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Abstract. In this paper a result concerning the starlikeness of the im-
age of the Alexander operator is improved. The techniques of differential
subordinations and extreme points are used.

1. Introduction

Let U(z0, r) be the disc centered at the point z0 and of radius r defined
by U(z0, r) = {z ∈ C : |z − z0| < r}. U denotes the open unit disc in C,
U = {z ∈ C : |z| < 1}. Let A be the class of analytic functions f, which are
defined on the unit disc U and have the form: f(z) = z+a2z

2+a3z
3+ .... The

subclass of A consisting of functions for which the range f(U) is starlike with
respect to 0, is denoted by S∗. An analytic characterization of S∗ is given by:

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0, z ∈ U

}
.

Another subclass of A we deal with is the class of close-to-convex functions
denoted by C. A function f ∈ A belongs to the class C if and only if there is
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a starlike function g ∈ S∗, so that Re zf ′(z)
g(z) > 0, z ∈ U. We note that C and

S∗ contain univalent functions. The Alexander integral operator is defined by
the equality:

A(f)(z) =

z∫
0

f(t)

t
dt.

The authors of [2] (pp. 310− 311) proved the following result:

Theorem 1.1. Let A be the Alexander operator and let g ∈ A satisfy

(1.1) Re
zg′(z)

g(z)
≥
∣∣∣∣Im z(zg′(z))′

g(z)

∣∣∣∣ , z ∈ U.

If f ∈ A and

Re
zf ′(z)

g(z)
> 0, z ∈ U,

then F = A(f) ∈ S∗.

This theorem states that a subclass of C is mapped by the Alexander oper-
ator to S∗. On the other hand we know that A(C) 
⊂ S∗. In [3] and [4] several
improvements of this result are proved, simplifying condition (1.1). Investigat-
ing this question, the following theorems have been deduced in [3]:

Theorem 1.2. Let g ∈ A be a function which satisfies the condition:

(1.2) Re
zg′(z)

g(z)
> 2.273

∣∣∣∣Im zg′(z)

g(z)

∣∣∣∣ , z ∈ U.

If f ∈ A satisfies

Re
zf ′(z)

g(z)
> 0, z ∈ U,

then F = A(f) ∈ S∗.

Theorem 1.3. If f, g ∈ A and

(1.3) Re
g(z)

z
>

100

83

∣∣∣∣Im g(z)

z

∣∣∣∣ , z ∈ U,

then the condition

Re
zf ′(z)

g(z)
> 0, z ∈ U

implies that F = A(f) ∈ S∗.
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The implications-chain is deduced in [3]: (1.1) ⇒ (1.2) ⇒ (1.3). Thus The-
orem 1.2 and Theorem 1.3 are improvements of Theorem 1.1. Consequently, the
question to determine the smallest c ∈ [0,∞) for which the following statement
holds arises naturally:

If f, g ∈ A and

(1.4) Re
g(z)

z
> c

∣∣∣∣Im g(z)

z

∣∣∣∣ , z ∈ U,

then the condition

Re
zf ′(z)

g(z)
> 0, z ∈ U

implies that F = A(f) ∈ S∗.

We are not able to answer this question completely at the moment, but
we will prove that the statement holds for c = 1. This is an improvement of
Theorem 1.3. In order to do this, we need the following lemmas.

2. Preliminaries

Lemma 2.1. ([2]) Let p(z) = a+
∞∑

k=n

akz
k be analytic in U with p(z) 
≡ a,

n ≥ 1 and let q : U(0, 1) → C be a univalent function with q(0) = a. If there are
two points z0 ∈ U(0, 1) and ζ0 ∈ ∂U(0, 1) so that q is defined in ζ0, p(z0) = q(ζ0)
and p(U(0, r0)) ⊂ q(U), where r0 = |z0|, then there is an m ∈ [n,+∞) so that

(i) z0p
′(z0) = mζ0q

′(ζ0) and

(ii) Re

(
1 +

z0p
′′(z0)

p′(z0)

)
≥ mRe

(
1 +

ζ0q
′′(ζ0)

q′(ζ0)

)
.

Lemma 2.2. ([2]) Let p(z) = a+
∞∑

k=n

akz
k, p(z) 
≡ a and n ≥ 1.

If z0 ∈ U and
Re p(z0) = min{Re p(z) : |z| ≤ |z0|},

then

(i) z0p
′(z0) ≤ −n

2

|p(z0)− a|2
Re (a− p(z0))

and

(ii) Re [z20p
′′(z0)] + z0p

′(z0) ≤ 0.

Recall that if f and g are analytic functions in U and there is a function
w also analytic, satisfying w(0) = 0, |w(z)| ≤ |z|, z ∈ U and f(z) = g(w(z)),
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z ∈ U , then the function f is said to be subordinate to g, written f ≺ g. If g
is univalent then f(0) = g(0) and f(U) ⊂ g(U) implies that f ≺ g.

Lemma 2.3. ([1]) Let Fα(z) =
(
1+cz
1−z

)α
, |c| ≤ 1, c 
= −1. In case of α ≥ 1,

the subordination f ≺ Fα holds if and only if there exists a probability measure
μ on [0, 2π] having the property

f(z) =

2π∫
0

(
1 + ze−it

1− ze−it

)α

dμ(t), z ∈ U.

The set of extreme points of the class {f ∈ A
∣∣f ≺ Fα

}
is{

ft(z) =

(
1 + ze−it

1− ze−it

)α

, t ∈ [0, 2π]

}
.

Let P denote the class of analytic functions of the form

p(z) = 1 + c1z + c2z
2 + . . . ,

and having the property Re p(z) > 0, z ∈ U. We note that this property is
equivalent to p(z) ≺ 1+z

1−z and Lemma 2.3 implies that there is a probabil-

ity measure μ on the interval [0, 2π] such that p(z) =
∫ 2π
0

1+ze−it

1−ze−it dμ(t). This
equality actually is the Herglotz formula.

Lemma 2.4. ([1, Corollary 3.7]) p ∈ P if and only if there exist a sequence
of functions (pn)n≥1 so that pn has the form

q(z) =

m∑
k=1

tk
1 + zxk

1− zxk
,

where |xk| = 1, tk ≥ 0 and
∑m

k=1 tk = 1 and pn → p uniformly on compact
subsets of U.

Lemma 2.5. If f, g ∈ A and

(2.1) Re
g(z)

z
>

∣∣∣∣Im g(z)

z

∣∣∣∣ , z ∈ U,

and F = A(f), then the condition

(2.2) Re
zf ′(z)

g(z)
> 0, z ∈ U

implies that there is a probability measure μ on [0, 2π], such that

F (z)

z
=

2π∫
0

1∫
0

ln
1

x

(
1 + xze−it

1− xze−it

) 3
2

dxdμ(t), z ∈ U.
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Proof. Inequality (2.1) is equivalent to

(2.3)

∣∣∣∣arg g(z)

z

∣∣∣∣ ≤ π

4
, z ∈ U.

Applying Lemma 2.3 in case of c = 1, α = 1 and F1(z) =
1+z
1−z it follows that:

f ′(z) =
g(z)

z

2π∫
0

1 + ze−it

1− ze−it
dν(t),

where ν is a probability measure on [0, 2π]. Thus we get:

(2.4) |arg f ′(z)| ≤
∣∣∣∣arg g(z)

z

∣∣∣∣+
∣∣∣∣∣arg

2π∫
0

1 + ze−it

1− ze−it
dν(t)

∣∣∣∣∣ < 3π

4
, z ∈ U.

We introduce the notation D =
{
z ∈ C : |arg (z)| ≤ 3π

4

}
. The function

q(z) =

(
1 + z

1− z

)τ

, τ =
3

2
,

is the Riemann mapping from U to D. (The principal branch of
(
1+z
1−z

)τ
is

chosen.) The inequality (2.4) implies

f ′(z) ≺ q(z),

and according to Lemma 2.3, this subordination is equivalent to

f ′(z) =

2π∫
0

(
1 + ze−it

1− ze−it

) 3
2

dμ(t), z ∈ U,

where μ denotes a probability measure on [0, 2π]. On the other hand, if

q(z) = 1 +
∞∑

n=1

anz
n,

then

f ′(z) = 1 +

∞∑
n=1

anz
n

2π∫
0

e−intdμ(t),

and

F (z)

z
= 1 +

∞∑
n=1

an
zn

(n+ 1)2

2π∫
0

e−intdμ(t).
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The equalities
∫ 1
0
xn ln 1

xdx = 1
(n+1)2 , n ∈ N imply

F (z)

z
=

1∫
0

ln
1

x

(
1 +

∞∑
n=1

anx
nzn

2π∫
0

e−intdμ(t)

)
dx.

Lemma 2.4 implies that the second integration can be interchanged with the
summation and the first integration and finally we get

F (z)

z
=

1∫
0

ln
1

x

2π∫
0

(
1 + xze−it

1− xze−it

) 3
2

dμ(t)dx =

=

2π∫
0

1∫
0

ln
1

x

(
1 + xze−it

1− xze−it

) 3
2

dxdμ(t), z ∈ U . �

Lemma 2.6. The function A : [0, 3π
4 ] → R,

A(θ) = (π − θ)(sin θ − cos θ)

∞∫
0

(
ex − 1

ex + 1

) 3
2 1

ex
dx−

−(sin θ + cos θ)

∞∫
0

(
ex − 1

ex + 1

) 3
2 x

ex
dx

is increasing and the function B : [π6 ,
3π
4 ] → R defined by

B(θ) =
√
2

π−θ∫
0

x

(
cot

θ + x

2

) 3
2

cosxdx

is decreasing.

Proof. Notice that

I1 =

∞∫
0

(
ex − 1

ex + 1

) 3
2 1

ex
dx = 0.28..., I2 =

∞∫
0

(
ex − 1

ex + 1

) 3
2 x

ex
dx = 0.51...

and I1 < I2 < 2I1. Thus it follows that in case θ ∈ [π4 ,
3π
4 ] we have

A′(θ) = (π − θ)(sin θ + cos θ)I1 + (sin θ − cos θ)(I2 − I1) > 0
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and if θ ∈ [0, π
4 ], then

A′(θ) > [(π − θ)(sin θ + cos θ) + sin θ − cos θ]I1 > 0.

Consequently the first part of the assertion is proved.

In the following we will prove that: B′(θ) ≤ 0, θ ∈ [π6 ,
3π
4 ]. We have:

B′(θ) = −3
√
2

4

π−θ∫
0

x

(
cot

θ + x

2

) 1
2
(
sin

θ + x

2

)−2

cosxdx, θ ∈ [
π

6
,
3π

4
].

The claimed inequality holds evidently in case θ ∈ [π2 ,
3π
4 ].

We will use the following equality to prove B′(θ) ≤ 0 in case θ ∈ [π6 ,
π
2 ] :

B′(θ) =
3
√
2

4

π
2 −θ∫
0

(x+
π

2
)

(
cot
(π
4
+

θ + x

2

)) 1
2
(
sin
(π
4
+

θ + x

2

))−2

sinxdx−

−3
√
2

4

∫ π
2

0

x

(
cot

θ + x

2

) 1
2
(
sin

θ + x

2

)−2

cosxdx.(2.5)

Some elementary calculations lead to the following inequalities:(
cot

θ + x

2

) 1
2

≥ (1 +
√
2)

(
cot
(π
4
+

θ + x

2

)) 1
2

, x ∈ [0,
π

2
− θ](

sin
θ + x

2

)−2

≥ 2

(
sin
(π
4
+

θ + x

2

))−2

, x ∈ [0,
π

2
− θ]

x cosx ≥
π
3

5π
6 tan

(
π
3

) (π
2
+ x) sinx, x ∈ [0,

π

2
− θ].

These inequalities imply that in case x ∈ [0, π
2 − θ] we have:

x

(
cot

θ + x

2

) 1
2
(
sin

θ + x

2

)−2

cosx ≥

≥ 4(1 +
√
2)

5
√
3

(x+
π

2
)

(
cot
(π
4
+

θ + x

2

)) 1
2
(
sin
(π
4
+

θ + x

2

))−2

sinx ≥

≥ (x+
π

2
)

(
cot
(π
4
+

θ + x

2

)) 1
2
(
sin
(π
4
+

θ + x

2

))−2

sinx,

and finally we get: ∫ π
2 −θ

0

x

(
cot

θ + x

2

) 1
2
(
sin

θ + x

2

)−2

cosxdx ≥(2.6)

≥
∫ π

2 −θ

0

(x+
π

2
)

(
cot
(π
4
+

θ + x

2

)) 1
2
(
sin
(π
4
+

θ + x

2

))−2

sinxdx.
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The inequality B′(θ) ≤ 0, θ ∈ [π6 ,
π
2 ] follows from (2.5) and (2.6). �

Lemma 2.7. If

F (z) =

1∫
0

(
1 + xz

1− xz

) 3
2

ln
1

x
dx,

then
ReF (eiθ) ≥ ImF (eiθ), θ ∈ [0, π].

Proof. We begin with the observation that the change of variable x = e−t

leads to

F (eiθ) =

∞∫
0

(
et + eiθ

et − eiθ

) 3
2 t

et
dt.

Now consider the function:

f(z) =

(
ez + eiθ

ez − eiθ

) 3
2 z

ez
.

We integrate it on Γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where γ1(t) = t, t ∈ [0, R], γ2(t) =
= R − it, t ∈ [0, π − θ], γ3(t) = R − t + i(θ − π), t ∈ [0, R] and γ4(t) =
= i(θ− π+ t), t ∈ [0, π− θ]. Because f is analytic in the interior of Γ we have,∫
Γ
f(z)dz = 0 which leads to

F (eiθ) = lim
R→∞

∫
γ1

f(z)dz = − lim
R→∞

[∫
γ2

f(z)dz +

∫
γ3

f(z)dz +

+

∫
γ4

f(z)dz
]
=

∞∫
0

(
ex − 1

ex + 1

) 3
2 (x+ i(θ − π))(− cos θ + i sin θ)

ex
dx+

+

π−θ∫
0

(
tan

t

2

) 3
2 ei

3π
4
θ − π + t

ei(θ−π+t)
dt.

The change of variable θ−π+t = −x in the second integral implies the equality

F (eiθ) =

∞∫
0

(
ex − 1

ex + 1

) 3
2 (x+ i(θ − π))(− cos θ + i sin θ)

ex
dx−

−
π−θ∫
0

x

(
cot

θ + x

2

) 3
2

ei(x+
3π
4 )dx.
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Thus it follows that

ReF (eiθ)− ImF (eiθ) = (π − θ)(sin θ − cos θ)

∞∫
0

(
ex − 1

ex + 1

) 3
2 1

ex
dx−

−(sin θ + cos θ)

∞∫
0

(
ex − 1

ex + 1

) 3
2 x

ex
dx+

√
2

π−θ∫
0

x

(
cot

θ + x

2

) 3
2

cosxdx =

= A(θ) +B(θ).(2.7)

According to the monotonicity of A and B, the inequalities hold

B(θ) +A(θ) ≥ B(θk) +A(θk−1), θ ∈ [θk−1, θk], k = 21, 90.

Now, if we check that

(2.8) B(θk) +A(θk−1) > 0, θk =
kπ

120
, k = 21, 90

we obtain
B(θ) +A(θ) > 0, θ ∈ [θk−1, θk], k = 21, 90

and the proof is done in case of θ ∈ [π6 ,
3π
4 ]. Inequalities (2.8) can be checked

easily by using a computer program. The inequality ReF (eiθ) ≥ ImF (eiθ),
θ ∈ [ 3π4 , π] follows from (2.7). It remains to prove the assertion in case θ ∈ [0, π

6 ].

We put in the integral
∫ π−θ

0
x
(
cot θ+x

2

) 3
2 cosxdx the change of variable x+θ = u

and we obtain

ReF (eiθ)− ImF (eiθ) = (π − θ)(sin θ − cos θ)

∞∫
0

(
ex − 1

ex + 1

) 3
2 1

ex
dx−

−(sin θ + cos θ)

∞∫
0

(
ex − 1

ex + 1

) 3
2 x

ex
dx+

√
2

π∫
θ

(u− θ)

(
cot

u

2

) 3
2

cos (u− θ)dx.

This can be rewritten as follows

ReF (eiθ)− ImF (eiθ) =

= sin θ

(
(π − θ)I1 − I2 +

√
2

π∫
θ

(u− θ)(cot
u

2
)

3
2 sinudu

)
+

+cos θ

(
− (π − θ)I1 − I2 +

√
2

π∫
θ

(u− θ)(cot
u

2
)

3
2 cosudu

)
.
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(I1 and I2 are defined in the proof of the previous lemma.) We observe that
the mapping C : [0, π

6 ] defined by

C(θ) = (π − θ)I1 − I2 +
√
2

π∫
θ

(u− θ)(cot
u

2
)

3
2 sinudu

is strictly decreasing. This implies the inequality: C(θ) ≥ C(π6 ) ≥ 6.8... Thus
it follows that

ReF (eiθ)− ImF (eiθ) ≥

≥ cos θ

(
6.8 tan θ − (π − θ)I1 − I2 +

√
2

π∫
θ

(u− θ)(cot
u

2
)

3
2 cosudu

)
.

Let the functions D and E be defined by the equalities

D(θ) = 6.8 tan θ − (π − θ)I1 − I2

and

E(θ) =
√
2

π∫
θ

(u− θ)(cot
u

2
)

3
2 cosudu.

It is simple to show that D is strictly increasing and E is strictly decreasing.
The monotonicity of these functions imply

D(θ) + E(θ) > D(θk−1) + E(θk), θk =
kπ

120
, k = 1, 20.

If we prove that D(θk−1) + E(θk) > 0, θk = kπ
120 , k = 1, 20, then it follows

that ReF (eiθ) ≥ ImF (eiθ), θ ∈ [0, π
6 ] and the proof is done. The inequalities

D(θk−1) + E(θk) > 0, k = 1, 20 can be checked easily by using a computer
program. �

3. The main result

Theorem 3.1. If f, g ∈ A and

Re
g(z)

z
>

∣∣∣∣Im g(z)

z

∣∣∣∣ , z ∈ U,
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then the condition

Re
zf ′(z)

g(z)
> 0, z ∈ U

implies that

(3.1) Re
F (z)

z
>

∣∣∣∣Im F (z)

z

∣∣∣∣ , z ∈ U,

where F = A(f).

Proof. Let Λ be the set of probability measures on [0, 2π]. We introduce
the notation

B =

{ 2π∫
0

1∫
0

ln
1

x

(
1 + xze−it

1− xze−it

) 3
2

dxdμ(t)

∣∣∣∣ μ ∈ Λ

}
.

According to Lemma 2.5 we have F ∈ B. Let z0 ∈ U be an arbitrarily fixed
point, and let pz0 be the functional defined by

pz0 : B → R, pz0(F ) = ReF (z0)−
∣∣ImF (z0)

∣∣.
If we prove that pz0(F ) ≥ 0 for every F ∈ B in case of an arbitrarily fixed
point z0 ∈ U, then inequality (3.1) follows. Since the functional pz0 is concave,
according to Lemma 2.5, we have to verify pz0(F ) ≥ 0 only for the extreme
points of the class B. It follows from Lemma 2.5 that the extreme points of this
class are

Ft(z) =

∫ 1

0

ln
1

x

(
1 + xze−it

1− xze−it

) 3
2

dx, t ∈ [0, 2π].

For z0 = r0e
iθ0 , the inequality pz0(Ft) ≥ 0 is equivalent to

1∫
0

ln
1

x

(
1 + x2r20 + 2xr0 cos(θ0 − t)

1 + x2r20 − 2xr0 cos(θ0 − t)

) 3
4

cos

(
3

2
arctan

2xr0 sin(θ0 − t)

1− x2r20

)
dx ≥

≥
∣∣∣∣

1∫
0

ln
1

x

(
1 + x2r20 + 2xr0 cos(θ0 − t)

1 + x2r20 − 2xr0 cos(θ0 − t)

) 3
4

sin

(
3

2
arctan

2xr0 sin(θ0 − t)

1− x2r20

)
dx

∣∣∣∣.
Denoting θ0 − t by β, we obtain

(3.2)

1∫
0

ln
1

x

(
1 + x2r20 + 2xr0 cosβ

1 + x2r20 − 2xr0 cosβ

) 3
4

cos

(
3

2
arctan

2xr0 sinβ

1− x2r20

)
dx ≥

≥
∣∣∣∣

1∫
0

ln
1

x

(
1 + x2r20 + 2xr0 cosβ

1 + x2r20 − 2xr0 cosβ

) 3
4

sin

(
3

2
arctan

2xr0 sinβ

1− x2r20

)
dx

∣∣∣∣,
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and we have to prove this inequality in case of r ∈ [0, 1], β ∈ [0, 2π]. Replacing
β by 2π − β, we get the same inequality. This shows that we have to prove
(3.2) only in the case β ∈ [0, π] and r0 ∈ [0, 1). Since

1∫
0

ln
1

x

(
1 + x2r20 + 2xr0 cosβ

1 + x2r20 − 2xr0 cosβ

) 3
4

sin

(
3

2
arctan

2xr0 sinβ

1− x2r20

)
dx ≥ 0, β ∈ [0, π],

inequality (3.2) is equivalent to

(3.3)

1∫
0

ln
1

x

(
1 + x2r20 + 2xr0 cosβ

1 + x2r20 − 2xr0 cosβ

) 3
4

cos

(
3

2
arctan

2xr0 sinβ

1− x2r20

)
dx ≥

≥
1∫

0

ln
1

x

(
1 + x2r20 + 2xr0 cosβ

1 + x2r20 − 2xr0 cosβ

) 3
4

sin

(
3

2
arctan

2xr0 sinβ

1− x2r20

)
dx,

β ∈ [0, π], r0 ∈ [0, 1).

Let t = 0 and

F0(z) =

1∫
0

(
1 + xz

1− xz

) 3
2

ln
1

x
dx.

The function Φ defined by the equality

Φ(r, β) = ReF0(re
iβ)− ImF0(re

iβ)

is harmonic on D = {z ∈ C : |z| < 1, Imz > 0}. Inequality (3.3) is equivalent
to

Φ(r, β) = ReF0(z)− ImF0(z) > 0, z = reiβ ∈ D.

Thus, according to the maximum principle for harmonic functions we have to
check the inequality Φ(r, β) > 0 only on the frontier of D, namely in case of
z = eiβ , β ∈ [0, π], and in case of z = u ∈ (−1, 1). Lemma 2.7 implies that the
inequality

Φ(1, β) > 0, β ∈ [0, π]

holds. In case of z = u ∈ (−1, 1) we have

Φ(r, β) =

1∫
0

(
1 + xu

1− xu

) 3
2

ln
1

x
dx > 0

and the proof is completed. �
The following theorem is an improvement of Theorem 1.3 and brings us

closer to the best possible result.



About a condition for starlikeness 273

Theorem 3.2. Suppose f, g ∈ A and

(3.4) Re
g(z)

z
>

∣∣∣∣Im g(z)

z

∣∣∣∣ , z ∈ U,

then the condition

(3.5) Re
zf ′(z)

g(z)
> 0, z ∈ U

implies that

(3.6) F ∈ S∗

where F = A(f).

Proof. Differentiating the equality F = A(f) twice, we obtain

F ′(z) + zF ′′(z) = f ′(z).

The notations p(z) = zF ′(z)
F (z) , P (z) = F (z)

g(z) lead to

P (z)
(
zp′(z) + p2(z)

)
=

zf ′(z)

g(z)
, z ∈ U.

The conditions of the theorem imply that

(3.7) ReP (z)
(
zp′(z) + p2(z)

)
> 0, z ∈ U.

First, we prove the inequality ReP (z) > 0, z ∈ U. According to Theorem 3.1,
inequalities (3.4) and (3.5) imply that

Re
F (z)

z
>

∣∣∣∣Im F (z)

z

∣∣∣∣ , z ∈ U.

This inequality and (3.4), imply that ReP (z) = F (z)
g(z) > 0, z ∈ U.

We are now in the position of proving Re p(z) > 0, z ∈ U .

If Re p(z) > 0, z ∈ U is not true, then, according to Lemma 2.2, there
are two real numbers s, t ∈ R and a point z0 ∈ U, such that p(z0) = is and
z0p

′(z0) = t ≤ − 1
2 (s

2 + 1). Thus

P (z0)
(
z0p

′(z0) + p2(z0)
)
= P (z0)(t− s2)

and ReP (z0) > 0 implies that

Re
[
P (z0)

(
z0p

′(z0) + p2(z0)
)]

< 0.

This inequality contradicts (3.7), so we have Re p(z) = Re zF ′(z)
F (z) > 0, z ∈ U. �
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