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(Győr, Hungary)

Communicated by András Benczúr
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Abstract. The Bacterial Evolutionary Algorithm (BEA) is a relatively
new type of evolutionary algorithm and shows the typical phenomena of
stochastic optimization methods. Two of these phenomena: premature
convergence and low convergence speed near the optimum are often in
connection with the low genetic diversity of the population. Variation of
genetic diversity in the original BEA and in its three parallel variants have
been examined and documented. Several possible ways of increasing the
diversity have been also studied. In this paper the authors present an ef-
fective method called forced mutation to maintain the genetic diversity of
the population and to speed up the convergence. With forced mutation a
significant improvement has been achieved in all test cases, but the param-
eter setting is problem-dependent. Therefore a possible way of adaptive
parameter setting for forced mutation is also proposed.
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1. Introduction

In the late 90’s Norberto Eiji Nawa and Takeshi Furuhashi suggested a
new algorithm for the optimization of the parameters of fuzzy systems. They
labelled their algorithm Bacterial Evolutionary Algorithm (BEA) [12][11], be-
cause it imitates the evolution process of bacteria. The algorithm itself is an
advanced version of the Pseudo-Bacterial Genetic Algorithm (PBGA) [13] and
the original Genetic Algorithm (GA) [4]. BEA inherited the modified mutation
operator of PBGA, and introduced the new gene transfer operator instead of
crossover. Gene transfer automatically realizes the function of elitism as well.
These are the two main operators of the algorithm, because selection is not
needed anymore. Partially due to its straightforward and robust nature has
this algorithm become more and more popular among researchers.

BEA is a kind of evolutionary algorithm, and its properties are similar to
those of the GA’s: it is also a global optimization technique, and provides a
near-optimal, approximate solution for the problem. It is useful even if the ob-
jective function is non-linear, non-continuous, multimodal or high-dimensional.
BEA does not use the derivatives of the objective function, thus it does not
cause a problem, if they are not known or do not exist.

These properties make it possible to use the BEA in engineering applications
as well. One of the problems is that complex optimization problems such as
computational fluid dynamics (CFD) or finite element models (FEM) need
huge computational power. In these cases, the evaluation of the objective
function is a complete simulation process, and can take 0.1 to 5 hours on
an average CPU core. To solve a typical industrial problem, thousands of
objective function evaluations are needed. That is why parallel execution is so
important: this way the optimization time could be a fraction of the sequential
optimization time. Unfortunately, only the bacterial mutation operator of the
BEA can be executed in a parallel way. Gene transfer in its original form is
inherently sequential. The authors already proposed [9] three new, slightly
modified gene transfer versions to make the whole algorithm parallel. The
properties of these operators were also investigated. The authors used five well-
known test functions (K. A. De Jong’s 1st and 3rd, Step, Rastrigin, Keane) with
different properties. The empirical results showed that there are no significant
differences between the three modified operators. All of them have good scaling
properties, and in most cases they are more efficient than the original gene
transfer even with one CPU.

In order to understand the following topics, the authors feel important to
briefly summarize the operation of the BEA, including the original version
of the gene transfer, and at least one of the modified gene transfers. The
exhaustive details of BEA can be read in [12].
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BEA works with a collection of possible solutions. These solutions are
often called individuals or bacteria. The collection is called a population. The
algorithm creates newer and newer versions (i.e. generations) of the population
during the optimization using the two main operators: “bacterial mutation”
and “gene transfer”. This process is repeated until some kind of termination
condition is fulfilled. This condition can be a limit on the maximum number
of objective function evaluations, or on the maximum number of generations,
etc. The result is the best bacterium of the last population.

Bacterial mutation optimizes the bacteria individually. For every bacterium
of the population, the operator does the following. First, it creates K copies,
called clones of the original bacterium. Then it chooses one from the genes
of the bacterium, and it randomly modifies the value of the selected gene in
the clones. The next step is the evaluation of the modified bacteria. If one of
the clones proved to be better than the original bacterium, the new value of
the gene is copied back to the original bacterium and to all the clones. This
process is repeated until all the genes of the original bacteria are mutated. At
the end of the mutation, all the clones are dropped.

The gene transfer operator combines the genetic data of the bacteria in
the hope that it can produce better bacteria. The original version of the gene
transfer operator divides the population into two, equally sized parts. The
bacteria with better objective function values get into the superior part, the
others into the inferior part. Next, the operator repeats T times the following.
It chooses one bacterium from the superior part and another bacterium from
the inferior part. After that, it copies some randomly selected genes of the
superior bacterium into the other. Naturally, after such a modification, the
objective function has to be evaluated again. Before the next iteration of the
gene transfer, the population has to be sorted again according to the objec-
tive function values. If the modification of the inferior bacteria was successful
enough, it can migrate into the superior part. (See Fig. 1.)

As it can be seen, gene transfer has a sequential nature: all the bacteria
have to be evaluated immediately after the modification, but only one can
be evaluated at a time. This property slows down the optimization processes.
That is why the authors proposed three modified, parallel gene transfer versions
in [9]. Because of the similar behaviour of these gene transfer versions, only
one of them, the gene transfer inspired by the Microbial Genetic Algorithm
with auxiliary population (pMGA Aux.) will be presented here. (The details
of MGA can be found in [7].)

pMGA Aux. (see Fig. 2) uses an auxiliary population, which can contain A
pieces of bacteria, but is initially empty. The operator fills it in the following
way. It chooses two bacteria of the population in a random manner and creates
a new bacterium in the auxiliary population. The genes of the new bacterium
come from the bacterium with the worse objective function value, but some of
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Figure 1: Schematic view of the gene transfer operator

its genes are overwritten with the genes of the other bacterium in some places.
(The two selected bacteria remain untouched.) This process has to be repeated
until the auxiliary population is full with new bacteria. All of the new bacteria
can be evaluated simultaneously. In the next, step the two populations are
merged and A number of the least fit bacteria are dropped. If the desired
number of gene transfers (T ) is more than the size of the auxiliary population,
the operator has to be executed again.

It has to be added that the version of the gene transfer operator influences
the optimization process. In the case of the original gene transfer, the inferior
bacterium is always overwritten, and it does not matter how good or bad it
was. pMGA Aux. gives a chance to the inferior bacterium to survive, if the
members of the auxiliary populations are not fit enough. This nature of the
operator can be regarded as a kind of elitism, but it can decrease the genetic
diversity of the population.

Another side-effect of pMGA Aux. is that during the original gene transfer
the modified genes of the bacteria have T−1 possibilities to infiltrate into other
bacteria as well. In the case of using an auxiliary population, this number
drops to (T/A) − 1. This phenomenon also decreases the genetic diversity,
but the possibility of parallel objective function evaluations helps to speed up
computations.
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Figure 2: Schematic view of the gene transfer inspired by MGA with auxiliary
population (pMGA Aux.)

The authors already measured genetic diversity in [8]. The measurements
showed that the genetic diversity is practically not lower in the case of using the
modified gene transfers, but its rate is very low in general. This phenomenon
slows down the convergence speed and makes it harder to find the multiple
optima of multimodal functions. It is obvious that some kind of diversity
increasing technique can be very useful in practice. Several algorithms were
developed for genetic algorithms, but only a few of them can be applied to
BEA. Another way of speeding up optimization is the use of a local search
algorithm included in BEA to find local optima faster and more accurately.
Unfortunately, these hybrid or memetic algorithms [1] have some drawbacks
as well. The local optimizer often has requirements regarding the objective
function (e.g. continuity, needs gradients, etc.), and can be computationally
complex.
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In the next sections, the genetic diversity during the optimization will be
further analysed and some techniques made to increase genetic diversity will
be discussed. The authors will examine their applicability in the case of BEA,
and present the results of test function optimizations. Finally, a new method
will be introduced that is similar to the Directed Random Search (DRS) meth-
ods. A possible way of auto-tuning the parameters of this method will also be
presented.

2. Measuring genetic diversity

The authors used four well-known artificial test functions to study the effect
of gene transfers on genetic diversity. The test functions were selected on the
basis of computational complexity and several other properties. Table 1 sum-
marizes their most important properties. Equations 2.1-2.4 show the equations
of the test functions.

Linearity Modality Continuity Plateaux /
Shoulder

De Jong’s 1st

(sphere)
no unimodal yes no

Ackley no multimodal yes yes
Rastrigin no multimodal yes no
Keane no multimodal no no

Table 1: Properties of the test functions
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Fig. 3 shows the value of the best bacterium during different test function
optimizations as a function of the number of objective function evaluations.
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This approach is very practical in the sense that during the optimization process
of a real, engineering problem BEA spends most of the wall clock time on the
evaluation of the objective function. The results are the average of 20 repeated
optimizations. For extent reasons, mostly the results of Rastrigin function
optimization will be presented in the following figures.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  50000  100000  150000  200000  250000  300000  350000

B
es

t 
o
b
j.

 f
n
. 
v
al

u
e

Obj. fn. evaluations

BEA
pMGA Aux.

(a) Ackley function
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(b) De Jong’s 1st function
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(c) Keane function
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(d) Rastrigin function

Figure 3: Optimization of test functions

The authors used formula 2.5 to measure the “genetic distance” (dij) be-
tween bacteria i and j. This function was proposed by Goldberg to realise
niching with [4]. Here g represents the number of genes, xik is the kth gene
of the bacterium, Xk,max and Xk,min are the possible maximal and minimal
values of the kth gene. Using this formula, the genetic diversity of the whole
population can be expressed with formula 2.6. Here P is the size of the pop-
ulation. The meaning of formula 2.6 is very straightforward: the value of it is
always between 0 and 1, and it denotes the average relative difference between
the values of the genes. Fig. 4 shows the genetic diversity during the optimiza-
tion of the Rastrigin function. The main parameters of the optimization were:
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P = 128,K = 1, g = 20, T = 512, A = 64, where K is the number of clones and
g is the number of genes.

(2.5) dij =

√√√√∑g
k=1

(
xik−xjk

Xk,max−Xk,min

)2
g

(2.6) D =
1

P − 1

P∑
i=1

di,best
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Figure 4: Genetic diversity during the optimization of Rastrigin function

As it can be seen in the figure, both gene transfer operators produce similar
but very low genetic diversity especially at the end of the optimization. In
such a situation most of the bacteria in the population are almost the same
and only the bacterial mutation is able to produce new values. In this case BEA
does not perform better than a simple random search and it causes very slow
convergence. This phenomenon is not surprising, because none of the above
mentioned gene transfer methods have protection against evolving similar or
identical bacteria.

3. Classical methods to maintain genetic diversity

It is obvious that some kind of technique would be useful to maintain the
originally existing genetic diversity of the population. This technique would be
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especially useful to find multiple solutions to multimodal problems, but it can
also be used to do multi-objective optimization or simulate complex, adaptive
systems. Even if the objective function has multiple optima, the standard evo-
lutionary algorithms focus on finding a single solution, because the individuals
gather around a single solution in the course of consecutive generations. Several
methods were developed through the years, but most of them were originally
developed for GA, and it is not always trivial to adapt these techniques to BEA.
The two best known methods are niching and speciation. Both of them are
inspired by nature. The details of these techniques can be found for example
in [4], [5] and [10], and here only a short description will be given.

In nature, a lot of species exist at the same time and they occupy their
own ecological niche. Like in nature, niching makes it possible for the GA
to maintain a population with diverse solutions through time. It means that
multiple optimal solutions can be obtained in a single population. The two
main methods to attain niching are fitness sharing and crowding.

The idea of fitness sharing is that the resources in nature are limited, and
the individuals living in the same niche have to share these resources. This
necessity inhibits the uncontrolled growth of species in the population.

In GA, if some individuals are similar (and thus occupy the same niche),
their fitness is divided by a value depending on the number of similar individ-
uals. This value is what we call niche count, which is the sum of the sharing
function values. The sharing function is a function of the genetic distance be-
tween two individuals and its value depends on the degree of similarity between
these individuals. The value of the sharing function is 1 if the individuals are
identical and 0 if the distance is above a given threshold (σ). Otherwise it
returns a value in the [0; 1] range depending on the level of similarity. For-
mula 3.1 shows one of the widely used simple sharing functions. The derated
fitness values can be obtained with formula 3.2. Figure 5 depicts the optimiza-
tion process of the Rastrigin function with (σ = 10−6) and without niching.

(3.1) s(dij) =

{
1−
(

dij

σ

)
, if d < σ

0, otherwise

(3.2) fs(xi) =
f(xi)∑n

j=1 s(dij)

The attentive reader has surely noticed that BEA does not use fitness values
because these values are not necessary for the operators. If niching is required
for some reason, fitness values have to be recorded also. Naturally, bacteria
must be classified in the superior and inferior parts of the population using the
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Figure 5: Optimization of Rastrigin function with and without niching

fitness values, which are derived from the objective function values. Another
kind of practical problem arises if the value of the objective function can be
negative as well. In this case, formula 3.2 does not work correctly. This problem
can be solved for example with a simple linear transformation of the objective
function value into the [0; 1] range.

Unfortunately, the use of niching did not increase the genetic diversity in the
measure hoped for. Obviously, the goal of niching is not to increase the genetic
diversity for its own sake but to maintain an appropriate diversity that helps
creating good individuals in the vicinity of equally good solutions. It means
that the primary goal of this technique is not to speed up the convergence, so
other techniques have to be applied.

The second major realization of niching is crowding. It was first proposed
by De Jong [3]. He also tried to maintain the originally existing diversity of
the population, but he used another method to achieve it. This method also
measures the similarity, but instead of modifying the fitness values the new
individuals simply overwrite the most similar individuals in the population.

There are several possible implementations, but only De Jong’s original
method will be presented here. In this algorithm only a fraction of the popu-
lation (“generation gap”, generally 0.1) reproduces and dies. The members of
the generation gap are chosen with fitness-proportional selection. Only these
individuals participate in crossover and mutation. Every new individual re-
places the most similar one of the “crowding factor” individuals. The amount
of crowding factor individuals is generally between 2 and 5 and the individuals
are chosen in a random manner.

Deb and Goldberg compared crowding and fitness sharing with some test
functions in [2], and fitness sharing performed better than crowding in finding
multiple peeks. This is one reason why the authors of this article used fitness
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sharing instead of crowding. The other reason is that it is not easy to use the
concept of crowding in BEA. In BEA, all of the bacteria participate in the
creation of newer bacteria and the “crowding factor” is half of the population.
This value is generally much more than 5.

In nature, the individuals of different species do not mate with each other.
The method of speciation imitates this law to find multiple solutions of the
objective functions. Niching does not prevent an individual of a niche to mate
with an individual of a different niche. This kind of mating often results in
“lethal solutions”, representing none of the two niches. This problem can be
solved using speciation methods. Deb and Goldberg reviewed the following
speciation method (but other techniques are also known, e.g. tag bits [14]).
The two selected parent individuals participate in crossover only if the genetic
distance between them is under a specified parameter (σmating). Otherwise
another parent must be chosen in a random manner until the condition is
fulfilled. Deb and Goldberg implemented this restriction on mating in the
crossover operator, and niching in selection as well. Using both methods the
individuals found their way near the peeks. This technique is undoubtedly
useful if the goal is to find all the equally good solutions of the problem, but
the idea is entirely contrary to the concept of gene transfer. In the case of
gene transfer the goal was to transfer some genes from the superior bacterium
into an inferior bacterium. In many cases the genetic distance between these
bacteria is very large, thus this method is not applicable in BEA.

The applicability of Restricted Random Search (RTS, [6]) was also inves-
tigated. This method is similar to crowding, but performs much better and
it is simpler than fitness sharing. Unfortunately, its adaptation has the same
difficulties as crowding and speciation.

4. The method of “forced mutation”

In the previous section classical methods that could help to maintain genetic
diversity have been examined. Niching appeared to be moderately useful, but
other methods were not suitable in bacterial optimization problems. In this
section a new method that directly prevents the population from the low levels
of diversity is presented.

The main idea of this method is that the members of the population that
are too similar to an another member with better object function value do
not improve convergence, therefore it is better to spread them in a wider area
around their original position with a mutation operator. This method will be
referred to as “forced mutation”.

Forced mutation has no direct analogy in real genetics, however, it is similar
in a way to possible conscious breeding tactics where the governing person
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intervenes in the process if there are too similar individuals in the population
and forces them to change slightly, e.g. with radioactive irradiation. As far
the authors know this kind of forced mutation is not applied in plant or animal
breeding.

Another biological (but not genetic) analogy can be found in the rivalry for
limited resources, for example for water resources in a dry territory. Individ-
uals of an animal population strive towards the water resource and the most
successful or fittest ones will occupy the best areas. The “second best” entities
try to get close to the resource but the locally strongest animals can drive them
out from the immediate surroundings of the best known water resource. This
way the good but not best individuals are forced to look for an another water
resource in the neighbourhood, and they may find an even better one than
the original. Without their being driven out this better source could remain
unknown.

Forced mutation shows similarities with directed random search methods,
therefore, one could consider this method as a hybrid bacterial (BEA, pMGA
Aux) and local search (directed random search) method. In contrast to the
most hybrid methods, the proposed technique is well integrated in the sense
that the two types of steps work together and the user does not have to take
care of switching between bacterial and local search steps. Another useful
characteristic of forced mutation is that it does not require the derivatives of the
object function and will work even for discontinuous problems, therefore, it can
be used for every problem that is manageable by bacterial type optimization.

Forced mutation steps are applied after every full bacterial generation is
finished. The algorithm is the following: let x[i] denote the i-th element of the
sorted population, i.e. f(x[i]) ≤ f(x[i + 1]) for every i = 1, 2, ..., N − 1, where
f is the objective function to be minimized.

Loop for i=2, ..., N

Loop for j=1, ..., i-1

distance=d(x[i], x[j])

if distance<sigma:

mutate x[i]

mark x[i] for re-evaluation

jump out from inner loop

end if

End loop (j)

End loop (i)

Loop for i=2, ..., N

if x[i] is marked for re-evaluation:

calculate f(x[i])

End loop (i)
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Here “mutation” means that every gene will be perturbed with a normal
distribution random number with σ ·ΔXk deviation, where Xk is the difference
between the maximal and minimal value of the k-th gene.

This forced mutation is significantly different from the “classical” mutation
operator in the following aspects:

• In a population with large genetic diversity, forced mutation has no effect,
while classical mutation always changes a constant number of individuals.
On the other hand, forced mutation becomes active when the population
begins to degenerate. This kind of adaptivity to the actual features of
the population is a desirable property.

• Forced mutation places the modified individuals in the close environment
of the original state since the original state is presumably close to a local
optimum, therefore, it is beneficial to search in the close regions of the
phase space.

• This type of mutation has a “local elitism” property: it preserves the
individuals that are the best among similar (in σ radius) individuals,
therefore it does not change the most promising ones.

The control parameter of forced mutation is σ, which shows the radius of
the undesirable environment of entities. It is obvious that a large σ will protect
the calculation process from premature convergence, but it has a negative effect
at the end of the optimization, when the refining of the found solutions is
happening. On the other hand, a very small σ will help at the refining phase,
but will not prevent premature convergence.

In Fig. 6 calculation results with the Rastrigin test function are presented.
According to theoretical expectations, with forced mutation the genetic diver-
sity will always be higher than σ. The convergence to the optimal value (0) is
affected by forced mutation as written above:

• at the very beginning of the optimization process forced mutation has
only a small effect on the convergence speed

• for a high (10−3) σ value convergence is slowed down near the optimum

• for a medium σ value there is significant boost at the middle of the
process, but refining is slowed down

• for small σ (10−5) there is a moderate speed up at the middle, but in the
refining phase the best individuals approach the optimal value well.

Other test problems showed the same qualitative behaviour, however, the
optimal range for σ is problem-dependent. To demonstrate this, an objective
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Figure 6: Optimization of Rastrigin function with and without forced mutation,
using different σ values

function value for every test problem was fixed (“target value”) and the number
of object function evaluations needed to achieve this target value is presented
in Tab. 2 and 3. The target value was 10−6 for De Jong’s 1st problem (optimal
value is 0), 10−3 for the Ackley function and Rastrigin function (optimal value
is 0) and 0.79 for the Keane function (maximization problem with 0.80 optimal
value).

In the presented calculations a maximal number of objective function eval-
uations was chosen to prevent a quasi-infinite calculation time. The calculation
is considered “successful” if the optimization process can reach the target value
within this limit. For every test problem the ratio of the successful cases was
logged during the repeated calculations. If this “success rate” is 0, then no
value can be presented. When the success rate is less than 100%, the aver-
age of the needed number of objective function evaluations to reach the target
objective value is shown in successful cases; the success rate is also given in
parentheses.
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σ
Test functions

De Jong’s 1st Ackley Rastrigin Keane

10−2 - - - 56047

10−3 - - - (95%) 104625
10−4 - - 98524 141065

10−5 107365 76944 101807 (80%) 276272

10−6 165365 121247 123930 (55%) 167852

without f. m. 202846 204746 127586 (40%) 50970

Table 2: Needed number of objective function evaluations to reach the target
objective value with BEA and forced mutation. (Success rates are shown in
parentheses.)

σ
Test functions

De Jong’s 1st Ackley Rastrigin Keane

10−2 - - (75%) 808365 62454

10−3 - - - (90%) 72344

10−4 (60%) 395597 - 76639 (85%) 275413

10−5 92029 74021 96716 (45%) 176429

10−6 148673 117743 120703 (35%) 75851

without f. m. 186041 215102 120903 (25%) 41660

Table 3: Needed number of objective function evaluations to reach the target
objective value with pMGA Aux. and forced mutation. (Success rates are
shown in parentheses.)

Tab. 2 and 3 show the similar behaviour of two bacterial algorithm variants.
For large σ the success rate is usually 0 for the first three problems. Keane
shows the opposite: large σ helps to find the good solution. This is probably due
to the extremely high number of local maximums in this problem and premature
convergence is the main obstacle in the way of the optimization process. As a
short conclusion one can state that forced mutation with σ = 10−5 and 10−6

always has a positive effect on the optimization process.

Note that due to the limited size of the paper, calculation results with
other BEA variants are not presented here quantitatively, however, they show
the same behaviour as BEA and pMGA Aux.

5. Adaptive parameter setting in forced mutation

The previous section proved that this type of forced mutation can improve
the success rate and convergence speed. The optimal σ parameter is problem-
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dependent, which is a serious drawback in practical applications. As it has
been written above, higher values of σ are good for preventing premature con-
vergence, but are bad in refinement of the extrema, while smaller σ has no
effect in the beginning and does not work against premature convergence, but
is useful at the end phase of optimization.

It is obvious that changing σ in the course of optimization can help, but
the optimal way to do it can be highly problem-dependent. A simple idea is
considered in this paper: let σ be a simple, monotonically increasing function
of the actual value of genetic diversity. This way the value scope of forced mu-
tation corresponds to the stage of the optimization process: at the beginning,
when potentially optimal members of the population are scattered in a large
region of the search space, we get high σ values, which decreases the probability
of premature convergence, but after a few iterations the entities will gather in
interesting domains, which decreases the diversity, which results in a smaller σ
that helps in refinement.

The simplest way of this parameter-setting is a linear relationship between
genetic diversity of the whole population (D) and σ with a lower bound:

(5.1) σ = max(bD, σ0).

Based on the results in the previous section, σ0 = 10−5 or σ0 = 10−6 can be a
good value.

In a typical calculation, genetic diversity starts from 0.1–0.5 (random en-
tities). In this stage σ ≈ 0.01 is a good choice. Genetic diversity starts to
decrease rapidly as the entities start to converge to interesting optimum areas
in the search space. At this phase much smaller values of σ are needed. Based
on these considerations, b = 0.1–0.5 seems to be a good choice.

The proposed way of adaptive parameter setting is promising in the way
that the actual value of σ will be adopted both to the problem and the stage
of the optimisation process. The numerical experiments validate these hopes.

Table 4 and 5 show the numerical results with b = 0.1, 0.2 and 0.5. Compar-
ing these values to the ones in Table 2 and 3 one can observe that the adaptive
setting of σ works well. In the case of b = 0.2 we get a 100% success rate in
every test problem, and the needed number of objective function evaluations is
always significantly lower than that of the ones in the original methods with-
out forced mutation. Furthermore, with b = 0.2, optimal parameter setting is
almost always better than the forced mutation with any fixed σ, which shows
that this simple method for σ setting is beneficial. However, in further work
more sophisticated methods for setting σ should be examined.

Figure 7 shows the best objective function value and genetic diversity during
the optimization process for the Rastrigin test problem. These graphs show
that adaptive forced mutation works as expected. Other test problems show
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the same behaviour, i.e. with b = 0.2 the actual objective value of the best
individual is always better than that of the original version and the genetic
diversity does not decrease to an undesirably low value.

b
Test functions

De Jong’s 1st Ackley Rastrigin Keane

0.1 104227 76082 96623 (85%) 109154
0.2 104869 74881 91276 58988

0.5 91790 60391 (50%) 134901 241600

Table 4: Needed number of objective function evaluations to reach the target
objective value with BEA and adaptive forced mutation. σ0 = 10−5.

b
Test functions

De Jong’s 1st Ackley Rastrigin Keane

0.1 90880 73925 90905 (65%) 186437
0.2 90647 69449 85889 53005
0.5 79765 60011 77042 188214

Table 5: Needed number of objective function evaluations to reach the target
objective value with pMGA Aux. and adaptive forced mutation. σ0 = 10−5.

6. Summary

Genetic diversity in the original BEA and a parallel variant, “pMGA Aux.”
was investigated. It was shown that genetic diversity decreases very rapidly
in the examined problems, which results in a slow convergence rate especially
at the final stage of the optimization, where refining of the approximate op-
timum is happening. Classical methods of maintaining genetic diversity were
considered and Goldberg’s type “niching” was found to be applicable for bac-
terial type methods without fundamental conceptual changes. This method
was moderately useful in controlling the diversity and improving the speed of
optimization.

The method of “forced mutation” was proposed in this paper to avoid the
pile-up of too similar entities. It was shown that this method works well,
but different parameters are optimal in different problems and in the different
stages of the optimization process. To overcome this problem a simple model
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Figure 7: Optimization of Rastrigin function with and without adaptive forced
mutation, using different values for b

for adaptive setting of forced mutation parameter was investigated. The final
version of this method appeared to be useful: it improved the success rate and
the speed of the convergence in every test problem.

Adaptive forced mutation is commendable in every bacterial type method
since it does not require any special property of the objective function and it
improves the convergence speed significantly in all the examined cases.
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