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Abstract. Here we determine completely multiplicative complex valued

functions with nearly Gaussian integer values.

1. Introduction

I. Kátai and B. Kovács [1] determined completely multiplicative real valued
functions, f : N → R with nearly integer values, such that f(n) → 0 as
n →∞, where

z = min
n∈N

|z − n|.

In this paper, we determine such completely multiplicative complex valued
functions on the set of positive integers with values nearly in Z[i].
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2. Preliminaries and results

A complex valued function f(n) is said to be completely multiplicative if
f(mn) = f(m)f(n) holds for each pair of positive integers. Let f : N→ C be a
completely multiplicative function and let, for any complex number z, z be
defined as

z = min
γ∈Z[i]

|z − γ|.

We determine the class of such completely multiplicative functions for which

(1) f(n) → 0 (n →∞).

Definition 1. We shall say that θ is a generalized Pisot number with
respect to Gaussian integers if there exists a polynomial φ(z) ∈ Z[i][z] with

leading coefficient 1, and φ(z) =
r

j=1

(z − θj), θ1 = θ, |θ| > 1 and all the

conjugates, θ2, . . . , θr are in the domain |z| < 1.

We call a generalized Pisot number with respect to Gaussian integers as
Gaussian Pisot number. Naturally, θ ∈ Z[i] is a Gaussian Pisot number, since
φ(z) = z − θ ∈ Z[i][z].

A Gaussian Pisot number θ satisfies the relation

(2) θn → 0 (n →∞).

Lemma 1. Let β be an algebraic number, f(n) be completely multiplicative
function with values in Q(β). Let β2, . . . , βr be the conjugates of β (with respect
to Z[i]). Let φj(n) denote the conjugate of f(n) defined by the substitution
β → βj. Then φj are completely multiplicative functions as well.

Proof. Let f(n) = rn(β). Then φj(n) = rn(βj). Since rmn(β) = f(mn) =
= f(m).f(n) = rm(β).rn(β), therefore φj(mn) = rmn(βj) = rm(βj)rn(βj) =
= φj(m)φj(n).

Lemma 2. Let β be an algebraic number and f(n) a completely multi-
plicative function and the values f(n) are in Z[i](β). Assume that |φj(p)| < 1
and

(3) φj(p)→ 0 as p→∞ (j = 2, . . . , r),

where p runs over the set of primes. Then (1) holds.
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Proof. From (3) it is obvious that φj(n) → 0 (n → ∞). Furthermore
(φj(n) being algebraic),

f(n) + φ2(n) + . . .+ φr(n) = En = Gaussian integer,

which gives

(4) f(n) → 0 (n→∞).

The following Lemma is a generalization of Lemma 3 in [1].

Lemma 3. Let α be an algebraic number with |α| > 1, λ = 0 be a complex
number and

(5) λαn → 0 (n→∞).

Then α is a Gaussian Pisot number and λ ∈ Q(α).

Proof. The proof follows immediately from a more general result by I.
Környei (see Theorem 1 in [2]).

Lemma 4. Let f(n) be a completely multiplicative function for which (1)
holds. If |f(n0)| > 1 for at least one n0, then either f(n) = 0 or |f(n)| ≥ 1 for
each value of n.

Proof. Assume on the contrary that 0 < |f(m0)| < 1. Let b =
= |f(n0)|, a = |f(m0)|, and x0 = [−3 log a] + 1. For infinitely many k, l
pairs of positive integers we have,

−2x0
log a

> k + l
log b
log a

>
−x0
log a

,

since the length of the interval

−x0
log a ,

−2x0
log a


is at least three. For such pairs

k, l we have 2−2x0 < akbl < 2−x0 . Consequently

2−2x0 < |f(m0
kn0

l)| = |akbl| < 2−x0

which contradicts (1).

Lemma 5. Let f(n) be a completely multiplicative function satisfying (1).
Assume that there exists an m for which |f(m)| > 1. Let P1 be the set of those
primes p for which f(p) = 0. Then the values f(p) are Gaussian Pisot numbers
for each p ∈ P1, and for every p1, p2 ∈ P, we have Q(αp1) = Q(αp2), αp1 =
= f(p1), αp2 = f(p2).
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Proof. Let f(m) = α. Since |α| > 1 and f(mk) = αk → 0 (k → ∞),
by Lemma 3, we say that f(m) is a Gaussian Pisot number.

Now, let n be an arbitrary natural number for which f(n) = 0. Since
f(nmk) = f(n)αk → 0 (k → ∞), from Lemma 3, we deduce that f(n) ∈
∈ Q(α). Hence, β = f(n) ∈ Q(α). Since β = 0, from Lemma 4 we get
that |β| > 1, and by repeating the above argument for β, we deduce that β
is a Gaussian Pisot number and α ∈ Q(β). So, Q(α) = Q(β) and hence the
assertion is proved.

Lemma 6. Let f(n) be a completely multiplicative function satisfying the
relation

(6) f(n) ≤ ε(n),

where ε(n) is a monotonically decreasing function. Then there are the following
possibilities:
a) f takes values in Z[i] for every n.
b) For a suitable n, 0 < |f(n)| < 1. Then |f(n)| → 0 as n→ ∞.
c) For a suitable m, |f(m)| > 1. Let P1 denote the whole set of those primes

p for which f(p) = 0. Then there exists a Gaussian Pisot number Θ such
that Q(f(p)) = Q(Θ) for each p ∈ P1.

Proof. The relation (6) involves (5). If 0 < |f(n)| < 1 then from Lemma
4 we have |f(m)| ≤ 1 for every m. If |f(m)| = 1, then f(nmk) = f(n)
as k → ∞, that contradicts (1). Consequently, |f(m)| < 1 for each m > 1.
Assume that there exists a subsequence n1 < n2 < . . . such that f(nj) → 1.
Then f(nnj)→ f(n) (j → ∞) which contradicts (1). Consequently f(m)→ 0
as m→ ∞.

The assertion (c) of the lemma is an immediate consequence of Lemma 5.

Theorem 1. Let f(n) be a completely multiplicative complex valued
function that takes on at least one value n0 for which |f(n0)| > 1. Let P1

denote the set of primes p for which f(p) = 0.
If (1) holds, then the values f(p) = αp are Gaussian Pisot numbers, for

each p1, p2 ∈ P1 we have Q(αp1) = Q(αp2). Let Θ denote one of the values
αp (p ∈ P1), Θ2, . . . ,Θr its conjugates (i = 2, . . . , r), φ2(n), . . . , φr(n) be
defined as in Lemma 1. Then

(7) φj(n)→ 0 as n→ ∞, j = 2, . . . , r.

Conversely, let us assume that the values f(p) are zeros or Gaussian Pisot
numbers from a given algebraic number field Ω(Θ). If

(8) φj(p)→ 0 as p→ ∞, j = 2, . . . , r,
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then (1) holds.

Proof. Let us assume that (1) holds. From Lemma (5) we get that the
non-zero values of f(n) are Gaussian Pisot numbers from a given algebraic
number field Ω(Θ). Then |φj(n)| < 1 (j = 2, . . . , r). Let us consider the vector

ψ(n) = (φ2(n), . . . , φr(n)),

and denote by X the set of the limit points of ψ(n) (n →∞). Let
(x2, . . . , xr) ∈ X.

Since
f(n) + φ2(n) + · · ·+ φr(n) = Gaussian integer,

and f(n) → 0, as n →∞, we get that x2 + · · ·+ xr = Gaussian integer and
|xj | ≤ 1.

Let mj be such a sequence for which

ψ(mj)→ (x2, . . . , xr).

Then ψ(mj
k) → (x2k, . . . , xrk), x2

k + · · · + xr
k = Gaussian integer for every

k = 1, 2, . . .. This can happen only in the case when all xj ’s are Gaussian
integers. Since |xj | ≤ 1 for every j = 2, . . . , r, therefore xj ∈ {0, 1,−1, i,−i}.
Hence, for all j, either xj = 0 or |xj | = 1. Now, let n be fixed such that
f(n) = 0. Then φj(n) = 0 and |φj(n)| < 1. Consequently,

ψ(nmj)→ (φ2(n)x2, . . . , φr(n)xr) ∈ X.

Let yj = xjφj(n) (j = 2, . . . , r). If xj0 = 0 for some j0, then 0 < |yj0 | =
= |φj0(n)| < 1 and (y2, . . . , yr) is an element of X for which there is a
component yj0 such that |yj0 | < 1 and yj0 = 0, which is not possible.
Consequently, we have (7).

The converse assertion is an immediate consequence of Lemma 2.

Theorem 2. Let f(n) be a completely multiplicative complex valued
function satisfying the condition (6). Let us assume that f(n) → 0, and that
f(n) takes on at least one value other than Gaussian integer. Then the first
assertion in Theorem 1 holds.

Proof. The proof follows immediately from Lemma 5 and Theorem 1.

Remark 1. A similar result can be obtained for completely multiplicative
functions f : N→ C with values that are nearly integers in imaginary quadratic
fields, in which case

z = min
γ∈OK

|z − γ|,

where OK be the ring of integers of K = Q(
√

d), d square free, d < 0.
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