)
(Fcq)(y) 1

 =

=(Fsp)(y)− λ1Fs(∗
1
(h1, q, h))(y)− λ2Fs(k ∗

2
q)(y).

Hence, from (4.12) it follows that

(Fsf)(y) =
∆1

∆
=(Fsp)(y)− λ1Fs(∗

1
(h1, q, h))(y)− λ2Fs(k ∗

2
q)(y)+

+ Fs(p ∗
2
l)(y)− λ1Fs(∗

1
(h1, q, h) ∗

2
l)(y)− λ2Fs((k ∗

2
q) ∗

2
l)(y).
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This implies
(4.13)

f(x) = p(x)− (∗
1
(h1, q, h))(x)−λ2(k ∗

2
q)(x) + (p ∗

2
l)(x)−

−λ1(∗
1
(h1, q, h) ∗

2
l)(x)− λ2((k ∗

2
q) ∗

2
l)(x).

Similarly, from convolution (3.2) and the generalized convolution (3.5) we have

∆2 =



1 (Fsp)(x)

λ3(Fsk2)(x)(Fch2)(x) + λ4(Fsk1)(x) (Fcq)(x)


=

=(Fcq)(x)− λ3Fc(∗(k2, p, h2))(x)− λ4Fc(p ∗
3
k1)(x).

Using formula (4.12) and the generalized convolution (3.2) we get

Fcg =
∆2

∆
=

=Fcq − λ3Fc(∗(k2, p, h2))− λ4Fc(p ∗
3
k1) + Fc(q ∗

1
l)− λ3Fc(∗(k2, p, h2) ∗

1
l)−

− λ4Fc((p ∗
3
k1) ∗

1
l).

This shows that

(4.14)
g(x) = q(x)− ∗

1
(k2, p, h2)(x)− λ4(p ∗

3
k1)(x) + (q ∗

1
l)(x)−

− λ3(∗(k2, p, h2) ∗
1
l)(x)− λ4((p ∗

3
k1) ∗

1
l)(x).

The pair (f, g), defined by fomulas (4.13) and (4.14), is a closed form solution
of the system (4.8) in L1(R+)× L1(R+). The proof is complete.
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