
Annales Univ. Sci. Budapest., Sect. Comp. 37 (2012) 355–368

IMPROVING QUALITY OF SOFTWARE ANALYSER

AND TRANSFORMER TOOLS USING

SPECIFICATION BASED TESTING
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Abstract. Reengineering tools, such as code analysers and transformers
can give useful assistance during the software development process. On the
other hand, the quality of these tools is crucial: improper analysis might
deceive the programmer, and imprecise transformations might mess up the
source code.
Testing is the most commonly applied method for improving software qual-
ity. Nevertheless, in the case of analyser and transformer tools every sort of
testing methods gets laborious and problematic due to the fact that both
the inputs and the results of such tools are complete programs or parts of
programs.
This paper introduces a specification based testing method for Refactor-
Erl, an analyser and transformer tool for Erlang. RefactorErl, like other
reengineering tools, has an abstract internal representation of the source
code that models the syntactic and semantic structure of the analysed
program. In the presented testing method the formal specification of the
model is transformed into properties describing the consistency of the built
internal representation. This enables a less difficult way of testing in a high
abstraction level. In order to improve the efficiency of the method, the ap-
plied test database contains automatically generated programs as well as
manually written cases.
The presented method can be easily adopted to other reengineering tools
using high level internal representation.
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1. Introduction

During the development of either small-scale or industrial-scale software,
reengineering tools enabling analysis and refactoring of the source code ease
debugging, comprehension, and code reuse, which may reduce costs. However,
the quality and the reliability of these tools are crucial: imprecise analysis may
lead to incorrect program transformations altering the semantics along with
the behaviour of the software, which is undesired and inadmissible.

Testing is the most commonly applied method for improving software qual-
ity. Nevertheless, in the case of analyser and transformer tools every sort of
testing methods gets laborious and problematic due to the fact that both the
inputs and the results of such tools are complete programs or parts of programs.
The complexity of the test data apparently makes it difficult both to specify
and to verify the properties of the program.

At the same time, reengineering tools usually have some kind of internal
representation of the source code in order to model the syntactic and seman-
tic structure of the analysed program. A well-designed representation is fully
equivalent to the original code, precisely captures the derivable program prop-
erties, and assists code comprehension as well as code transformation.

This paper introduces a specification based testing method for Refactor-
Erl [2], an analyser and transformer tool for Erlang. This testing method
verifies static code analysis by monitoring the consistency of the built program
model. The formal specification of the analysis is transformed into testing
properties describing the consistency of the abstract program graph being used
for internal representation in RefactorErl. This enables a less difficult way of
testing in a high abstraction level, and can improve the reliability by revealing
misconceptions between specification and implementation. In order to improve
the efficiency of the method, the applied test database contains automatically
generated programs as well as manually written cases.

The presented method can be easily adopted to other reengineering tools
using high level internal representation.

The rest of the paper is structured as follows. First, we introduce Refac-
torErl, then Section 3 describes the internal graph representation of programs
as used in RefactorErl. In Section 4 the applied testing method is presented,
and after that, Section 5 describes our automatic program generation method.
Finally, Section 6 concludes.
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2. RefactorErl tool

This section introduces RefactorErl [8, 14], a refactoring and code com-
prehension tool written for Erlang [6], in Erlang. It supports code analysis
as well as semi-automatic code refactoring, i.e. semantics-preserving syntac-
tic transformations, and offers a semantic query language providing semantic
information about the code for developers. The latter gives a useful and com-
fortable way of program comprehension. The tool also provides an interface
for module and function clustering, and defines a set of software complexity
metrics and a query language to query the result of them.

RefactorErl introduces a Semantic Program Graph representation for Er-
lang. It performs lexical, syntactic and semantic analysis on the source code,
and stores the result of the analysis in the Semantic Program Graph. Based on
an extensible Erlang language description we generate a scanner and a parser,
and the tool is fully layout and comment preserving. RefactorErl provides an
asynchronous parallel semantic analyser framework to define different kinds of
static analysis in an incremental, modular way. The tool provides a framework
for syntax-based transformations and after a syntax driven change on the graph
the semantic analyser framework automatically restores the semantic layer.

The tool has several editor plugins (Emacs, Eclipse, Vi), different console
interfaces and a web-based interface to support multi-user and remote usage.

3. Intermediate program representation in RefactorErl

RefactorErl stores and manipulates the source code in a three layered graph,
called the Semantic Program Graph (SPG). An SPG is a rooted, directed, and
labelled graph containing the lexical, syntactic and semantic units of an Erlang
program. Also, SPG captures the possibly cross-layer relations among those
program units.

The lexical layer contains both the original and the preprocessed tokens of
the programs, while the syntactic layer stores the abstract syntax tree of the
preprocessed source code. The topmost layer is the semantic layer, which con-
tains the results of the different kinds of semantic analyses, such as function call
analysis, module reference analysis, and variable binding analysis. Based on the
former steps, further static source code analysis can be performed, extending
and making the semantic level of the graph more precise (i.e. side-effect analy-
sis, data-flow analysis [18], dynamic function reference analysis [7], control-flow
analysis [1]).
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To give the idea of this Semantic Program Graph, let us show a simple
example illustrating its basic structure.

-module(example).

prod([]) ->

1;

prod([H|T]) ->

Prod = prod(T),

H * Prod.

This short module (example) defines only one function, prod/1, which cal-
culates the product of the elements of a list. The semantic and syntactic layer
of the Semantic Program Graph of this module is presented in Figure 1. The
semantic level contains the data-flow edges too.

3.1. Data-Flow Graph

RefactorErl introduces a Data-Flow Graph (DFG) in order to capture the
direct data-flow among Erlang expressions. The DFG is currently part of the
SPG, but it might be considered as a separate graph. The DFG = (N,E)
represents the expressions of the Erlang programs as their corresponding syntax
nodes (N) and the data-flow relations as labelled edges (E) among them. We
have introduced the following edge types:

• e1
flow→ e2 denotes that the value of e2 can be a copy of the value of e1;

• e1
dep→ e2 represents that the value of e2 depends on the value of e1;

• e1
consi→ e2 and e3

seli→ e4 denotes that e2 is compound data and it con-
tains e1 as its i-th element; similarly, we can select the i-th element of
compound data e3, which is e4;

• e1
callg,i→ e2 and e3

retg,i→ e4 represent inter-functional data-flow through
function calls, we denote the copying of the actual parameters of a func-

tion call of g to the formal parameters with the edge
callgi→ , and we denote

the copying of the return value with
retgi→ .

Besides the direct flow edges we have introduced a data-flow relation to
represent the indirect data-flow among expressions, called first order data-flow
reaching [18].

We build the DFG based on formal rules describing the direct data-flow
relations among expressions [13, 18]. The left hand side of each rule describes



Improving quality of software analyser and transformer tools 359

Figure 1. Semantic Program Graph of prod/1 — semantic and syntactic level

the syntax of a language element, and the right hand side of the rule describes
the data-flow among the introduced elements. In this paper we use the following
notation: e denotes an Erlang expression, p denotes a pattern and g denotes a
guard expression of the language.

The rule presented in Figure 2 illustrates the data-flow in the case of a match
expression. According to the semantics of Erlang, when we match a value to a
variable, the value of the variable (and also the value of the match expression)

is the same as the right hand side of the match expression. Therefore, the
flow→

edges from the right hand side expression e represent that the value of e flows
to p and e0.
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Expression Graph edges

e0:
p = e

e
flow→ e0

e
flow→ p

Figure 2. The Data-Flow Rule of the Match Expression

The Infix expression Rule (Figure 3) describes that the value of an infix
expression depends on the values of its operands.

Expression Graph edges

e0:
e1 ◦ e2

e1
dep→ e0

e2
dep→ e0

Figure 3. The Data-Flow Rule of the Infix Expression

When building the DFG, we apply the corresponding rule on each expression
from the SPG.

For instance, when the program contains the A = 1 + 2 expression, we

apply the match expression rule first (e+
flow→ pA, e+

flow→ e=) and then the

infix rule (e1
dep→ e+, e2

dep→ e+) – where e+ denotes the infix expression 1+2, e1
denotes the integer 1, pA denotes the pattern A, etc.

3.2. Control-Flow Graph

The Control-Flow Graph (CFG) contains every execution path of the pro-
gram for every possible input. The control-flow analysis is language dependent
as it is based on the semantics of the language. The Erlang programming lan-
guage has strict evaluation, thus before evaluating a compound expression, the
subexpressions must be evaluated first.

For building the CFG for a function we use knowledge from the SPG. Unlike
the DFG, the CFG is built as a completely separate graph; however, we use
the same vertex identifiers as SPG (extended with dummy vertices for return
nodes, joining branches and error nodes) in order to ease mapping between the
SPG and the CFG.

Like the DFG, the CFG is a set of nodes and the control-flow is represented
by a set of edges among the expressions. There are different control-flow edge
types:

• →: represents sequencing;

• yes→ ,
no→: branching expressions, like case expression;
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• ret→: returning form a function, case expression, etc.;

• send→ ,
rec→: label for message sending and receiving expressions;

• call→ : function call expression.

We build the CFG of Erlang functions based on formal rules. The rules are
defined corresponding to the semantics of the language [1]. Figure 4 shows the
control-flow building rules of case expressions. The formal description of
the case expression is in the Expression column and the corresponding CFG
edges are in the Graph edges column.

In the case of the case expression, first the head expression (e) is eval-
uated, then the return value of the evaluated expression is matched against
the patterns. If the pattern matches, next the guard expression is evaluated

(pi
yes→ gi). If the guard evaluates to true, this clause will be chosen for eval-

uation (gi
yes→ e1i ). If either the pattern matching fails or the guard expression

evaluates to false, the control flows to the next pattern (pi
no→ pi+1, gi

no→ pi+1).
The return value of the case expression is the value of the last expression of
the evaluated branch (eji → ret case). If neither of the patterns match, an
exception is thrown, thus the control flows to an error node (pn → error).

4. Specification-based testing

High quality analyser and refactoring tools can be very useful during the
development process of any program. The most commonly applied method for
improving software quality is testing. We can use testing methods also in the
case of reengineering tools; however, the application can be much more complex
because of the need of complete programs or parts of programs as test data.

In the case of formal specification-based testing instead of the creation of
many different test cases we have to formalise the required properties of the
program and describe the generation method capable to create input data au-
tomatically [9]. Since we can apply the same property for many test cases,
this can significantly reduce the cost of testing. Additional advantage is that
this method covers unusual cases more likely than the hand-written tests which
facilitate to detect hidden errors.

This approach is especially beneficial when – as in the case of RefactorErl –
there exists some abstract specification as a starting point for the formalization
of required properties. However, for automatic testing we have to describe the
formalisation in a machine-processable way. The fact that there is a little gap
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Expression Graph edges

e0:
case e of

p1 when g1 → e11, . . . , e
1
l1
;

...
pn when gn → en1 , . . . , e

n
ln

end

e′0
e→, e → p1,

p1
yes→ g1, p1

no→ p2,
...

pn−1
yes→ gn−1, pn−1

no→ pn,

pn
yes→ gn, pn

no→ error,

g1
yes→ e11, g1

no→ p2,
...

gn−1
yes→ en−1

1 , gn−1
no→ pn,

gn
yes→ en1 , gn

no→ error,

e11 → e12, . . . , e1l1−1 → e1l1 ,
...
en1 → en2 , . . . , enln−1 → enln ,

e1l1 → ret case,
...
enln → ret case,
ret case → e0

Figure 4. The Control-Flow Rule of the Case Expression

between the initial abstract specification and the machine-processable proper-
ties usually means that the abstract specification is extremely large since we
have to describe the requirements for every different method. Otherwise, if
there is a big gap between them, it is a laborious process to transform the
initial properties to machine-processable ones.

In the case of RefactorErl – as mentioned before –, high level abstract
specifications exist for describing the required properties of different analyser
modules of the system. Fortunately, at the same time, the system – as in the
usual case of reengineering tools – has a high level internal representation of
the source code in order to model the syntactic and semantic structure of the
analysed program. The analysers operate on this representation, which makes
it possible to verify them in this relatively high level.

We have transformed the abstract required properties of RefactorErl to
properties describing different consistency requirements for the representation
graph. In this way, instead of verifying high level abstract properties, we can
check the consistency of the internal graph resulted by the analysers.
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As an example, let us consider the data-flow rule of match expression de-
scribed in Section 3.1 and introduced by Figure 2.

We can describe this rule in the level of the internal graph representation in
the following way. Considering the graph resulted by the data-flow analyser for
every node which represents match expression, there exists a flow edge from the
second child of the node (representing the second operand of the expression)
to the investigated node and an other flow edge from the second child to the
first child of the node (representing the first operand of the expression).

Figure 5. Part of Semantic Program Graph of prod/1

For illustration Figure 5 introduces the corresponding part of the represen-
tation graph in the case of prod/1 function (described in Section 3), where
Node 50 represents a match expression. Since the operands of an expression
are accessible along esub edges, we can interpret the transformed rule here as
a flow edge that has to lead from Node 49 (the second child of Node 50) to
Node 50 and an other to Node 45 (the first child of Node 50).

Using the internal representation of RefactorErl, we can describe the inves-
tigated rule in Erlang in the following way. We have to collect from the graph
every node illustrates match expression and check the described property for
these nodes:

match_expr_test(Module) ->

MatchExprNodes = getMatchExprNodes(Module),

lists:map(fun props/1, MatchExprNodes).

For verifying the property for a given node we have to determine the two
children of the node and check if the corresponding two flow edges exist:
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props(MatchExpr) ->

case checkTwoChild(MatchExpr) of

true -> Ch1 = getFirstCh(MatchExpr),

Ch2 = getSecondCh(MatchExpr),

check_matchExpr(MatchExpr, Ch1, Ch2);

false -> {error_in_matchexpr, MatchExpr}

end.

check_matchExpr(MatchExpr, Ch1, Ch2) ->

Ch2Flows = getFlows(Ch2),

case lists:member(Ch1, Ch2Flows) and

lists:member(MatchExpr, Ch2Flows) of

true -> ok;

false -> {error_in_matchexpr, MatchExpr}

end.

Here the getFlows(Ch2) function determines every node reachable from Ch2

node along flow edge.

Since we can formalise the requirements in Erlang in a machine-processable
way, we can use QuickCheck testing tool (see [9]) for verifying the properties of
RefactorErl. However, for this automatic testing we need Erlang programs as
test data. The next section gives an overview how we can randomly generate
Erlang programs.

5. Program generation

As stated already, validation can be made more efficient by applying ran-
dom inputs, which cover unusual cases more likely than the hand-written values.
The aforementioned random Erlang programs, which are used as test data in
the graph consistency check process, are produced by using QuickCheck gen-
erators. QuickCheck lets the tester define the way the universally quantified
variables inside the verified properties get their value. Data generators can cre-
ate random values of data types supported in the language. Simple types have
their first-order generators, which can be composed into complex generators by
higher-order generator combinators.

Programs may have different representations, so the first step is to decide
which one to create a generator for. Apparently, generating source code as the
concatenation of random program parts as strings is not feasible, at least if we
would like the process to yield syntactically valid code. Since programs can be
seen as their abstract syntax trees (AST) as well, we can generate syntax trees,
and then we can print them into text. Therefore, the most essential ingredi-
ents we need for creating a generator for random Erlang programs are the type
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definition of Erlang ASTs and a pretty printer for those ASTs. Obviously, this
is quite a difficult task, and also, a type description is still not enough for pro-
ducing random values. We have to bridge the gap between type specifications
and data generators in advance.

Altough there are some efforts to create generators from type specifica-
tions [19], our solution to the above issue is the following: we define the set
of possible Erlang ASTs not by a type definition but by a formal production
grammar, which we transform into data generators. That is, we defined an
attributed grammar which generates the formal language of Erlang ASTs, and
the production rules of this formal grammar can be automatically turned into
QuickCheck generators. The transformation is carried out by our special com-
piler. Apparently, an attributed grammar can be much more expressive than
a simple type structure definition in Erlang. With the formal attributes, one
can describe not only the structure of the data, but its semantics as well, and
this fact implies that we can generate any desired subset of Erlang programs.

In order to efficiently test the code analysis and graph consistency of Refac-
torErl, we have given a grammar that defines programs having complex data-
flow, a dozen of program entities and cross-references. This fact along with the
randomness and proper distribution provided by QuickCheck guarantees that
sooner or later the produced programs will include the most interesting con-
structs with a complex structure, which likely leads to finding misconceptions
or bugs in the analyser system.

6. Related work and conclusion

Considering related work there are plenty of different application areas
where specification-based testing has been used effectively (for example see [3,
10, 11, 16]). However, in the case of reengineering tools the situation is sig-
nificantly different because of the difficulties described in Section 4. The most
closely related work is the approach of Huiqing Li and Simon Thompson [12],
nevertheless they define low level properties for specific refactoring transforma-
tions instead of high level general properties and fixed test database instead of
randomly generated Erlang programs.

This paper introduced a specification-based testing method for Refactor-
Erl, a refactoring and code comprehension tool written for Erlang. High level
abstract properties describing the required behaviour of different analyser mod-
ules of RefactorErl were transformed to the level of internal graph representa-
tion. Thus, it became possible to check the consistency of the representation
instead of verifying high level properties. The paper also described a generation
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method used for the creation of random Erlang programs as input data for the
tests to make it more effective.

Applying the illustrated method, more than 20 different properties in the
level of internal graph representation of RefactorErl were described, and based
on these properties thousands of test cases were generated with the usage of
QuickCheck testing tool and using the program generation method illustrated
in Section 5.
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