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Abstract. The triangular and cubic Cesàro summability of higher di-
mensional Fourier series is investigated. It is proved that the maximal
operator of the Cesàro means of a d-dimensional Fourier series is bounded
from the Hardy space Hp(T

d) to Lp(T
d) for all d/(d + α ∧ 1) < p ≤ ∞

and, consequently, is of weak type (1,1). As a consequence we obtain that
the Cesàro means of a function f ∈ Lp(T

d) converge a.e. and in Lp-norm
(1 ≤ p < ∞) to f . Moreover, we prove for the endpoint p = d/(d+ α ∧ 1)
that the maximal operator is bounded from Hp(T

d) to the weak Lp(T
d)

space.

1. Introduction

The well known Carleson’s theorem says that

(1) skf(x) :=
∑

j∈Zd,|j|≤k

f̂(j)eıj·x → f(x) for a.e. x ∈ T as k → ∞

if f ∈ Lp(T) (1 < p < ∞) (see Carleson [5] and Grafakos [8]). This is false for
p = 1. However, the Fejér and Cesàro summability means σnf of f converge to
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f almost everywhere if f ∈ L1(T) (see Zygmund [24], Butzer and Nessel [4]).
Recall that the Fejér means are defined by

(2) σnf(x) :=
∑

j∈Zd,|j|≤n

(
1− |j|

n

)
f̂(j)eıj·x =

1

n

n−1∑
k=0

skf(x).

In this paper we generalize these results for higher dimensions. We consider
the triangular and cubic summability by replacing | · | by ‖ · ‖1 or ‖ · ‖∞ in
(1) and (2). It is known that he analogue of Carleson’s theorem holds (see
Fefferman [7] and Grafakos [8]). We generalize the Fejér and Cesàro means
and prove that the means σnf → f in Lp-norm if f ∈ Lp(T

d) (1 ≤ p < ∞)
and uniformly if f ∈ C(Td). Next we obtain that the maximal operator σ∗ is
bounded from the Hardy space Hp(T

d) to Lp(T
d) for all d/(d+α∧1) < p ≤ ∞.

This implies by interpolation that σ∗ is of weak type (1,1). As a consequence
we get the a.e. convergence of σnf to f , whenever f ∈ L1(T

d). Moreover, we
prove for the critical index p = d/(d+ α ∧ 1) that σ∗ is bounded from Hp(T

d)
to the weak Lp(T

d) space. This paper was the base of my talk given at the
9th Joint Conference on Mathematics and Computer Science, February 2012,
in Siófok, Hungary.

2. The Dirichlet kernel functions

Let us fix d ≥ 1, d ∈ N. For a set Y 
= ∅ let Y
d be its Cartesian product

Y × . . . × Y taken with itself d-times. For x = (x1, . . . , xd) ∈ R
d and u =

= (u1, . . . , ud) ∈ R
d set

u · x :=

d∑
k=1

ukxk, ‖x‖q :=
( d∑

k=1

|xk|q
)1/q

(0 < q < ∞), ‖x‖∞ := sup
1≤k≤d

|xk|.

We briefly write Lp(T
d) instead of the Lp(T

d, λ) space equipped with the
norm (or quasi-norm)

‖f‖p :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∫
Td

|f |p dλ
)1/p

, 0 < p < ∞;

sup
Td

|f |, p = ∞,

where T := [−π, π] is the torus and λ is the Lebesgue measure. The weak Lp
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space, Lp,∞(Td) (0 < p < ∞) consists of all measurable functions f for which

‖f‖p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p < ∞.

Note that Lp,∞(Td) is a quasi-normed space (see Bergh and Löfström [3]). It
is easy to see that for each 0 < p < ∞,

Lp(T
d) ⊂ Lp,∞(Td) and ‖ · ‖p,∞ ≤ ‖ · ‖p.

The space of continuous functions with the supremum norm is denoted by
C(Td).

For a distribution f the nth Fourier coefficient is defined by f̂(n) := f(e−n),
where en(x) := eın·x (n ∈ Z

d) (see e.g. Edwards [6, p. 67]). If f is an integrable
function then

f̂(n) =
1

(2π)d

∫
Td

f(x)e−ın·x dx, (ı =
√
−1).

In this paper we generalize the partial sums (1) and summability means (2)
for multi-dimensional functions by replacing the | · | by ‖ · ‖q. Here we consider
the cases q = 1 (see also Berens, Li and Xu [1, 2, 21], Weisz [17, 18]) and q = ∞
(Marcinkiewicz [9], Zhizhiashvili [23] and Weisz [16, 19]).

For f ∈ L1(T
d) the nth �q-partial sum sqnf (n ∈ N) is given by

sqnf(x) :=
∑

k∈Zd,‖k‖q≤n

f̂(k)eık·x =
1

(2π)d

∫
Td

f(x− u)Dq
n(u) du,

where
Dq

n(u) :=
∑

k∈Zd,‖k‖q≤n

eık·u

is the �q-Dirichlet kernel. The partial sums are called triangular if q = 1 and
cubic if q = ∞ (see Figure 1).

It is known that if q = 1,∞ and f ∈ Lp(T
d) for some 1 < p < ∞ then

‖sqnf‖p ≤ Cp‖f‖p (n ∈ N)

and
lim
n→∞

sqnf = f in Lp-norm.

The analogue of Carleson’s theorem holds in higher dimensions for the trian-
gular and cubic partial sums (see Fefferman [7] and Grafakos [8]), i.e.

lim
n→∞

sqnf = f a.e.,

whenever q = 1,∞ and f ∈ Lp(T
d) for some 1 < p < ∞.
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Figure 1. Regions of the �q-partial sums for d = 2.

For k ∈ N, α 
= −1,−2, . . . let

Aα
k :=

(
k + α

k

)
=

(α+ 1)(α+ 2) . . . (α+ k)

k!
.

It is known (see Zygmund [24, p. 77]) that

(3) Aα
k =

k∑
i=0

Aα−1
k−i , Aα

k −Aα
k−1 = Aα−1

k

and

(4) Aα
k = O(kα) (k ∈ N).

We define the �q-Fejér and Cesàro means of an integrable function f ∈
∈ L1(T

d) by

σq
nf(x) :=

∑
k∈Zd,‖k‖q≤n

(
1− ‖k‖q

n

)
f̂(k)eık·x =

1

(2π)d

∫
Td

f(x− u)Kq
n(u) du,

and

σq,α
n f(x) : =

1

Aα
n−1

∑
k∈Zd,‖k‖q≤n

Aα
n−1−‖k‖q

f̂(k)eık·x =

=
1

(2π)d

∫
Td

f(x− u)Kq,α
n (u) du,
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where

Kq
n(u) :=

∑
k∈Zd,‖k‖q≤n

(
1− ‖k‖q

n

)
eık·u

and

Kq,α
n (u) :=

1

Aα
n−1

∑
k∈Zd,‖k‖q≤n

Aα
n−1−‖k‖q

eık·u

are the �q-Fejér- and Cesàro kernels. The cubic summability (when q = ∞) is
also called Marcinkiewicz summability. By (3)

Kq,α
n (u) =

1

Aα
n−1

∑
‖k‖q≤n

n−1∑
j=‖k‖q

Aα−1
n−1−je

ık·u =
1

Aα
n−1

n−1∑
j=0

Aα−1
n−1−jD

q
j (u).

Hence

σq,α
n f(x) =

1

Aα
n−1

n−1∑
k=0

Aα−1
n−1−ks

q
kf(x).

Since A1
n−1 = n and A0

n−1 = 1, if α = 1, we get back the Fejér means. Observe
that

(5) |Kq,α
n | ≤ Cnd (n ∈ N

d).

Now we characterize the Dirichlet kernel functions Dq
n. It is easy to see that

in the one-dimensional case both kernel functions are the same and

Dq
n(u) =

sin((n+ 1/2)u)

sin(u/2)

(see e.g. Grafakos [8]).

The situation is much more complicated in higher dimensions. First let us
consider the case q = 1. The nth divided difference of a function f at the
(pairwise distinct) knots x1, . . . , xn ∈ R is introduced inductively as

(6) [x1]f := f(x1), [x1, . . . , xn]f :=
[x1, . . . , xn−1]f − [x2, . . . , xn]f

x1 − xn
.

It was proved by Berens and Xu [2, 21] that

D1
n(x) = [cosx1, . . . , cosxd]Gn, (x ∈ T

d),

where

Gn(cos t) := (−1)[(d−1)/2]2 cos(t/2)(sin t)d−2soc (n+ 1/2)t
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and

soc t :=

{
cos t, if d is even;
sin t, if d is odd.

We point out the result for d = 2:

D1
n(x) = 2

cos(x1/2) cos((n+ 1/2)x1)− cos(x2/2) cos((n+ 1/2)x2)

cosx1 − cosx2
.

The cubic Dirichlet kernels (q = ∞) can be given by

D∞
n (x) =

d∏
i=1

D∞
n (xi) =

d∏
i=1

sin((n+ 1/2)xi)

sin(xi/2)
.

Since the kernel functions are very different for q = 1,∞, the proofs of the next
results differ substantially from each other.

3. Norm convergence of the Cesàro summability

To obtain norm convergence of the Cesàro means we have to estimate first
the Cesàro kernel functions. The one-dimensional case is again much more
simpler because

|Kq,α
n (u)| ≤ Cmin(n, n−αu−α−1) (n ∈ N, u 
= 0, 0 < α ≤ 1)

(see Zygmund [24]). Some of the next results are already known, for q = ∞,
d ∈ N see [19], for q = 1, d = 2 see [20] and for q = 1, α = 1, d ≥ 3 see [18].
So we will focus on the case q = 1, 0 < α < ∞, d ≥ 3. We will only sketch
the proofs and give the differences to the case q = 1, α = 1, d ≥ 3. q = 2 is
also investigated in the literature, see e.g. Stein and Weiss [14], Grafakos [8]
or Weisz [16].

If we apply the inductive definition of the divided difference in (6) to D1
n,

then in the denominator we have to choose the factors from the following table:

cosx1 − cosxd

cosx1 − cosxd−1 cosx2 − cosxd

. . .

cosx1 − cosxd−k+1 cosx2 − cosxd−k+2 . . . cosxk − cosxd

. . .

cosx1 − cosx2 cosx2 − cosx3 . . . cosxd−1 − cosxd.
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Observe that the kth row contains k terms and the differences of the indices
in the kth row is equal to d − k, more precisely, if cosxik − cosxjk is in the
kth row, then jk − ik = d − k. We choose exactly one factor from each row.
First we choose cosx1 − cosxd and then from the second row cosx1 − cosxd−1

or cosx2 − cosxd. If we have chosen the (k − 1)th factor from the (k − 1)th
row, say cosxj − cosxj+d−k+1, then we have to choose the next one from the
kth row which is below the (k − 1)th factor (it is equal to cosxj − cosxj+d−k)
or the right neighbor (it is equal to cosxj+1 − cosxj+d−k+1). More exactly, we
introduce a set I of sequences of integer pairs ((in, jn);n = 1, . . . , d − 1). Let
i1 = 1, j1 = d, (in) is non-decreasing and (jn) is non-increasing. If (in, jn) is
given then let in+1 = in and jn+1 = jn−1 or in+1 = in+1 and jn+1 = jn. If the
sequence (in, jn) has these properties then we say that it is in I. Observe that
the difference cosxik − cosxjk is in the kth row of the table (k = 1, . . . , d− 1).

So the factors we have just chosen can be written as
∏d−1

l=1 (cosxil − cosxjl).
In other words,

D1
n(x) =

=
∑

(il,jl)∈I
(−1)id−1−1

d−2∏
l=1

(cosxil − cosxjl)
−1[cosxid−1

, cosxjd−1
]Gn =

= (−1)id−1−1
d−1∏
l=1

(cosxil − cosxjl)
−1(Gn(cosxid−1

)−Gn(cosxjd−1
)) =:

=: D1
n,(il,jl)

(x).

(7)

Then

K1,α
n (x) =

∑
(il,jl)∈I

(−1)id−1−1

Aα
n−1

d−1∏
l=1

(cosxil − cosxjl)
−1 ×

×
n−1∑
k=0

Aα−1
n−1−k(Gk(cosxid−1

)−Gk(cosxjd−1
)) =:

=:
∑

(il,jl)∈I
K1,α

n,(il,jl)
(x).

We may suppose that π > x1 > x2 > . . . > xd > 0.
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Lemma 1. Suppose that q = 1, 0 < α ≤ 1, d ≥ 3. For all 0 < β < α+1
d−1 ,

|K1,α
n,(il,jl)(x)| ≤

≤ C

nα

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−α−1
jd−1

1{xjd−1
≤π/2}+

+
C

n

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−2
jd−1

1{xjd−1
≤π/2}+

+
C

nα

d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−α−11{xjd−1
>π/2}+

+
C

n

d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−21{xjd−1
>π/2}.

(8)

Proof. Using the formula∣∣∣∣∣
n−1∑
k=0

Aα−1
n−1−ksoc ((k + 1/2)u)

∣∣∣∣∣ ≤ C

(sin(u/2))α
+

Cnα−1

sin(u/2)

for 0 < α ≤ 1 (see Zygmund [24, I. p. 94]) and (4), we conclude

|K1,α
n,(il,jl)

(x)| ≤

≤ C

nα

d−1∏
l=1

(sinxid−1
)d−2(sin(xid−1

/2))−α + (sinxjd−1
)d−2(sin(xjd−1

/2))−α

sin((xil − xjl)/2) sin((xil + xjl)/2)
+

+
C

n

d−1∏
l=1

(sinxid−1
)d−2(sin(xid−1

/2))−1 + (sinxjd−1
)d−2(sin(xjd−1

/2))−1

sin((xil − xjl)/2) sin((xil + xjl)/2)
.

If xjd−1
≤ π/2 then (xil + xjl)/2 ≤ 3π/4 and so

|K1,α
n,(il,jl)

(x)| ≤ C

nα

d−1∏
l=1

(xil − xjl)
−1(xil + xjl)

−1(xd−α−2
id−1

+ xd−α−2
jd−1

) +

+
C

n

d−1∏
l=1

(xil − xjl)
−1(xil + xjl)

−1(xd−3
id−1

+ xd−3
jd−1

).
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Since xil + xjl > xil − xjl and xil + xjl > xid−1
> xjd−1

we can see that

|K1,α
n,(il,jl)

(x)| ≤

≤ C

nα

d−1∏
l=1

(xil − xjl)
−1−β(x

d−α−2+(β−1)(d−1)
id−1

+ x
d−α−2+(β−1)(d−1)
jd−1

) +

+
C

n

d−1∏
l=1

(xil − xjl)
−1−β(x

d−3+(β−1)(d−1)
id−1

+ x
d−3+(β−1)(d−1)
jd−1

) ≤

≤ C

nα

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−α−1
jd−1

+
C

n

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−2
jd−1

for all 0 < β < α+1
d−1 .

If xjd−1
> π/2 then (xil + xjl)/2 > π/4 and

|K1,α
n,(il,jl)

(x)| ≤ C

nα

d−1∏
l=1

(xil − xjl)
−1×

× (2π − xil − xjl)
−1
(
(π − xid−1

)d−α−2 + (π − xjd−1
)d−α−2

)
+

+
C

n

d−1∏
l=1

(xil − xjl)
−1(2π − xil − xjl)

−1((π − xid−1
)d−3 + (π − xjd−1

)d−3).

Observe that 2π−xil −xjl > xil −xjl and 2π−xil −xjl > π−xjl > π−xjd−1
>

> π − xid−1
. Thus

|K1,α
n,(il,jl)

(x)| ≤ C

nα

d−1∏
l=1

(xil − xjl)
−1−β×

×
(
(π − xid−1

)d−α−2+(β−1)(d−1) + (π − xjd−1
)d−α−2+(β−1)(d−1)

)
+

+
C

n

d−1∏
l=1

(xil − xjl)
−1−β ×

×
(
(π − xid−1

)d−3+(β−1)(d−1) + (π − xjd−1
)d−3+(β−1)(d−1)

)
≤

≤ C

nα

d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−α−1 +

+
C

n

d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−2,

if 0 < β < α+1
d−1 . �
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Lemma 2. Suppose that q = 1, 0 < α ≤ 1, d ≥ 3. For all 0 < β < α+1
d−2 ,

|K1,α
n,(il,jl)

(x)| ≤

≤ Cn1−α
d−2∏
l=1

(xil − xjl)
−1−βx

β(d−2)−α−1
jd−1

1{xjd−1
≤π/2}+

+ C
d−2∏
l=1

(xil − xjl)
−1−βx

β(d−2)−2
jd−1

1{xjd−1
≤π/2}+

+ Cn1−α
d−2∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−2)−α−11{xjd−1
>π/2}+

+ C

d−2∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−2)−21{xjd−1
>π/2}.

(9)

Proof. Lagrange theorem and (7) imply that there exists xid−1
> ξ > xjd−1

,
such that

D1
k,(il,jl)

(x) = (−1)id−1−1
d−1∏
l=1

(cosxil − cosxjl)
−1H ′

k(ξ)(xid−1
− xjd−1

),

where

Hk(t) = (−1)[(d−1)/2]2 cos(t/2)(sin t)d−2soc (k + 1/2)t.

Then

|K1,α
n,(il,jl)

(x)| ≤

≤ C

d−1∏
l=1

(sin ξ)d−2 + n(sin ξ)d−2

nα sin((xil − xjl)/2) sin((xil + xjl)/2)(sin(ξ/2))
α
(xid−1

− xjd−1
)+

+ C

d−1∏
l=1

(sin ξ)d−2 + n(sin ξ)d−2

n sin((xil − xjl)/2) sin((xil + xjl)/2) sin(ξ/2)
(xid−1

− xjd−1
)+

+ C
d−1∏
l=1

nα(sin ξ)d−3

nα sin((xil − xjl)/2) sin((xil + xjl)/2)
(xid−1

− xjd−1
).

In the last step we have used that |
∑n−1

k=0 A
α−1
n−1−ksoc ((k + 1/2)t)| ≤ nα. In
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case xjd−1
≤ π/2,

|K1,α
n,(il,jl)

(x)| ≤

≤ Cn1−α
d−1∏
l=1

(xil − xjl)
−1(xil + xjl)

−1(xid−1
− xjd−1

)ξd−α−2+

+ C
d−1∏
l=1

(xil − xjl)
−1(xil + xjl)

−1(xid−1
− xjd−1

)ξd−3 ≤

≤ Cn1−α
d−2∏
l=1

(xil − xjl)
−1−βξd−α−3+(β−1)(d−2)+

+ C
d−2∏
l=1

(xil − xjl)
−1−βξd−4+(β−1)(d−2) ≤

≤ Cn1−α
d−2∏
l=1

(xil − xjl)
−1−βx

β(d−2)−α−1
jd−1

+ C

d−2∏
l=1

(xil − xjl)
−1−βx

β(d−2)−2
jd−1

for all 0 < β < α+1
d−2 . The case xjd−1

> π/2 can be handled similarly. �

Lemma 3. Suppose that q = 1, 0 < α ≤ 1, d ≥ 3. For all 0 < β < α+1
d−1 ,

|K1,α
n,(il,jl)

(x)| ≤

≤ C

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−α−1
jd−1

(xid−1
− xjd−1

)α1{xjd−1
≤π/2}+

+ C

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−2
jd−1

(xid−1
− xjd−1

)1{xjd−1
≤π/2}+

+ C

d−2∏
l=1

(xil − xjl)
−1−βx

β(d−2)−α−1
jd−1

(xid−1
− xjd−1

)α−11{xjd−1
≤π/2}+

+ C
d−2∏
l=1

(xil − xjl)
−1−βx

β(d−2)−2
jd−1

1{xjd−1
≤π/2}+

+ C
d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−α−1(xid−1
− xjd−1

)α1{xjd−1
>π/2}+

+ C
d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−2(xid−1
− xjd−1

)1{xjd−1
>π/2}+
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+ C

d−2∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−2)−α−1(xid−1
− xjd−1

)α−11{xjd−1
>π/2}+

+ C
d−2∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−2)−21{xjd−1
>π/2} =:

(10) =:

8∑
m=1

K1,α
(il,jl),m

(x).

Proof.The result follows from

|K1,α
n,(il,jl)

(x)| ≤ |K1,α
n,(il,jl)

(x)|1n>(xid−1
−xjd−1

)−1+|K1,α
n,(il,jl)

(x)|1n≤(xid−1
−xjd−1

)−1

and (8) and (9). �

The next lemma can be proved as Lemmas 1 and 2.

Lemma 4. Suppose that q = 1, 0 < α ≤ 1, d ≥ 3. If 0 < β < α+1
d−1 ∧ d−2

d−1
then for all q = 1, . . . , d,

|∂qK1,α
n,(il,jl)

(x)| ≤

≤ Cn1−α
d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−α−1
jd−1

1{xjd−1
≤π/2} +

+ C
d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−2
jd−1

1{xjd−1
≤π/2} +

+ Cn1−α
d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−α−11{xjd−1
>π/2} +

+ C

d−1∏
l=1

(xil − xjl)
−1−β(π − xid−1

)β(d−1)−21{xjd−1
>π/2}.

Now we verify that the L1-norm of the kernel functions are uniformly
bounded.

Theorem 1. If q = 1,∞ and 0 < α < ∞ then∫
Td

|Kq,α
n (x)| dx ≤ C (n ∈ N).
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Proof. As we mentioned above we may suppose that q = 1, 0 < α ≤ 1,
d ≥ 3 and π > x1 > x2 > . . . > xd > 0. If x1 ≤ 16/n or π − xd ≤ 16/n then
(5) implies∫
{16/n≥x1>x2>...>xd>0}

|K1,α
n (x)| dx+

∫
{π>x1>x2>...>xd≥π−16/n}

|K1,α
n (x)| dx ≤ C.

Hence it is enough to integrate over

S := {x ∈ T
d : π > x1 > x2 > . . . > xd > 0, x1 > 16/n, xd < π − 16/n}.

For a sequence (il, jl) ∈ I let us define the set S(il,jl),k by

S(il,jl),k :=

{
x ∈ S : xil − xjl >

4
n , l = 1, . . . , k − 1, xik − xjk ≤ 4

n , if k < d;

x ∈ S : xil − xjl >
4
n , l = 1, . . . , d− 1, if k = d

and

S(il,jl),k,1 :=

{
x ∈ S(il,jl),k : xjk > 4

n , xjd−1
≤ π

2 , if k < d;

x ∈ S(il,jl),k : xjd−1
> 4

n , xjd−1
≤ π

2 , if k = d,

S(il,jl),k,2 :=

{
x ∈ S(il,jl),k : xjk ≤ 4

n , xjd−1
≤ π

2 , if k < d;

x ∈ S(il,jl),k : xjd−1
≤ 4

n , xjd−1
≤ π

2 , if k = d,

S(il,jl),k,3 :=

{
x ∈ S(il,jl),k : π − xik > 4

n , xjd−1
> π

2 , if k < d;

x ∈ S(il,jl),k : π − xid−1
> 4

n , xjd−1
> π

2 , if k = d,

S(il,jl),k,4 :=

{
x ∈ S(il,jl),k : π − xik ≤ 4

n , xjd−1
> π

2 , if k < d;

x ∈ S(il,jl),k : π − xid−1
≤ 4

n , xjd−1
> π

2 , if k = d.

Then ∫
Td

|K1,α
n (x)|1S(x)dx ≤

d∑
k=1

4∑
m=1

∫
Td

|K1,α
n,(il,jl)

(x)|1S(il,jl),k,m(x) dx.

Since the proof is similar to that for Fourier transforms (see Weisz [17]),
we do not give a full version of the proof. We will consider the sets S(il,jl),k,1,
only. First let 1 ≤ k ≤ d− 1:

d−1∑
k=1

∫
Td

|K1,α
n,(il,jl)

(x)|1S(il,jl),k,1
(x) dx ≤

8∑
m=1

d−1∑
k=1

∫
Td

K1,α
(il,jl),m

(x)1S(il,jl),k,1
(x) dx.
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Since xid−1
− xjd−1

≤ xil − xjl , (10) implies∫
Td

K1,α
(il,jl),1

(x)1S(il,jl),k,1
(x) dx ≤

≤ C

∫
Td

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−α−1
jd−1

(xid−1
− xjd−1

)α1S(il,jl),k,1
(x) dx ≤

≤ C

∫
Td

k−1∏
l=1

(xil − xjl)
−1−β

d−1∏
l=k

(xil − xjl)
−1−β+α/(d−k)x

β(d−1)−α−1
jd−1

×

× 1S(il,jl),k,1
(x) dx.

First we choose the indices jd−1(= i′d), id−1(= i′d−1) and then id−2 if id−2 
=

= id−1 or jd−2 if jd−2 
= jd−1. (Exactly one case of these two cases is satisfied.)
If we repeat this process then we get an injective sequence (i′l, l = 1, . . . , d).
We integrate the term xi1 − xj1 in xi′1 , the term xi2 − xj2 in xi′2 , . . . , and
finally the term xid−1

− xjd−1
in xi′d−1

and xjd−1
in xi′d . Since xil − xjl > 4/n

(l = 1, . . . , k− 1), xil − xjl ≤ 4/n (l = k, . . . , d− 1), xjd−1
≥ xjk > 4/n and we

can choose β such that β < α/(d− 1), we have∫
Td

K1,α
(il,jl),1

(x)1S(il,jl),k,1
(x) dx ≤

≤ C
k−1∏
l=1

(1/n)−β
d−1∏
l=k

(1/n)−β+α/(d−k)(1/n)β(d−1)−α ≤ C.

The kernel function K1,α
(il,jl),2

can be handles in the same way, because it is

exactly K1,α
(il,jl),1

with α = 1.

Similarly, if β < α/(d− 1) then∫
Td

K1,α
(il,jl),3

(x)1S(il,jl),k,1
(x) dx ≤

≤ C

∫
Td

k−1∏
l=1

(xil − xjl)
−1−β

d−2∏
l=k

(xil − xjl)
−1−β+α/(d−k) ×

× (xid−1
− xjd−1

)α/(d−k)−1x
β(d−2)−α−1
jd−1

1S(il,jl),k,1
(x) dx ≤

≤ C

k−1∏
l=1

(1/n)−β
d−2∏
l=k

(1/n)−β+α/(d−k)(1/n)α/(d−k)(1/n)β(d−2)−α ≤ C,

and the same holds for the kernels Kθ
(il,jl),m

(x), m = 4, . . . , 8.
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For the dth summand we use (8) to obtain∫
Td

|K1,α
n,(il,jl)

(x)|1S(il,jl),d,1
(x) dx ≤

≤ Cn−α

∫
Td

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−α−1
jd−1

1S(il,jl),d,1
(x) dx+

+ Cn−1

∫
Td

d−1∏
l=1

(xil − xjl)
−1−βx

β(d−1)−2
jd−1

1S(il,jl),d,1
(x) dx ≤

≤ Cn−α
d−1∏
l=1

(1/n)−β(1/n)β(d−1)−α + Cn−1
d−1∏
l=1

(1/n)−β(1/n)β(d−1)−1 ≤

≤ C,

if β < α/(d− 1), which proves the theorem. �

Theorem 2. Suppose that q = 1,∞ and 0 < α < ∞. If B denotes either
Lp(T

d) (1 ≤ p < ∞) or C(Td) then

‖σq,α
n f‖B ≤ Cp‖f‖B (n ∈ N)

and

lim
n→∞

σq,α
n f = f in B-norm for all f ∈ B.

Proof. Observe that

‖σq,α
n f‖B ≤ 1

(2π)d

∫
Td

‖f(· − u)‖BKq,α
n (u) du =

1

(2π)d

∫
Td

‖f‖BKq,α
n (u) du.

Since the trigonometric polynomials are dense in B, the theorem follows from
Theorem 1 and from Banach-Steinhaus theorem. �

4. Almost everywhere convergence of the Cesàro summability

We can extend the definition of the Cesàro means to distributions by

σq,α
n f := f ∗Kq,α

n (n ∈ N).
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To investigate the almost everywhere convergence we introduce the maximal
operator

σq,α
∗ f := sup

n≥1
|σq,α

n f |

and the Hardy spaces. The Hardy space Hp(T
d) (0 < p ≤ ∞) consists of all

distributions f for which

‖f‖Hp := ‖ sup
0<t

|f ∗ P d
t |‖p < ∞,

where
P d
t (x) :=

∑
m∈Zd

e−t‖m‖2eım·x (x ∈ T
d, t > 0)

is the d-dimensional Poisson kernel. In the one-dimensional case we get back
the usual Poisson kernel

Pt(x) := P 1
t (x) =

∞∑
k=−∞

r|k|eıkx =
1− r2

1 + r2 − 2r cosx
(x ∈ T),

where r = e−t. It is known that the Hardy spaces Hp(T
d) are equivalent to

the Lp(T
d) spaces when 1 < p ≤ ∞ (see e.g. Stein [12] or Weisz [16]).

Theorem 3. If q = 1,∞, 0 < α < ∞ and d/(d+ α ∧ 1) < p ≤ ∞ then

(11) ‖σq,α
∗ f‖p ≤ Cp‖f‖Hp

(f ∈ Hp(T
d))

and for f ∈ Hd/(d+α∧1)(T
d),

(12) ‖σq,α
∗ f‖d/(d+α∧1),∞ = sup

ρ>0
ρλ(σq,α

∗ f > ρ)(d+α∧1)/d ≤ C‖f‖Hd/(d+α∧1)
.

Since this theorem can be proved similarly to [17, 15], we omit the proof.
For Fejér and Riesz means it was proved by the author [18, 17, 19, 15] (for
Fourier transforms and q = ∞ see also Oswald [11]).

If p is smaller or equal to the critical index then this theorem is not true
(Oswald [11], Stein, Taibleson and Weiss [13]).

Theorem 4. If q = ∞ and α = 1 then (11) does not hold for 0 < p ≤
≤ d/(d+ 1) and (12) for 0 < p < d/(d+ 1).

Marcinkiewicz [9] verified for two-dimensional Fourier series that the cubic
(i.e. q = ∞) Fejér means of a function f ∈ L logL(T2) converge a.e. to f as
n → ∞. Later Zhizhiashvili [22, 23] extended this result to all f ∈ L1(T

2),
Oswald [11] to Fourier transform and Riesz means and the author [19] to higher
dimensions. The same result for q = 1 can be found in Weisz [18, 17] (see also
Berens, Li and Xu [1]).
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Corollary 1. Suppose that q = 1,∞ and 0 < α < ∞. If f ∈ L1(T
d) then

sup
ρ>0

ρ λ(σq,α
∗ f > ρ) ≤ C‖f‖1.

Corollary 2. Suppose that q = 1,∞ and 0 < α < ∞. If f ∈ L1(T
d) then

lim
n→∞

σq,α
n f = f a.e.

Proof. Since the trigonometric polynomials are dense in L1(T
d), the result

follows from Corollary 2 and the usual density argument due to Marcinkiewicz
and Zygmund [10]. �
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