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Abstract. The LATEX system is widely used in scientific journals with
syntactically rich mathematical expressions. It is suitable not only for
high-quality press-ready production, but it can also be applied for the
development of dynamic presentations and learning materials containing
many nice formulas. The need to construct numerous derivations using
Gentzen style sequent calculus, gives the idea to automatize the process
(which was implemented in the GenTreeCad application). The point-plus-
expressions show how to use an existing derivation to produce different
solutions by different theorem proving methods.
In this artice, we try to demonstrate the capability of point-plus-
expressions meanwhile we are using them for automatic theorem proving.
We want to show – using propositional logic – how we could take the ad-
vantages of the connection between the resolution and it is dual one, then
the connection between sequent calculus and the tableau method as well.

1. Motivation

The basic idea of the born of the GenTreeCad application [8] was the need
of the press-ready examples in the education of the classical logic. The stu-
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dents at the university require numerous examples to clearly understand the
adequate strategy during the creation of a proof using a Gentzen style sequent
calculus. The simple, plain text coding of LATEX formulas allows the use of the
LATEX source text/code as input for further processing. The above mentioned
benefits give us the idea to develop an application which can provide the ability
to build up several derivations using different proving systems based on clas-
sical logic, such as Gentzen style sequent calculus, semantic tableaux method,
and the resolution calculus for educational purposes. The present solution is
still restricted to the propositional logic.

The additional goal was to develop a process which is able to produce a gen-
eral derivation. This general derivation generates the correspondent derivation
instances over the mentioned proving systems (instead of implementing and
using them separately). Based on an original idea introduced by Dragálin [1]
and investigated later deeply by Pásztor Varga and Várterész [5, 6], it makes
a unified treatment of the relevant calculi using the point-plus meta-language
possible for us.

2. Point-plus-expressions

Because we use classical propositional logic, we suppose that we have an
infinite list of propositional letters X, Y, Z and so on (usually denoted by up-
per case letters). We will use ¬ for negation (one-place logical connective), ∧
for conjunction, ∨ for disjunction and ⊃ for implication (binary logical con-
nectives). We are able to build up propositional formulas from this set of
symbols with the usual syntax. To avoid misunderstanding, we will use fully
parenthesized expressions (omitting only the outmost parentheses).

Definition 2.1. If A is a formula, then tA and fA are labelled formulas
as well.

Definition 2.2. The set of point-plus-expressions1 P (or pp-expressions
for short) is the smallest set that contains:

• labelled formulas,

• (P1 ◦ P2 ◦ · · · ◦ Pn) (n ≥ 2), if Pi ∈ P for all i = 1, · · · , n,

• (P1 + P2 + · · ·+ Pn) (n ≥ 2), if Pi ∈ P for all i = 1, · · · , n.

1The pp-expression was originally developed by Dragálin[1]
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Definition 2.3. Elementary expressions from the set of point-plus-expressi-
ons:

• the elementary point-chain is a list of one or more labelled propositional
letters, separated by ◦,

• the elementary plus-chain is a list of one or more labelled propositional
letters, separated by +.

We use the following normal forms:

Definition 2.4. Normal forms in P:

• The point-chain is a list of one or more labelled formulas, separated by ◦,

• the plus-chain is a list of one or more labelled formulas, separated by +,

• the point normal form is a plus-chain, or a list of ◦ separated plus-chains,

• the plus normal form is a point-chain, or a list of + separated point-
chains.

The order of the elements in the lists above is irrelevant. We do not distin-
guish between tX ◦ tY and tY ◦ tX.

Note that a point-chain and a plus-chain is also a pp-expression.

3. Automatic proof generation

3.1. Pp-resolution

Now we want to show that a resolution like calculus can be defined over the
language of P.

Definition 3.1. Rewriting algorithm:

Let C be a formula. We define the pp-expression form of C, using the
following rules on fC (which is a labelled formula). We continue to apply the
rules until there exists a labelled formula in the pp-expression, where ∧ or ∨
or ¬ is the main logical connective. Let A and B denote formulas.

1. fA ∧B ⇒ fA+ fB,

2. fA ∨B ⇒ fA ◦ fB,

3. f¬A ⇒ tA.
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If C was a conjunctive normal form, then the output of the algorithm is a
pp-expression without any logical connectives. Informally, we just substitute
the conjunctions, disjunctions and negations with + and ◦, and t symbols. In
this case, the above algorithm generates a pp-expression in plus normal form,
and furthermore, the plus normal form consists of only elementary point-chains.

Now let us see an example of how to use the rewriting algorithm.

fZ ∧ (X ∨ ¬Y ) ∧ (Y ∨ ¬Z) ∧ (¬X ∨ ¬Z) ⇒
fZ + f(X ∨ ¬Y ) + f(Y ∨ ¬Z) + f(¬X ∨ ¬Z) ⇒

fZ + (fX ◦ f¬Y ) + (fY ◦ f¬Z) + (f¬X ◦ f¬Z) ⇒
fZ + (fX ◦ tY ) + (fY ◦ tZ) + (tX ◦ tZ)

If we adopt the resolution idea, a resolution like calculus can be defined
in the subset of P, which contains elementary point-chain based plus normal
forms (elementary plus normal forms). The above algorithm suggests thinking
of about an elementary point-chain as a clause.

Definition 3.2. Axiom schemes of the pp-resolution:

fX + tX and Γ + fX + tX

where Γ is an elementary plus normal form, and X is a propositional letter.

Definition 3.3. Pp-resolution expansion rules:

Δ1 +Δ2 +Δ

Δ1 +Δ2
and

Γ +Δ1 +Δ2 +Δ

Γ+Δ1 +Δ2

where Γ is an elementary plus normal form. Δ1 and Δ2 are elementary point
chains, where both of them contain exactly one propositional letter with differ-
ent labels in Δ1 and Δ2. Let X be that propositional letter. In this case, Δ is
an elementary point-chain with the labelled elements of Δ1 and Δ2, excluding
tX and fX.

We are able to construct a proof for the example above, because it was an
elementary plus normal form.

fZ + (fX ◦ tY ) + (fY ◦ tZ) + (tX ◦ tZ) ⇒
fZ + (fX ◦ tY ) + (fY ◦ tZ) + (tX ◦ tZ) + (fX ◦ tZ) ⇒

fZ + (fX ◦ tY ) + (fY ◦ tZ) + (tX ◦ tZ) + (fX ◦ tZ) + fX ⇒
fZ + (fX ◦ tY ) + (fY ◦ tZ) + (tX ◦ tZ) + (fX ◦ tZ) + fX + tX

Here, the last pp-expression is an axiom.

Now we need to show that there is a conversion between a proof by the
pp-resolution and a proof by the standard resolution.
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3.2. Interpretations

Now we can look at the pp-expressions as formal languages, where the +,
◦ and the labels are non-terminal symbols. The only thing we need is a formal
grammar. First, we try to create the opposite of the rewriting algorithm:

Definition 3.4. The formal grammar of the tn-interpretation2:

1. (fA1 ◦ fA2 ◦ · · · ◦ fAk) ⇒ f(A1 ∨A2 ∨ · · · ∨Ak), where k ≥ 2,

2. (fA1 + fA2 + · · ·+ fAk) ⇒ f(A1 ∧A2 ∧ · · · ∧Ak), where k ≥ 2,

3. tA ⇒ f¬A, where A is a formula.

If we apply the steps above until it is possible, then an fA formula appears,
where A is the formula generated by the tn-interpretation.

If we apply the tn-interpretation on the pp-resolution expansion rule, we
recognize the resolution rule. Let Γ′ be the tn-interpretation of Γ, and let Δ′

i

be the tn-interpretation of Δi, where i ∈ {1, 2}.

Γ′ ∧ (X ∨Δ′
1) ∧ (¬X ∨Δ′

2) ∧ (Δ′
1 ∨Δ′

2)

Γ′ ∧ (X ∨Δ′
1) ∧ (¬X ∨Δ′

2)

When we just enumerate the elementary point-chain components of the plus
normal form, in the same order as they appear in the pp-expression, we get
back the steps for the resolution. In the first case, the elementary point-chains
represent elementary disjunctions (in other words, propositional clauses).

1. fZ 1. Z
2. fX ◦ tY 2. X ∨ ¬Y
3. fY ◦ tZ 3. Y ∨ ¬Z
4. tX ◦ tZ 4. ¬X ∨ ¬Z
5. fX ◦ tZ 5. X ∨ ¬Z from 2 and 3

6. fX 6. X from 1 and 5

7. tX 7. ¬X from 1 and 4

8. empty clause from 6 and 7

However, the tn-interpretation is not the only way which translates the pp-
expressions into the language of propositional logic. This is the point where
the benefits of the pp-expressions appear.

2Informally, in the tn-interpretation, the t label represents negation.
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Definition 3.5. The formal grammar of the fn-interpretation:

1. fA ⇒ t¬A where A is a formula,

2. (tA1 ◦ tA2 ◦ · · · ◦ tAk) ⇒ t(A1 ∧A2 ∧ · · · ∧Ak), where k ≥ 2,

3. (tA1 + tA2 + · · ·+ tAk) ⇒ t(A1 ∨A2 ∨ · · · ∨Ak), where k ≥ 2.

If we apply the steps above until it is possible, then a tA formula appears,
where A is the formula generated by the fn-interpretation.

The table below shows the result of the fn-interpretation. In this second
interpretation, we get the steps of the dual resolution. In this way, we can
derive two different proofs from just one pp-resolution.

1. fZ 1. ¬Z
2. fX ◦ tY 2. ¬X ∧ Y
3. fY ◦ tZ 3. ¬Y ∧ Z
4. tX ◦ tZ 4. X ∧ Z
5. fX ◦ tZ 5. ¬X ∧ Z from 2 and 3

6. fX 6. ¬X from 1 and 5

7. tX 7. X from 1 and 4

8. empty dual clause from 6 and 7

A dual clause is an elementary conjunction, and the dual resolution rule is
the following (Γ′ is the fn-interpretation of Γ, . . . ):

¬(Γ′ ∨ (¬X ∧Δ′
1) ∨ (X ∧Δ′

2) ∨ (Δ′
1 ∧Δ′

2))

¬(Γ′ ∨ (¬X ∧Δ′
1) ∨ (¬X ∧Δ′

2))

3.3. Pp-sequent

Based on the idea of pp-resolution, the language P is suitable to describe
the Gentzen style sequent calculus. Now we want to build up the axioms and
rules of the Gentzen style sequent calculus using pp-expressions.

The following sequent and formula are equal (n ≥ 0 and m ≥ 0 and
n+m ≥ 1).

A1, A2, · · · , An → B1, B2, · · · , Bm ∼
¬A1 ∨ ¬A2 ∨ · · · ∨ ¬An ∨B1 ∨B2 ∨ · · · ∨Bm
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If we remove the first rule3 from the rewriting algorithm, then the pp-expression
form of the formula above will be a point-chain. (For simplicity, we assume
that Bi (i = 1, · · · ,m) is not a disjunction.)

f¬A1 ∨ ¬A2 ∨ · · · ∨ ¬An ∨B1 ∨B2 ∨ · · · ∨Bm ⇒
tA1 ◦ tA2 ◦ · · · ◦ tAn ◦ fB1 ◦ fB2 ◦ · · · ◦ fBm

Of course, the tn-interpretation of the pp-expression above will be the formula
form of the sequent.

While we construct a proof, maybe we have to work out more than one
sequent. In the rules below, we collect the sequents into a list where we separate
them by +. Note that the lists are still pp-expressions.

Definition 3.6. Axiom scheme of the pp-sequent is a plus-chain which
contains only point-chains in the form:

fA ◦ tA or γ ◦ fA ◦ tA

where γ is a point-chain, and A is a formula.

Let us note that the tn-implementation of any axiom pp-sequent is a tau-
tology, because they are conjunction chains, where all elements of the chain are
tautologies.

Definition 3.7. Rules of the pp-sequent calculus:

(fA ◦ γ) + (tB ◦ γ) + γ1 + · · ·+ γk
(tA ⊃ B ◦ γ) + γ1 + · · ·+ γk

(tA ◦ fB ◦ γ) + γ1 + · · ·+ γk
(fA ⊃ B ◦ γ) + γ1 + · · ·+ γk

(fA ◦ γ) + γ1 + · · ·+ γk
(t¬A ◦ γ) + γ1 + · · ·+ γk

(tA ◦ γ) + γ1 + · · ·+ γk
(f¬A ◦ γ) + γ1 + · · ·+ γk

(tA ◦ tB ◦ γ) + γ1 + · · ·+ γk
(tA ∧B ◦ γ) + γ1 + · · ·+ γk

(fA ◦ γ) + (fB ◦ γ) + γ1 + · · ·+ γk
(fA ∧B ◦ γ) + γ1 + · · ·+ γk

(tA ◦ γ) + (tB ◦ γ) + γ1 + · · ·+ γk
(tA ∨B ◦ γ) + γ1 + · · ·+ γk

(fA ◦ fB ◦ γ) + γ1 + · · ·+ γk
(fA ∨B ◦ γ) + γ1 + · · ·+ γk

where γi (i = 1, · · · , k) is a point-chain, and k ≥ 0, and γ is a point-chain or
missing.

The tn-interpretation of the rules generates the rules of the Gentzen style
sequent calculus, so the pp-sequent calculus works correctly. As an example,
we create the proof of the tautology (¬X ⊃ ¬Y ) ⊃ (Y ⊃ X).

3We keep the labelled conjunctions.
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1. f(¬X ⊃ ¬Y ) ⊃ (Y ⊃ X)

2. t¬X ⊃ ¬Y ◦ fY ⊃ X

3. f¬X ◦ fY ⊃ X + t¬Y ◦ fY ⊃ X

4. tX ◦ fY ⊃ X + t¬Y ◦ fY ⊃ X

5. tX ◦ fY ⊃ X + fY ◦ fY ⊃ X

6. tX ◦ tY ◦ fX + fY ◦ fY ⊃ X

7. tX ◦ tY ◦ fX + fY ◦ tY ◦ fX

Instead of the + symbols we can choose the binary tree representation.
Simultaneously, we can show the sequents generated from the pp-expressions.

f(¬X ⊃ ¬Y ) ⊃ (Y ⊃ X)

t¬X ⊃ ¬Y ◦ fY ⊃ X

f¬X ◦ tY ⊃ X

tX ◦ fY ⊃ X

tX ◦ tY ◦ fX

t¬Y ◦ fY ⊃ X

fY ◦ fY ⊃ X

fY ◦ tY ◦ fX

→ (¬X ⊃ ¬Y ) ⊃ (Y ⊃ X)

¬X ⊃ ¬Y → Y ⊃ X

→ ¬X,Y ⊃ X

X → Y ⊃ X

X,Y → X

¬Y → Y ⊃ X

→ Y, Y ⊃ X

Y → Y,X

So the reduced rewriting rule and the tn-interpretaion give us the possibility
to use sequent calculus on a pp-expression. The pp-resolution shows that the fn-
interpretation generates the dual calculus. Now we could recognise the labelled
tableaux method.

Each step of the pp-sequent calculus collects the unsolved labelled formulas
of the tableaux. The branches are separated by + and the unsolved formulas
in a branch are separated by ◦.

In the example above, we start the tableaux with the f labelled original
formula. That is the root of the tree. In the last (7th) step, we have two
branches, where tX, tY , fX are unsolved, and in the other side, fY and tY
and fX are unsolved.
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f(¬X ⊃ ¬Y ) ⊃ (Y ⊃ X)

t¬X ⊃ ¬Y

fY ⊃ X

f¬X

tX

tY

fX

t¬Y

fY

tY

fX

The background of the parallelism based on the rules of the pp-sequent
calculus, because they generate the rules of the labelled tableaux method. (+
divide the branch into two parts, ◦ appends the current branch, and the labels
are identical.) For example:

fA+ tB

tA ⊃ B
⇒ fA; tB

tA ⊃ B

tA ◦ fB
fA ⊃ B

⇒

tA
fB

fA ⊃ B

3.4. Point-plus-expressions in use

The GenTreeCad application supports currently LATEX input and MetaPost

or PDF output to create press-ready images. The deduction trees in this article
were also generated by the GenTreeCad application. During the implementa-
tion process of the Gentzen calculus, the data structure shows some similarity
with the pp-expressions. The implementation is matching with the rules of
the pp-sequent calculus, in which way the application is already contorlled
by point-plus-expressions. We are convinced to be able to enrich it with the
labelled tableaux method in the near future.

4. Summary

Currently the GanTreeCad application generates only Gentzen style deduc-
tion trees, but extension is planned to support the tableaux method. With
pp-expressions, the pp-sequent calculus is able to produce both of the deduc-
tion trees, with just one single run. Furthermore, the pp-expressions explore a
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way for a unified discussion of different calculi in logic. Of course, we have to
anticipate the need to extend the discussion to the predicate logic, simultane-
ously with the original work of Dragálin [1].
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