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Abstract. In this paper we construct discrete processes on the roots of
four kinds of Chebyshev polynomials supplemented with some endpoints of
[−1, 1] by using suitable summations generated by a function ϕ. Our aim
is to investigate these methods regarding the interpolation property and
uniform convergence in the Banach space (C[−1, 1], ‖ · ‖∞). With proper
conditions on ϕ we obtain wide classes of interpolation processes which are
uniformly convergent for every function f ∈ C[−1, 1].

1. Introduction

Let C[−1, 1] denote the linear space of continuous functions defined on
[−1, 1]. Then (C[−1, 1], ‖ · ‖∞) is a Banach space, where

‖f‖∞ := max
x∈[−1,1]

|f(x)| (f ∈ C[−1, 1])

is the maximum norm.
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In order to construct discrete processes we first define some point systems.
For this we will use the roots of four kinds of Chebyshev polynomials sup-
plemented with some endpoints of [−1, 1]. Let M ∈ N0 := {0, 1, 2, . . .} and
introduce the following notations and definitions.

Definition 1.1. Let

TM (x) := cos(M arccosx) (x ∈ [−1, 1])

be the M -th Chebyshev polynomial of the first kind. The point system XT
M is

defined by

XT
M :=

{
xk,M := cos

2k − 1

2M
π : k = 1, . . . ,M

}
,

i.e. XT
M are the roots of the Chebyshev polynomials of the first kind.

Definition 1.2. Let

UM (x) :=
sin((M + 1) arccosx)

sin(arccosx)
(x ∈ [−1, 1])

be the M -th Chebyshev polynomial of the second kind. The point system XU
M

is defined by

XU
M :=

{
xk,M+2 := cos

k − 1

M + 1
π : k = 1, . . . ,M + 2

}
,

i.e. XU
M are the roots of the Chebyshev polynomials of the second kind sup-

plemented with the endpoints −1 and 1, so they are the roots of the weighted
polynomial

(1.1) UM (x) :=
√
1− x2 UM (x) (x ∈ [−1, 1]).

Definition 1.3. Let

VM (x) :=
cos((M + 1

2 ) arccosx)

cos( 12 arccosx)
(x ∈ [−1, 1])

be the M -th Chebyshev polynomial of the third kind. The point system XV
M is

defined by

XV
M :=

{
xk,M+1 := cos

2k − 1

2M + 1
π : k = 1, . . . ,M + 1

}
,

i.e. XV
M are the roots of the Chebyshev polynomials of the third kind supple-

mented with −1, so they are the roots of the weighted polynomial

(1.2) V M (x) :=
√
1 + xVM (x) (x ∈ [−1, 1]).
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Definition 1.4. Let

WM (x) :=
sin((M + 1

2 ) arccosx)

sin( 12 arccosx)
(x ∈ [−1, 1])

be the M -th Chebyshev polynomial of the fourth kind. The point system XW
M

is defined by

XW
M :=

{
xk,M+1 := cos

2(k − 1)

2M + 1
π : k = 1, . . . ,M + 1

}
,

i.e. XW
M are the roots of the Chebyshev polynomials of the fourth kind supple-

mented with 1, so they are the roots of the weighted polynomial

(1.3) WM (x) :=
√
1− xWM (x) (x ∈ [−1, 1]).

Note that the indices of the point systems may differ from the number of
nodes.

In the next step we define four bases consisting the functions defined above.
We are going to use these to construct our approximating functions.

Definition 1.5. Let us define the following four bases in (C[−1, 1], ‖ · ‖∞):

Tn := {T0, T1, . . . , Tn};

Un := {U−2, U−1, . . . , Un};
Vn := {V −1, V 0, . . . , V n};

Wn := {W−1,W 0, . . . ,Wn},
where U−2 = V −1 = W−1 := 1, and U−1(x) := x.

For the sake of simplicity we will use the notations T−2 = T−1 = V −2 =
= W−2 := 0. We remark that the cases when Tn is used as a basis were already
investigated in [10], so we will omit the proofs for these cases.

2. Constructions of discrete processes

In the construction of discrete processes for approximating a function f ∈
∈ C[−1, 1], we will determine an interpolating function of f (using a mini-
mal number of base functions) for a fixed number of nodes, and later apply
summation in that form.
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Let M ≥ 1, M ∈ N and let BM−1 ∈ {TM−1,UM−1,VM−1,WM−1} denote

one of the bases and XB
M be the corresponding point system. Since our bases

are mixtures of polynomials and weighted polynomials, we will call the linear
combination

(2.1)
(
LB
Mf
)
(x) =

M−1∑
j=−2

cBj,M (f) ·Bj(x),

the Lagrange interpolation of f ∈ C[−1, 1] for the point system XB
M , if it

interpolates f at the points of XB
M .

2.1. Lagrange interpolation

In this section we show that the Lagrange interpolation of f on the point

system XB
M is unique and we determine the cBj,M (f) coefficients in the sum

(2.1) for all of the four cases.

Lemma 2.1. If BM−1 = TM−1 then XB
M = XT

M and

cT0,M (f) =
1

M

M∑
k=1

f(xk,M )T0(xk,M );

cTj,M (f) =
2

M

M∑
k=1

f(xk,M )Tj(xk,M ),

where j ∈ N, 0 < j < M .

Lemma 2.2. If BM−1 = UM−1 then XB
M = XU

M and

cU−2,M (f) =
f(x1,M+2) + f(xM+2,M+2)

2
;

cU−1,M (f) =
f(x1,M+2)− f(xM+2,M+2)

2
;

cUj,M (f) =
2

M + 1

M+2∑
k=1

[
f(xk,M+2)− cU−1,M (f) · xk,M+2 − cU−2,M (f)

]
U j(xk,M+2),

where j ∈ N0, j < M .

Note that the k = 1 and k = M + 2 terms are always 0 so it is optional to
include them in the formulas.
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Proof. Let

g(x) := f(x)− f(1)− f(−1)

2
x− f(1) + f(−1)

2
.

Observe that g(−1) = g(1) = 0.

The weighted interpolation polynomial of g in the basis

{
√
1− x2 · U0,

√
1− x2 · U1, ..,

√
1− x2 · UM−1}

(cf. [2, p. 164]) can be written as(
LU
Mg
)
(x) =

√
1− x2×

×
M−1∑
j=0

⎡⎣M+1∑
k=2

g(xk,M+2) · Uj(xk,M+2) · 2 ·

√
1− x2

k,M+1

M + 1

⎤⎦ · Uj(x) =

=
M−1∑
j=0

[ 2

M + 1

M+1∑
k=2

g(xk,M+2) · U j(xk,M+2)
]
U j(x).

So we know that
(
LU
Mg
)
(x) is 0 at the points {−1, 1} and interpolates g

at xk,M+2, (k = 2, ..,M + 1). Using the definition of g we can construct the
Lagrange interpolation polynomial of f in the form

(
LU
Mf
)
(x) =

f(1) + f(−1)

2
+

f(1)− f(−1)

2
x+
(
LU
Mg
)
(x).

Then the proof can be finished by collecting the coefficients. �

Lemma 2.3. If BM−1 = VM−1 then XB
M = XV

M and

cV−1,M (f) = f(xM+1,M+1);

cVj,M (f) =
2

2M + 1

M+1∑
k=1

[
f(xk,M+1)− cV−1,M

]
V j(xk,M+1),

where j ∈ N0, j < M .

Proof. Let

g(x) := f(x)− f(−1).

Then g(−1) = 0, and the statement can be proved analogously to Lemma 2.2
by using the interpolation formulae from [2, p. 166]. �
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Lemma 2.4. If Bn = Wn then XB
M = XW

M and

cW−1,M (f) = f(x1,M+1);

cWj,M (f) =
2

2M + 1

M+1∑
k=1

[
f(xk,M+1)− cW−1,M

]
W j(xk,M+1),

where j ∈ N0, j < M .

Proof. Let
g(x) := f(x)− f(1).

Then g(1) = 0, and the statement can be proved analogously to Lemma 2.2 by
using the interpolation formulae from [2, p. 166]. �

Notice that in the above cases we received the cBj,M (f) coefficients for j < M

only. From now on, let us define cBj,M (f) for all j ∈ N0 by the formulas in the
previous four lemmas.

2.2. Summation functions and discrete processes

We will investigate summation processes generated by a function ϕ. First
denote by Φ the set of summation functions ϕ : [−1,+∞) → R satisfying the
following requirements:

i) supp ϕ ⊂ [−1, 1];

ii) if t ∈ [−1, 0) then ϕ(t) := 1;

iii) lim
t→0+

ϕ(t) = ϕ(0) := 1 and lim
t→1−

ϕ(t) = ϕ(1) := 0;

iv) the limits
ϕ(t0 ± 0) := lim

t→t0±0
ϕ(t)

exists and are finite in every t0 ∈ (0,+∞);

v) for all t ∈ R the function value ϕ(t) lies in the closed interval determined
by ϕ(t− 0) and ϕ(t+ 0).

Condition iii) ensures that every ϕ ∈ Φ is Riemann integrable on [0,1] (cf.
[9, p. 161]). Therefore ϕ is continuous except at most countable many points
of [0, 1].

Now let f ∈ C[−1, 1] and let us fix the natural numbers M,n ≥ 2. Let Bn ∈
∈
{
Tn,Un,Vn,Wn

}
be a basis and XB

M be the corresponding point system.
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Consider the least-degree interpolation (2.1). For a function ϕ ∈ Φ, let us
define

(2.2)
(
Sϕ,B
n,Mf

)
(x) :=

n∑
j=−2

ϕ
( j
n

)
· cBj,M (f) ·Bj(x),

where the coefficients cBj,M (f) are defined at the end of the previous section.
Note that we also weakened the degree constraint of the Lagrange interpolation.

2.3. Properties of the coefficients

We will investigate the interpolatory properties and uniform convergence of
summation processes defined in (2.2). In order to do so, first we need to take
a closer look at the coefficients.

Theorem 2.1. The coefficients cBj,M (f) have the following properties:

i) Symmetry property:

cBM+j,M (f) = (−1) · cBM−j,M (f)

for any B ∈ {T ,U ,V,W}, 0 ≤ j ≤ M, j ∈ N.

ii) Periodicity:

cTj,M (f) = (−1) · cTj+2M,M (f);

cUj,M (f) = cUj+2M+2,M (f);

cVj,M (f) = (−1) · cVj+2M+1,M (f);

cWj,M (f) = cWj+2M+1,M (f)

for any j ∈ N0.

iii) Zero coefficients:

cBM,M (f) = 0

for any B ∈ {T ,U ,V,W}. Also, we have

cU2M+1,M (f) = 0.

Proof. i) For B = U , observe that

UM+j(xk,M+2) =
sin((M + j + 1) k−1

M+1π)

sin( k−1
M+1π)

,
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where

sin
[
(M + j + 1)

k − 1

M + 1
π
]
= sin

[(
(2M + 2)− (M − j + 1)

) k − 1

M + 1
π
]
=

= sin
[
(2M + 2)

k − 1

M + 1
π
]
· cos
[
(M − j + 1)

k − 1

M + 1
π
]
−

− cos
[
(2M + 2)

k − 1

M + 1
π
]
· sin
[
(M − j + 1)

k − 1

M + 1
π
]
=

= − sin
[
(M − j + 1)

k − 1

M + 1
π
]
.

Using this, we have

(2.3) UM+j(xk,M+2) = (−1) · UM−j(xk,M+2),

and considering Lemma 2.2 one can now easily see that

cUM+j,M (f) = (−1) · cUM−j,M (f).

The same method can be used to prove i) for B ∈ {T ,V,W}.

ii) Now observe that for the point system XU
M we have

sin
[
(j + 1 + 2M + 2)

k − 1

M + 1
π
]
=

= sin
[
(j + 1)

k − 1

M + 1
π
]
· cos
[
(2M + 2)

k − 1

M + 1
π
]
+

+cos
[
(j + 1)

k − 1

M + 1
π
]
· sin
[
(2M + 2)

k − 1

M + 1
π
]
=

= sin
[
(j + 1)

k − 1

M + 1
π
]
,

which means that
Uj(xk,M+2) = Uj+2M+2(xk,M+2).

Considering Lemma 2.2 we can see that

cUj,M (f) = cUj+2M+2,M (f).

The remaining three periodic properties can be proved the same way.

iii) It is obvious that
UM (xk,M+2) = 0

when xk,M+2 ∈ XU
M .
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Then
cUM,M (f) = 0

immediately follows, and the same holds for the systems XT
M ,XV

M ,XW
M , so

cBM,M (f) = 0.

Finally, from

sin
[
(2M + 2)

k − 1

M + 1
π
]
= 0,

we have U2M+1(xk,M+2) = 0, which means cU2M+1,M (f) = 0. �

3. Interpolatory properties

In this section we give a necessary and sufficient condition on the summation
function regarding the interpolatory property of the processes defined before.
Our result is analogous to [8, Lemma 3].

For the basis Bn and the corresponding point system XB
M we have already

defined the function Sϕ,B
n,Mf for a given ϕ ∈ Φ (see (2.2)). Some of these

interpolate f at the points XB
M . We give a necessary and sufficient condition

for ϕ satisfying this requirement.

Theorem 3.1. Let M ≥ 2 be an integer, M ≤ n ≤ 2M , Bn ∈ {Tn,Un,Vn,

Wn}, XB
M be the corresponding point system and ϕ ∈ Φ be a summation func-

tion. Then Sϕ,B
n,Mf interpolates f : [−1, 1] → R at the points of XB

M if and only
if

ϕ
( j
n

)
+ ϕ
(
1− j

n

)
= 1 (j = 0, 1, . . . , n; j 
= M).

(Note that if M = n then ϕ(M/n) = 0, otherwise it is arbitrary.)

Proof. We show the statement for B = U only, the other cases are similar.
Since

ϕ
(−2

n

)
= ϕ
(−1

n

)
= 1,

we have by Lemma 2.2 that Sϕ,U
n,Mf interpolates f at the points {−1, 1} for

every ϕ ∈ Φ.

Let

g(x) := f(x)− f(1)− f(−1)

2
x− f(1) + f(−1)

2
,
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and observe that g(1) = g(−1) = 0 so

cU−2,M (g) = cU−1,M (g) = 0.

Sϕ,U
n,Mf interpolates f at the points of XU

M if and only if Sϕ,U
n,Mg interpolates

g at the same points. Therefore it is enough to prove the theorem for the latter
one.

Let us define the summation function ν ∈ Φ as follows

ν(x) :=

{
ϕ
(
2M
n x
)
, x ≤ n

2M ;

0, x > n
2M .

Now considering the equality

ν

(
j

2M

)
= ϕ

(
j

n

)
(j = 0, 1, . . . , n)

we get Sϕ,U
n,Mg = Sν,U

2M,Mg, so it is enough to prove the statement for n := 2M .

We have (
Sϕ,U
2M,Mg

)
(x) =

2M∑
j=0

ϕ
( j

2M

)
· cUj,M (g) · U j(x) =

=
2M∑
j=0

ϕ
( j

2M

)
·
[ 2

M + 1

M+2∑
k=1

g(xk,M+2) · U j(xk,M+2)
]
· U j(x) =

=
M+2∑
k=1

g(xk,M+2) ·
{ 2

M + 1

2M∑
j=0

ϕ
( j

2M

)
· U j(xk,M+2) · U j(x)

}
.

Let us introduce the notation

�ϕ,U
k,M+2(x) :=

2

M + 1

2M∑
j=0

ϕ
( j

2M

)
· U j(xk,M+2) · U j(x).

One can prove that the polynomial Sϕ,U
2M,Mg interpolates g at the points of

XU
M if and only if

(3.1) �ϕ,U
k,M+2(xl,M+2) = δk,l (k, l = 1, 2, . . . ,M + 2).

Similarly, we can write the Lagrange interpolation polynomial of g from
Lemma 2.2 in the form

LU
M (x) =

M+2∑
k=1

g(xk,M+2) ·
{ 2

M + 1

M−1∑
j=0

U j(xk,M+2) · U j(x)
}
.
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Set

�Uk,M+2(x) :=
2

M + 1

M−1∑
j=0

U j(xk,M+2) · U j(x).

Since LU
M (x) interpolates g at the points of XU

M , we have

(3.2) �Uk,M+2(xl,M+2) = δk,l (k, l = 1, 2, . . . ,M + 2).

Note that in the sum �ϕ,U
k,M+2(x) the j = M member is 0. Consider the

following transformation:

�ϕ,U
k,M+2(x) =

2

M + 1

M−1∑
j=0

U j(xk,M+2) · U j(x)+

+
2

M + 1

M−1∑
j=0

[
ϕ
( j

2M

)
− 1 + ϕ

(
1− j

2M

)]
· U j(xk,M+2) · U j(x)−

− 2

M + 1

M−1∑
j=0

ϕ
(
1− j

2M

)
· U j(xk,M+2) · U j(x)+

+
2

M + 1

2M∑
j=M+1

ϕ
( j

2M

)
· U j(xk,M+2) · U j(x).

Observe that the first sum is �Uk,M+2(x) from the Lagrange interpolation
polynomial of g. Also note that the last two sums have common values of ϕ,
so they add up to

2

M + 1

2M∑
j=M+1

ϕ
( j

2M

)
· C(x);

C(x) = U j(xk,M+2) · U j(x)− U2M−j(xk,M+2) · U2M−j(x).

Now we consider �ϕ,U
k,M+2(xl,M+2). From (2.3) we can immediately prove

that
C(xk,M+2) = 0.

Hence

�ϕ,U
k,M+2(xl,M+2) = �Uk,M+2(xl,M+2) +A(xl,M+2);

A(x) =
2

M + 1

M−1∑
j=0

[
ϕ
( j

2M

)
− 1 + ϕ

(
1− j

2M

)]
· U j(xk,M+2) · U j(x).
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From (3.2) it follows immediately that Sϕ,U
2M,Mg interpolates g at the points of

XU
M if and only if

A(xl,M+2) = 0 (l = 1, 2, . . . ,M + 2).

Then A(x) hasM distinct roots on the interval (−1, 1), and it can be written
in the form A(x) =

√
1− x2 · P (x), where P (x) is a polynomial of degree at

most M − 1. Since
√
1− x2 
= 0 for x ∈ (−1, 1) we have that P (x) is the zero

polynomial. One can easily see that it is true if and only if

ϕ
( j

2M

)
− 1 + ϕ

(
1− j

2M

)
= 0 (j = 0, 1, . . . ,M − 1),

which proves the statement. �

4. Convergence

In this section we show that if the Fourier transform of the summation
function ϕ is Lebesgue integrable on R

+
0 := [0,∞) then for a wide range of

sequences of (2.2) we have uniform convergence on [−1, 1] for all f ∈ C[−1, 1].
This can be considered as the analogoue of the well-known theorem of G. M.
Natanson and V. V. Zuk (see [3]).

Denote by L1(R+
0 ) the linear space of measurable functions g : R+

0 → R for
which the Lebesgue integral ∫

R
+
0

|g|

is finite.

The functional

‖g‖L1(R+
0 ) :=

∫ +∞

0

|g(x)|dx (g ∈ L1(R+
0 ))

is a norm on L1(R+
0 ) and

(
L1(R+

0 ), ‖ · ‖L1(R+
0 )

)
is a Banach space.

The Fourier transform of g ∈ L1(R+
0 ) is defined by

ĝ(x) :=
1

2π

∫ +∞

0

g(t) cos(tx)dt (x ∈ R
+
0 ).

With these definitions at hand, we prove the following convergence theorem:
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Theorem 4.1. Let Bn ∈ {Tn,Un,Vn,Wn} be a basis and XB
M be the cor-

responding point system. Suppose that

nk → +∞ (k → +∞) and nk ≤ 2Mk (k ∈ N).

Moreover let ϕ ∈ Φ be a summation function.

If ϕ̂ ∈ L1(R+
0 ) then the sequence Sϕ,B

nk,Mk
f uniformly converges on [−1, 1] to

f for all f ∈ C[−1, 1].

Proof. We show the statement for B = U only, the other cases are similar.

As before, for any f ∈ C[−1, 1] let

g(x) := f(x)− f(1)− f(−1)

2
x− f(1) + f(−1)

2
.

We shall use the Banach-Steinhaus theorem. The polynomials{
U j : j ≥ −2, j ∈ Z

}
form a closed system in the space (C[−1, 1], ‖ · ‖∞), therefore we have to show
that two conditions hold:

i) For every fixed j ≥ −2, j ∈ Z

(4.1)
∥∥∥Sϕ,U

nk,Mk
U j − U j

∥∥∥
∞

→ 0 (k → +∞).

ii) The sequence of norms of the operators is uniformly bounded, i.e. there
exists a constant c > 0 independent of k such that

(4.2)
∥∥∥Sϕ,U

nk,Mk

∥∥∥ ≤ c (k ∈ N).

First we prove (4.1). The ceses j = −2 and −1 are easy to see. Let j ≥ 0
and k large enough for

min{nk,Mk} > j.

Then we have (
Sϕ,U
nk,Mk

U j

)
(x) =

=

nk∑
i=0

[ 2

Mk + 1
· ϕ
( i

nk

)
·
Mk+1∑
l=2

U i(xl,Mk+2) · U j(xl,Mk+2)
]
U i(x) =

= ϕ
( j

nk

)
· U j(x)+

+ϕ
(2Mk − j

nk

) 2

Mk + 1

[Mk+1∑
l=2

U j(xl,Mk+2)U2Mk−j(xl,Mk+2)
]
U2Mk−j(x),
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because of

Mk+1∑
l=2

U i(xl,Mk+2) · U j(xl,Mk+2) =

{
0, i 
= j ≤ Mk + 1;
Mk+1

2 , i = j,

(see [2, (6.25)]), and the symmetry property of the coefficients.

Observe that if k → +∞ then

ϕ
( j

nk

)
→ ϕ(0) = 1

and

ϕ
(2Mk − j

nk

)
= ϕ
(
1− j

nk
+

2Mk − nk

nk

)
→ 0,

so (
Sϕ,U
nk,Mk

U j

)
(x) → U j(x),

and (4.1) follows from the above relations.

Now we prove (4.2).∥∥∥Sϕ,U
nk,Mk

∥∥∥ = sup
f∈C[−1,1]

‖f‖∞=1

‖Sϕ,U
nk,Mk

f‖∞ =

= sup
f∈C[−1,1]

‖f‖∞=1

‖Sϕ,U
nk,Mk

g + cU−1,M (f) · x+ cU−2,M (f)‖∞ ≤

≤ sup
g∈C[−1,1]

‖g‖∞≤3

{
‖Sϕ,U

nk,Mk
g‖∞ : g(−1) = g(1) = 0

}
+ 2,

since x ∈ [−1, 1] and ‖f‖∞ = 1 implies

‖cU−1,M (f) · x+ cU−2,M (f)‖∞ ≤ 1 + 1 = 2

and ‖g‖∞ ≤ 3.

So we get the estimation

(4.3)
∥∥∥Sϕ,U

nk,Mk

∥∥∥ ≤ 3 · sup
g∈C[−1,1]

‖g‖∞=1

{
‖Sϕ,U

nk,Mk
g‖∞ : g(−1) = g(1) = 0

}
+ 6.
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This means that we have to show that

sup
g∈C[−1,1]

‖g‖∞=1

{
‖Sϕ,U

nk,Mk
g‖∞ : g(−1) = g(1) = 0

}
=

sup
g∈C[−1,1]

‖g‖∞=1

∥∥∥∥∥
nk∑
j=0

[ 2

Mk + 1

Mk+1∑
l=2

ϕ
( j

nk

)
· g(xl,Mk+2) · U j(xl,Mk+2)

]
U j(x)

∥∥∥∥∥
∞

=

= sup
x∈[−1,1]

Mk+1∑
l=2

∣∣∣ 2

Mk + 1

nk∑
j=0

ϕ
( j

nk

)
· U j(xl,Mk+2) · U j(x)

∣∣∣
is uniformly bounded. Note that we excluded the l = 1 and l = Mk + 2 terms
of the sum, since g(−1) = g(1) = 0 implies that they are 0.

Let x =: cosϑ (ϑ ∈ [0, π]) and xl,M+2 =: cosϑl,M+2 (l = 2, ..,M + 1). For
every n,M ∈ N we have∣∣∣∣∣

n∑
j=0

ϕ
( j
n

)
· U j(xl,M+2) · U j(x)

∣∣∣∣∣ =
=

∣∣∣∣∣
n∑

j=0

ϕ
( j
n

)
· sinϑl,M+2 ·

sin(j + 1)ϑl,M+2

sinϑl,M+2
· sinϑ · sin(j + 1)ϑ

sinϑ

∣∣∣∣∣ =
=

∣∣∣∣∣
n∑

j=0

ϕ
( j
n

)
· sin(j + 1)ϑl,M+2 · sin(j + 1)ϑ

∣∣∣∣∣ =
=

1

2

∣∣∣∣∣12 +
n+1∑
j=1

ϕ
(j − 1

n

)
· cos j(ϑ+ ϑl,M+2)−

1

2
−

−
n+1∑
j=1

ϕ
(j − 1

n

)
· cos j(ϑ− ϑl,M+2)

∣∣∣∣∣ =:

=:
∣∣Dϕ

n+1(ϑ+ ϑl,M+2)−Dϕ
n+1(ϑ− ϑl,M+2)

∣∣ ≤
≤
∣∣Dϕ

n+1(ϑ+ ϑl,M+2)
∣∣+ ∣∣Dϕ

n+1(ϑ− ϑl,M+2)
∣∣ .

Therefore we have

sup
x∈[−1,1]

M+1∑
l=2

∣∣∣∣∣ 2

M + 1

n∑
j=0

ϕ
( j
n

)
· U j(xl,M+2) · U j(x)

∣∣∣∣∣ ≤
max

ϑ∈[0,π]

2

M + 1

M+1∑
l=2

∣∣Dϕ
n+1(ϑ+ ϑl,M+2)

∣∣+ max
ϑ∈[0,π]

2

M + 1

M+1∑
l=2

∣∣Dϕ
n+1(ϑ− ϑl,M+2)

∣∣ .
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From [9, (26) and (27)] we have

max
ϑ∈[0,π]

2

M + 1

M+1∑
l=2

∣∣Dϕ
n+1(ϑ± ϑl,M+2)

∣∣ ≤ C

(
1 + 2

n+ 1

M + 2
π

)
‖Dϕ

n+1‖1,

where

‖Dϕ
n+1‖1 :=

1

2π

∫ π

−π

|Dϕ
n+1(t)|dt.

Also

2 sup
k∈N

‖Dϕ
nk+1‖1 = ‖ϕ̂‖L1(R+

0 ),

thus ϕ̂ ∈ L1(R+
0 ) ensures (4.2). �

In general, the Fourier transform of a function from L1(R+
0 ) does not belong

to the space L1(R+
0 ). Verifying ĝ ∈ L1(R+

0 ) is not always easy but the following
sufficient condition is known (cf. [3, p. 176]):

Theorem 4.2. If g : R+
0 → R is a continuous function supported in [0, 1]

and g ∈Lipβ (β > 1/2) on [0, 1] then ĝ ∈ L1(R+
0 ).

Using the last two theorems one can easily construct discrete processes
uniformly convergent on the whole interval [−1, 1].
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