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Abstract. Let a, b and n be integers, n ≥ 1 and b ≥ a ≥ 0. Let
an (a, b, n)-graph defined as a loopless graph G(a, b, n) on n vertices
{V1, . . . , Vn}, in which Vi and Vj are connected with at least a and at most
b (directed or undirected) edges. If G(a, b, n) is directed, then it is called
(a, b, n)-digraph and if it is undirected, then it is called (a, b, n)-undigraph.
Landau in 1953 published an algorithm deciding whether a nondecreasing
sequence of nonnegative integers is the out-degree sequence of a (1, 1, n)-
digraph. Moon in 1963 published a similar condition for (b, b, n)-digraphs,
and in 2009 Iványi did for (a, b, n)-digraphs. Havel in 1955, Erdős and
Gallai in 1960 proposed an algorithm to decide the same question for
(0, 1, n)-undigraphs. Their theorem was extended to (0, b, n)-undigraphs
by Chungphaisan in 1974. In 2011 Özkan [24] proved a stronger version.
The aim of this paper is to summarize and extend the known results and
to propose quicker algorithms than the known ones.

1. Introduction

One of the classical problems of graph theory is the characterization of the
set of degree sequences of different graph classes.

Let a, b and n be integers, n ≥ 1 and b ≥ a ≥ 0. Let (a, b, n)-graphs defined
as loopless graphs on n vertices, in which different vertices are connected with
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at least a and at most b edges. For the clarity we call directed (a, b, n)-graphs
as (a, b, n)-digraphs and undirected (a, b, n)-graphs as (a, b, n)-undigraphs.

Our aim is to investigate the conditions and algorithms which decide whether
a monotone sequence s = (s1, . . . , sn) of integers is the degree sequence of an
(a, b, n)-undigraph or the out-degree sequence of an (a, b, n)-digraph.

The first results belong to Landau [21], who published in 1953 a necessary
and sufficient condition for (1, 1, n)-digraphs, and Havel [10], who gave a nec-
essary and sufficient condition in 1955 for (0, 1, n)-undigraphs. The later result
was independently reproved in 1962 by Hakimi [9].

The conditions for (b, b, n)-digraphs were given in 1962 by Moon [22] and for
(0, b, n)-undigraphs by Chungphaisan [3] in 1974. The conditions for (a, b, n)-
digraphs were published in 2009 [12, 13].

In this paper we summarize the results of testing of potential degree se-
quences of (a, b, n)-graphs including the analysis of their efficiency. The struc-
ture of the paper is as follows. After the introductory Section 1 in Section 2
we present the known results connected with directed graphs. Section 3 con-
tains the algorithms proposed to test the potential degree sequences of (0, 1, n)-
undigraphs, while Section 4 the results connected with (0, b, n)-undigraphs. In
Section 5 the results on (a, b, n)-undigraphs are presented while Section 6 con-
tains the summary of the results.

2. Conditions and algorithms for (a, b, n)-digraphs

Let l, m and u be nonnegative integers, further l ≤ u and m ≥ 1. The
sequence s = (s1, . . . , sm) of integers is called (l, u,m)-bounded, if l ≤ si ≤ u
hold for all 1 ≤ i ≤ m indices. An s = (s1, . . . , sm) (l, u,m)-bounded sequence
is called (l, u,m)-regular, if u ≥ s1 ≥ · · · ≥ sm ≥ l or l ≤ s1 ≤ · · · ≤ sm ≤ u
(following tradition we use nondecreasing sequences for digraphs and nonin-
creasing ones for undigraphs). An (l, u,m)-regular sequences is called (l, u,m)-
digraphic, if there exists a (l, u,m)-digraph, having s as its out-degree sequence.
In a similar manner an (l, u,m)-regular sequence is called (l, u,m)-undigraphic,
if there exists a (l, u,m)-undigraph, having s as its degree sequence [8, 30, 31].

The first testing theorem for (1, 1, n)-digraphs belongs to Landau.

Theorem 2.1. (Landau [21]) A sequence (s1, . . . , sn) satisfying 0 ≤ s1 ≤
≤ · · · ≤ sn is the out-degree sequence of some (1, 1, n)-digraph if and only if

(2.1)
k∑

i=1

si ≥
(
k

2

)
for 1 ≤ k ≤ n,

with equality when k = n.
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In 1963 Moon proved the following generalization of Landau’s theorem.

Theorem 2.2. (Moon [22]) A sequence (s1, . . . , sn) satisfying 0 ≤ s1 ≤
≤ · · · ≤ sn is the out-degree sequence of some (b, b, n)-digraph if and only if

(2.2)

k∑
i=1

si ≥ b

(
k

2

)
, 1 ≤ k ≤ n,

with equality when k = n.

In 2009 Iványi gave the following necessary and sufficient condition for
(a, b, n)-digraphs. Let the loss function Ln be defined as L0 = 0 and

Lk = max

(
Lk−1, b

(
k

2

)
−

k∑
i=1

si

)
for 1 ≤ k ≤ n.

Theorem 2.3. (Iványi [12, 17]) An (a, b, n)-regular nondecreasing sequence
s = (s1, . . . , sn) is the out-degree sequence of some (a, b, n)-digraph if and only
if

a

(
k

2

)
≤

k∑
i=1

si ≤ b

(
n

2

)
− Lk − (n− k)si (1 ≤ k ≤ n).

Proof. See [12]. �

Landau’s theorem is the special case a = b = 1 of Theorem 2.3, while
Moon’s theorem is the special case a = b.

The following algorithm is based on Theorem 2.3. In the programs of this
paper the pseodocode conventions described in [2] are used.

Input. n: the length of s (n ≥ 1);
a: minimal number of the arcs between two vertices;
b: maximal number of the arcs between two vertices;
s = (s1, . . . , sn): a nondecreasing sequence of integers.

Output. One of the following messages:
i“-th score is too small”;
i“-th score is too large”;
“the sequence is (“a”“b”,“n”)-digraphical”.

Working variable. i: cycle variable;
B = (B0, . . . , Bn): the sequence of the binomial coefficients

(
n
k

)
for k = 0, . . . , n;

L = (L0, . . . , Ln): the sequence of the values of the loss function;
H = (H0, . . . , Hn): the sequence of the sums of the i smallest elements of s.
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Digraph-Test(n, a, b, s)

01 L0 ← 0 // lines 01–03: initialization
02 H0 ← 0
03 B0 ← 0
04 for i ← 1 to n // lines 04–07: computation of Hi, Bi, Li

05 Hi ← Hi−1 + si
06 Bi ← Bi−1 + i− 1
07 Li ← max(Li−1, bBi − Si)
08 if Hi < aBi // lines 08–09: exclusion of small s’s
09 return i“-th score is too small”
10 if Hi > bBn − Li − si(n− i) // lines 10–11: exclusion of large s’
11 return i“-th score is too large”
12 return s “is digraphical”

It is easy to show that the running time of Digraph-Test varies between
the best Θ(1) and the worst Θ(n).

Using formula (22) of [16] we have that the number Q(a, b, n) of (a, b, n)-
diregular sequences is

(2.3) Q(a, b, n) =

(
b(n− 1) + n

n

)
.

Table 1 contains Q(a, b, n) and the number D(a, b, n) of (a, b, n)-digraphical
sequences for a = b = 1 (that is for individual tennis tournaments), for a =
= b = 2 (that is for individual chess tournaments), and for a = 2, b = 3 (that
is for a complete [16] football tournament for n = 1, . . . , 11 vertices.

n Q(1, 1, n) D(1, 1, n) Q(2, 2, n) D(2, 2, n) Q(2, 3, n) D(2, 3, n)
1 1 1 1 1 1 1
2 3 1 6 2 10 4
3 10 2 35 5 84 27
4 35 4 210 16 715 208
5 126 9 1287 59 6188 1709
6 462 22 8008 247 54264 14513
7 1716 59 50388 1111 480700 125658
8 6435 167 319770 5302 4292145 1102081
9 24310 490 2042975 26376 38567100 9756399

10 92378 1486 13123110 135670 348330136 86989413
11 352716 4639 84672315 716542 3159461968 780019710
12 1352078 14805 548354040 3868142 28760021745 7026788895
13 5200300 48107 3562467300 21265884
14 20058300 158808 23206929840 118741369

Table 1. The number of (a, b, n)-diregular and (a, b, n)-digraphical sequences
for a = b = 1, a = b = 2, a = 2 and b = 3 and n = 1, . . . , 14 vertices
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Tables 2 and 3 characterize the efficiency of the rounds of Digraph-Test
showing the number of the filtered and investigated sequences in the i-th round
for a = b = 1, that is for individual tennis tournaments for n = 1, . . . , 14
vertices and for the rounds i = 1, . . . 7, resp. i = 8, . . . , 14.

n/i 1 2 3 4 5 6 7
1 0
2 1 1
3 1 5 2
4 5 15 6 5
5 6 50 27 21 13
6 28 174 75 73 55 35
7 36 574 300 276 209 160 102
8 165 2112 854 950 763 637 478
9 220 7260 3312 3396 2817 2398 1961

10 1001 27390 10230 11487 10006 8994 7659
11 1365 98384 38115 41800 35277 32663 29216
12 6188 375921 125411 142296 124839 118882 108638
13 8568 1395394 467649 521885 436744 420695 398979
14 38760 5371660 1636726 1817088 1549067 1507705 1446577

Table 2. The number of the filtered not (1, 1, n)-digraphical sequences
in the i-th round of Digraph-Test for n = 1, . . . , 14 and i = 1, . . . , 7

n/i 8 9 10 11 12 13 14
8 309
9 1495 961

10 6283 4786 3056
11 25101 20603 15614 9939
12 97930 83956 68564 51781 32867
13 369968 332660 284099 231195 174209 110148
14 1381068 1279513 1142585 972793 789234 593114 373602

Table 3. The number of the filtered not (0, 1, n)-digraphical sequences
in the i-th round of Digraph-Test for n = 8, . . . , 14 and i = 8, . . . , 14

Tables 4 and 5 characterize the efficiency of the rounds of Digraph-Test
showing the number of the filtered and investigated non (2, 2, n)-graphical se-
quences (that is for a chess tournaments) for n = 1, . . . , 14 vertices and for
i = 1, . . . , 7, resp. for i = 8, . . . , 14

Tables 6 and 7 contain the number of the filtered in the i-th round of not
(2, 3, n)-graphical sequences, when Degree-Test tested all (2, 3, n)-regular
sequences for i = 1, . . . , 6 resp. i = 7, . . . , 12 and n = 1, . . . , 11 vertices.
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n/i 1 2 3 4 5 6
1 0
2 1 3
3 4 16 10
4 15 83 58 38
5 56 440 330 241 161
6 210 2402 1825 1458 1119 747
7 792 13538 10194 8498 7125 5480
8 3003 78696 57078 48872 43461 36597
9 11440 470184 325920 277644 258475 231593

10 43758 2874080 1891989 1585782 1506392 1418825
11 167960 17889443 11232210 9100652 8715762 8482480

Table 4. The number of the filtered not (2, 2, n)-digraphical sequences
in the i-th round of Digraph-Test for n = 1, . . . , 11 vertices and i = 1, . . . , 6

n/i 7 8 9 10 11
7 3650
8 28160 18601
9 194715 148944 97684

10 1272721 1061218 807032 525643
11 8011380 7120660 5894122 4456457 2884647

Table 5. The number of the filtered not (2, 2, n)-digraphical sequences
in the i-th round of Digraph-Test n = 7, . . . , 11 vertices and i = 7, . . . , 11

n/i 1 2 3 4 5 6
1 0
2 3 3
3 10 31 16
4 70 205 150 82
5 252 1533 1235 957 502
6 1716 11082 9088 7930 6555 3380
7 6435 84865 69441 64368 57655 47811
8 43758 671099 507199 494226 486820 436009
9 167960 5488821 3931096 3751501 3890421 3828202

10 1144066 46495034 30199434 28218140 30349772 31590048
11 4457400 401403728 244025820 214372994 232279669 253892909
12 30421755 3543412391 1995894197 1645568584 1765504146 1988106381

Table 6. The number of the filtered not (2, 3, n)-digraphical sequences
in the i-th (i = 1, . . . , 6) round of Digraph-Test for n = 1, . . . , 11 vertices

The values Q(a, b, n) are computed using (2.3), the values of D(1, 1, n)
in Table 1 are taken from [25], while the values of Tables 4, 5, 6 and 7
were determined by Digraph-Test-Enumerative (the enumerative version
of Digraphh-Test).
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n/i 7 8 9 10 11 12
7 24467
8 365510 185443
9 3409023 2887763 1455914

10 30871440 27322172 23404704 11745913
11 262074711 253295635 223318920 193530773 96789699
12 2164167153 2200747000 2107880874 1854248627 1626229074 811052668

Table 7. The number of the filtered not (2, 3, n)-digraphical sequences
in the i-th (i = 7, . . . , 12) round of Digraph-Test for n = 7, . . . , 11 vertices

3. Conditions and algorithms for (0, 1, n)-undigraphs

Our aim is to find quick algorithms which decide whether a given regular
sequence is graphical or not. The classical algorithms are based on the the-
orems Havel [10] and Hakimi [9], resp. Erdős and Gallai [5]. In worst case
the running time of these algorithms is Θ(n2). It is worth to remark that
Erdős-Gallai algorithm only tests the input sequences while the Havel-Hakimi
algorithm produces also a corresponding graph (if the input sequence is graph-
ical). Tripathi, Vijay and West [28] gave a constructive proof of Erdős-Gallai
theorem in 2010.

In 2011 in the paper [16] we presented quicker algorithms HHZ (zerofree
Havel-Hakimi), HHP (parity checking Havel-Hakimi), HHQ (quick Havel-Haki-
mi), EGS (shortened Erdős-Gallai), EGL (linear Erdős-Gallai), and EGJ (jump-
ing Erdős-Gallai). Takahashi in 2007 [27], Hell and Kirkpatrick in 2009 [11]
published linear version of Erdős-Gallai algorithm. Recently Király [19] pre-
sented an O(n log log n) version of Havel-Hakimi algorithm.

In this section we present the classical Havel-Hakimi and Erdős-Gallai al-
gorithms, further HHL, the linear version of the Havel-Hakimi algorithm.

We remark that the testing of (0, 1, n)-regular sequences is an important
subproblem when we try to answer the question on the complexity of the testing
of potential football sequences (see [7, Research problem 2.3.1] and [14]).

3.1. Havel-Hakimi algorithm (HH)

If n = 1, then there exists one (0, 1, n)-graphical sequence: (0). If n ≥ 2,
then the following Havel-Hakimi theorem gives a necessary and sufficient con-
dition.

Theorem 3.1. (Havel, Hakimi [9, 10]) Let n ≥ 2. An n-regular se-
quence s = (s1, . . . , sn) is graphical if and only if the sequence s′ = (s2 − 1,
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s3 − 1, . . . , ss1 − 1, ss1+1 − 1, ss1+2, . . . , sn−1, sn) sequence is (n− 1)-graphical.

Proof. See [9, 10]. �

The algorithm Havel-Hakimi is based on Theorem 3.1. In this and the
following algorithms L is a logical variable: if the investigated sequence is
graphical, then L = 1, otherwise L = 0.

Input. n: the length of the sequence s (n ≥ 2);
s = (s1, . . . , sn): the investigated n-regular sequence.

Output. L: logical variable.

Working variable. i: cycle variables.

Havel-Hakimi(n, s, L)

01 for i = 1 to n− 1 // line 01–06: test of the elements of s
02 if ssi+i == 0 // lines 01–02: s is not undigraphical
03 return 0
04 for j = i+ 1 to si + i
05 sj = sj − 1
06 sort (si+1, . . . , sn) in decreasing order
07 L = 1 // lines 08–09: s is undigraphical
08 return 1

3.2. Erdős-Gallai algorithm (EG)

Let the elements s1, . . . , sn of the sequence s called the head of s belonging
to si, and let the remaining elements called the tail of s belonging to si.

Paul Erdős and Tibor Gallai in 1960 published the following necessary and
sufficient condition.

Theorem 3.2. (Erdős, Gallai [5]) Let n ≥ 1. An s = (s1, . . . , sn) (0, 1, n)-
regular sequence is (0, 1, n)-graphical if and only if

(3.1)

n∑
i=1

si is even

and

(3.2)

j∑
i=1

si − j(j − 1) ≤
n∑

k=j+1

min(j, sk) (j = 1, . . . , n− 1).

Proof. See [4, 5, 28]. �



Degree sequences of multigraphs 203

The following algorithm is based on Theorem [5].

Input. n: the length of s;
s = (s1, . . . , sn): the investigated n-regular sequence.

Output. L: logical variable.

Working variable. i: cycle variable;
R: estimated capacity of the actual tail.

Erdős-Gallai(n, s, L)

01 H1 = s1 // line 01: computing of H1

02 for i = 2 to n // lines 02–03: computing of the further Hi’s
03 Hi = Hi−1 + si
04 if Hn is odd // lines 04–05: test of the parity
05 return 0
06 for i = 1 to n− 1 // line 07–15: test of s
07 R = 0 // line 08: initialization
08 for k = j + 1 to n // lines 09–10: tail capacity
09 R = R+min(j, sk)
10 if Hj − j(j − 1) > R // line 10: test of s
11 return 0 // line 11: s is not graphical
12 return 1 // line 12: s is graphical

Table 8 contains the number of (a, b, n)-undiregular and (a, b, n)-undigraph-
ical sequences for a = 0 and b = 1, a = 0 and b = 2, a = 2 and b = 5 and
n = 1, . . . , 11.

n R(0, 1, n) G(0, 1, n) R(0, 2, n) G(0, 2, n) R(2, 3, n) G(2, 3, n)
1 1 1 1 1 1 1
2 3 2 6 3 10 4
3 10 4 35 10 84 23
4 35 11 210 52 715 189
5 126 31 1287 283 6188 1582
6 462 102 8008 1706 54264 13583
7 1716 342 50388 10436 480700 122345
8 6435 1213 319770 65370 4292145 1092573
9 24310 4361 2042975 413111 38567100 9816598

10 92378 16016 13123110 2633537 348330136 88680716
11 352716 59348 84672315 16882153 3159461968 804480107

Table 8. The number of (a, b, n)-undiregular and (a, b, n)-undigraphical
sequences for a = 0 and b = 1, a = 0 and b = 2, a = 2 and b = 3

and for n = 1, . . . , 11 vertices

Table 9 presents the number of the filtered not (0, 1, n)-graphical sequences
in the i-th round of HHT for n = 1, . . . , 11 vertices.
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n/i 1 2 3 4 5 6 7 8 9 10 11
1 0
2 1 0
3 6 0 0
4 22 2 0 0
5 85 8 2 0 0
6 311 35 12 2 0 0
7 1169 128 58 17 2 0 0
8 4369 488 239 100 24 2 0 0
9 16524 1805 942 471 173 32 2 0 0

10 62650 6800 3601 2021 956 289 43 2 0 0
11 239008 25571 13677 8147 4561 1877 470 55 2 0 0

Table 9. The number of the filtered non (0, 1, n)-graphical sequences
in the i-th round of HH for n = 1, . . . , 11 vertices and i = 1, . . . , 10

Table 10 presents the number of the filtered graphical sequences in the i-th
round of HHT for a = 0, b = 1, n = 1, . . . , 11 vertices and for i = 1, . . . , 11.

n/i 1 2 3 4 5 6 7 8 9 10 11
1 0
2 1 0
3 1 2 0
4 1 8 1 0
5 1 16 12 1 0
6 1 29 48 22 1 0
7 1 47 130 127 35 1 0
8 1 72 306 488 290 54 1 0
9 1 104 618 1492 1475 591 78 1 0

10 1 145 1158 3863 5757 3868 1112 110 1 0
11 1 195 1998 8890 18440 18662 9053 1958 149 1 0

Table 10. The number of the filtered (0, 1, n)-graphical sequences
in the i-th round of HH for n = 1, . . . , 11 vertices and i = 1, . . . , 10

Let ni(a, b, n,A), resp. mi(a, b, n,A) denote the number of not (a, b, n)-
graphical, resp. (a, b, n)-graphical sequences filtered by algorithm A in the ith
round of the testing of all (a, b, n)-regular sequences, further let

(3.3) N =

n−1∑
i=1

ni and M =

n−1∑
i=1

mi,

(3.4) X(a, b, n,A) =

∑n−1
i=1 ini

N
,

(3.5) Y (a, b, n,A) =

∑n−1
i=1 imi

M
,
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(3.6) Z(a, b, n,A) =

∑n−1
i=1 i(mi + ni)

N +M
,

(3.7) X ′(a, b, n,A) =

∑n−1
i=1 ini

N(n− 1)
,

(3.8) Y ′(a, b, n,A) =

∑n−1
i=1 imi

M(n− 1)
,

(3.9) Z ′(a, b, n,A) =

∑n−1
i=1 i(mi + ni)

(N +M)(n− 1)
.

These efficiency measures characterize the average number of the filtered
not graphical, graphical, resp. all sequences during the run of algorithm A:
X, Y, and Z for a sequence, while X ′, Y ′, and Z ′ for an element of the input
sequences.

Table 11 characterizes the efficiency of algorithm HHL during the testing of
(0, 1, n)-regular sequences for n = 1, . . . , 11 vertices1. In line 11 of Table 11
we see X ′(0, 1, 11) = 0.136887459 and Y ′(0, 1, 11) = 0.615705668. Accord-
ing to these data in the case of 11 vertices the filtering of all nongraphical
sequences needs in average 14 % of the rounds, while the filtering of the graph-
ical sequences requires 62 % of the rounds implying that the complete filtering
requires in average 22 % of the rounds.

n∗ X Y Z X′ Y ′ Z′
2 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000
3 1.00000000 1.75000000 1.30000000 0.50000000 0.87500000 0.65000000
4 1.08333333 2.45454545 1.51428571 0.36111111 0.81818181 0.50476190
5 1.12631578 3.03225806 1.59523809 0.28157894 0.75806451 0.39880952
6 1.18055555 3.58823529 1.71212121 0.23611111 0.71764705 0.34242424
7 1.22052401 4.11111111 1.79662004 0.20342067 0.68518518 0.29943667
8 1.26273458 4.62984336 1.89743589 0.18039065 0.66140619 0.27106227
9 1.29906261 5.14079339 1.98823529 0.16238282 0.64259917 0.24852941

10 1.33532385 5.65016233 2.08340730 0.14836931 0.62779581 0.23148970
11 1.36887458 6.15705668 2.17453418 0.13688745 0.61570566 0.21745341

Table 11. Efficiency of HH for the testing of all (0, 1, n)-regular sequences
for n = 2, . . . , 11 vertices

1n∗ = n
measure
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3.3. Havel-Hakimi linear testing algorithm (HHL)

In the worst case the original Havel-Hakimi algorithm requires quadratic
time to test the (0, 1, n)-regular sequences. Using the new concepts weight
point and reserve we reduced the worst running time to O(n).

The definition of the weight point wi belonging to si was introduced in [16]
in connection with Erdős-Gallai-Linear and it is as follows. If s1 ≥ i, then
wi is the largest k (1 ≤ k ≤ n) having the property sk ≥ i. But if s1 < i, then
wi = 0. EGL exploits the property wi ensuring that if i ≤ wi, then the key
expression min j, sk in the Erdős-Gallai theorem equals i, otherwise equals sk.

Here we extend the definition to be applicable also in the proof of the
linearity of Chungphaisan-Erdős-Gallai. Now let wi the largest k (1 ≤
≤ k ≤ n) having the property sk ≥ bi. But if s1 < bi, then let wi = 0. In the
case b = 1 the new definition coincides with the old one.

In HHL the weight point wi determines the increment of the tail capacity
when we switch to the investigation of the next element of s.

The reserve ri belonging to si is defined as the unused part of the actual
tail capacity and can be computed by the formulas

(3.10) ri = w1 − 1− s1

and

(3.11) ri = wi − ri−1 − si for 1 ≤ i ≤ n− 1.

The programs of this paper are written using the pseudocode descibed in
[2].

Input. n: number of vertices (n ≥ 1);
s = (s1, . . . , sn): the investigated n-regular sequence.

Output. L: logical variable.

Work variable. i: cycle variable;
r = (r1, . . . , rn): ri the reserve belonging to si;
w = (w1, . . . , wn): wi the weight point belonging to si;
H = (H1, . . . , Hn): Hi is the sum of the first i elements of s.

Havel-Hakimi-Linear(n, s, L)

01 if s1 == 0 // lines 01–02: test of the sequence consisting of only zeros
02 return 1
03 if ss1+1 == 0 // lines 03–04: test of s1 in constant time
04 return 0
05 H1 = s1 // line 05: initialization of H
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06 for i = 2 to n // lines 06–07: further Hi’s
07 Hi = Hi−1 + si
08 if Hn is odd // lines 08–09: test of the parity
09 return L
10 w1 = n // lines 10–13: computation of the first weight point and reserve
11 while sw1

< 1
12 w1 = w1 − 1
13 r1 = w1 − 1− s1
14 for i = 2 to n− 1 // lines 14–21: testing of s
15 if si ≤ i or si+1 = 0
16 return 1
17 wi = wi−1

18 while swi
< i and wi > 0

19 wi = wi − 1
20 if si > wi − 1 + ri−1 // line 20: Is s graphical?
21 return 0 // line 21: s is not graphical
22 ri = wi + ri−1 − si // line 22: update of the reserve
23 return 1 // line 23: s is graphical

Theorem 3.3. The running time of Havel-Hakimi-Linear is in best
case Θ(1), and in worst case Θ(n).

Proof. If the condition in line 2 holds, then the running time is Θ(1). If not,
then we decrease the actual w at most n times and the remaining operations
require O(1) operations for all reductions. �

Now let us consider a few examples.

Example 1. Let our first example be s = (3, 3, 3, 1). According to lines
01–15 r1 = 0. For i = 2 we get wi = 3 and the condition of line 22 is not
satisfied, therefore s is not (0, 1, 4)-undigraphical.

Example 2. Let our next example be s = (5, 3, 3, 2, 1, 1, 1). In lines 01–15
we get w1 = 7 and r1 = 1. For i = 2 according to lines wi = 3, the condition of
line 22 does not hold and according to line 25 r2 = 1. When i = 3, then si ≥ i
and so according to line 16 s is (0, 1, 7)-undigraphical.

Example 3. Now let s = (5, 4, 1, 1, 1, 1, 1). At first get r1 = 1, then for
i = 2 we have wi = 2, therefore the conditions in line 22 holds, so s is not
(0, 1, 7)-undigraphical.

Example 4. Let our last example be s = (5, 5, 4, 3, 3, 3, 3). According to
the first 15 lines r1 = 1. When i = 2, then we get wi = 7 and r2 = 2. Then
w3 = 7 and r3 = 4. If i = 4, then according to i ≥ si in line 16 s is (0, 1, 7)-
undigraphical.
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4. Degree sequences of (0, b, n)-graphs

In this section we use the theorem due to Chungphaisan to get a linear time
algorithm for the testing of (0, b, n)-regular sequences.

4.1. Theorem of Chungphaisan and ChEGl algorithm

In 1974 Chungphaisan extended Erdős-Gallai theorem for (0, b, n)-undi-
graphs, proving the following assertion.

Theorem 4.1. (Chungphaisan [3]) Let n ≥ 1. An s = (s1, . . . , sn) (0, b, n)-
regular sequence is (0, b, n)-graphical if and only if

(4.1)

n∑
i=1

si is even

and

(4.2)

j∑
i=1

si − bj(j − 1) ≤
n∑

k=j+1

min(jb, sk) (j = 1, . . . , n− 1).

Proof. See [3]. �

In the worst case the algorithm based on this theorem requires quadratic
time, but the following assertion allows us to test the sequences in linear time.

Theorem 4.2. If n ≥ 1, then an s = (s1, . . . , sn) (0, b, n)-regular sequence
is (0, b, n)-graphical if and only if

(4.3)

n∑
i=1

si is even

and

(4.4) Hi > bi(yi − 1) +Hn −Hy (i = 1, . . . , n− 1),

where

(4.5) yi = max(i, wi) (i = 1, . . . , n− 1).

Proof. This proof is an improved version of the proof of linearity of EGL
in [15].
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We exploit that s is monotone and determine the capacity estimations
ck = min(jb, sk) appearing in (4.2) in constant time. The base of the quick
computation is again the sequence of the weight points w(s) = (w1, . . . , wn−1)
containing the weight points belonging to of the elements of s, and the sequence
y(s) = (y1, . . . , yn) containing the cutting points of the elements of s. For given
si let the weight point wi was defined in Section 3. The cutting point yi be the
maximum of i and wi, see (4.5).

During the testing of the elements of s there are two cases:

a) if i > wi, then the maximal contribution Ci =
∑n

k=i+1 min(i, sk) of
the actual tail of s is at most Hn − Hi, since the maximal contribution ck =
= min(i, sk) of the element sk is only sk, and so

(4.6) Ci =

n∑
k=i+1

ck = Hn −Hi,

implying the requirement

(4.7) Hi ≤ bi(i− 1) +Hn −Hi;

b) if i ≤ wi, then the maximal contribution Ci of the actual tail of s consists
of contributions of two types: ci+1, . . . , cwi are equal to bi, while cj = sj for
j = wi + 1, . . . , n, therefore we have

(4.8) Ci = bi(wi − i) +Hn −Hwi
,

implying the requirement

(4.9) Hi = bi(i− 1) + bi(wi − i) +Hn −Hwi
.

Transforming (4.9) we get

(4.10) Hi = bi(wi − 1) +Hn −Hwi .

Considering the definition of yi given in (4.5), further (4.7) and (4.9) we get
the required (4.4). �

The following algorithm tests the potential degree sequences of (0, b, n)-
undigraphs.

Input. n: number of vertices (n ≥ 1);
s = (s1, . . . , sn): a (0, b, n)-regular sequence; b: the maximal permitted number
of arcs between two vertices.

Output. L: logical variable.

Work variable. i: cycle variable;
r = (r1, . . . , rn): ri is the reserve belonging to si;
w = (w1, . . . , wn): wi is the weightpoint belonging to si.
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Chungphaisan-Erdős-Gallai-Linear(n, s, b, L)

01 H1 = s1 // line 01: initialization of H1

02 for i = 2 to n− 1 // line 02–03: computation of the elements of H
03 Hi = Hi−1 + si
04 if Hn is odd // line 04–05: test of the parity
05 return 0
06 w = n // lines 06: initialization of the first weight point
07 for i = 1 to n− 1 // lines 07–13: test of s
08 while sw < ib and w > 0
09 w = w − 1
10 y = max(i, w)
11 if Hi > bi(y − 1) +Hn −Hy

12 return 0
13 return 1 // line 14: acceptance of s

Theorem 4.3. The running time of Chungphaisan-Erdős-Gallai-Lin-
ear is Θ(n) in all cases.

Proof. Lines 01–06 require Θ(n) time. Since the value of w is strictly
decreasing, lines 07–14 require O(n) time, therefore the running time is Θ(n)
in all cases. �

Let us consider two examples. Let b = 3 and s′ = (13, 10, 5, 5, 4, 1). H6 = 38
is even. If i = 1, then wi = y = 5 and the condition in line 18 is not satisfied
(13 ≤ 3 ·1 · (5−1)). If i = 2, then wi = y = 2 and the condition in line 18 holds
(23 > 3 · 2 · (2− 1)) + 5 + 5 + 4 + 1, therefore s is not (0, 3, 6)-graphical.

Let b remain 3, but change s to s′ = (13, 10, 5, 5, 4, 3). The first difference
comparing with the previous example comes when i = 2. Now 23 ≤ 3 · 2 ·
·(2− 1)) + 5 + 5 + 4 + 3, and the condition in line 18 holds for i = 3, 4 and 5
too, therefore s′ is (0, 3, 6)-graphical.

Table 12 contains the number of the not (0, 2, n)-undigraphical sequences
excluded in the i-th round (i = 1, . . . , 10) for n = 1, . . . , 11 vertices.

n/i 1 2 3 4 5 6 7 8 9 10

1 0

2 3 0

3 22 3 0

4 132 26 2 0

5 824 164 31 4 0

6 5084 1026 276 75 3 0

7 31902 6288 2018 829 111 50

8 201366 39090 13282 7231 1837 203 4 0

9 1281918 244833 84340 53594 20681 4259 298 6 0

10 8207232 1548774 529578 365461 183262 59726 8709 470 5 0

11 52819163 9866545 3331910 2385963 1404590 632058 155070 17213 660 7

Table 12. The number of the excluded not (0, 2, n)-undigraphical sequences
in the ith round (i = 1, . . . , 10) by ChEGL for n = 1, . . . , 11 vertices
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Table 13 contains the number of the (0, 2, n)-graphical sequences excluded
in the ith (i = 1, . . . , n) round for n = 1, . . . , 11 vertices.

n/i 1 2 3 4 5 6 7 8 9 10

1 1
2 2 0
3 1 9 0
4 1 7 42 0
5 1 10 29 224 0
6 1 14 49 183 1297 0
7 1 18 70 345 1143 7658 0
8 1 23 97 559 2326 7262 46489 0
9 1 28 125 846 4038 15927 46074 286007 0

10 1 34 159 1191 6520 29629 107724 295609 1779026 0
11 1 40 193 1624 9668 50663 213399 728610 1900061 11154877

Table 13. The number of the filtered (0, 2, n)-undigraphical sequences
in the ith (i = 1, . . . , 10) round of ChEGL for n = 1, . . . , 11 vertices

Table 14 characterizes the efficiency of algorithm ChEGL for the testing of
(0, 2, n)-regular sequences and n = 1, . . . , 11 vertices2.

n∗ X Y Z X′ Y ′ Z′

2 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000
3 1.120000000 1.900000000 1.342857143 0.560000000 0.950000000 0.671428571
4 1.187500000 2.820000000 1.576190476 0.395833333 0.940000000 0.525396825
5 1.232649071 3.803030303 1.759906760 0.308162268 0.950757576 0.439976690
6 1.280785891 4.788212435 1.957042957 0.256157178 0.957642487 0.391408591
7 1.322698224 5.770438549 2.137870128 0.220449704 0.961739758 0.356311688
8 1.363989613 6.751572493 2.320248929 0.194855659 0.964510356 0.331464133
9 1.402468979 7.733105601 2.496464714 0.175308622 0.966638200 0.312058089

10 1.439464334 8.714770487 2.670148311 0.159940482 0.968307832 0.296683146
11 1.474743645 9.697001722 2.839981439 0.147474365 0.969700172 0.283998144

Table 14. The efficiency of ChEGL during the testing of (0, 2, n)-regular
sequences for n = 1, . . . , 11 vertices

5. Degree sequences of (a, b, n)-undigraphs

Theorem 4.1 due to Chungphaisan has the following straightforward conse-
quence.

Corollary 5.1. Let n ≥ 2. An s = (s1, . . . , sn) (a, b, n)-undiregular se-
quence is (a, b, n)-undigraphical if and only if the sequence s′ = (s1 − a(n− 1),
, . . . , sn − a(n− 1)) is (0, b− a, n)-undigraphical.

2n∗ = n
measure
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Proof. In an (a, b, n)-undigraph the elements of every pair of vertices are
connected with at least a arcs. Therefore if we remove a arcs, then we get a
(0, b− a, n)-undigraph. �

Using Corollary 5.1 it is easy to test an (a, b, n)-regular sequence: we use
ChEG with input sequence s′ = (s1 − a(n− 1), . . . , sn − a(n− 1)).

6. Summary

The paper contains an overview on the known algorithms of testing of po-
tential degree sequences of (a, b, n)-graphs. The known methods for (a, b, n)-
digraphs in worst case require only linear time but for (a, b, n)-undigraphs in
the worst case at least quadratic time. We proposed new linear time algorithms
for (0, b, n)-undigraphs which can be applied for (a, b, n)-undigraphs too.
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Hungary
tony@compalg.inf.elte.hu


