
Annales Univ. Sci. Budapest., Sect. Comp. 37 (2012) 5–18

ADDRESS STANDARDIZATION

Roberto Giachetta, Tibor Gregorics,

Zoltán Istenes and Sándor Sike

(Budapest, Hungary)

Communicated by Zoltán Horváth

(Received December 23, 2011; revised March 5, 2012;
accepted March 10, 2012)

Abstract. This paper is about matching non-standard format, mistyped
addresses against a reference address database. The input addresses are
collected from several different, non-standardized, non-verified, erroneous
human input. The objective of the process is to “clean” the input address
and find it in a standardized address database, or to find the most probable
corresponding addresses with their appropriate credibilities. This process
is known in the literature as “address cleansing”.
We developed an algorithm, which searches and matches the input address
fields against the standard address database stepwise, using a rule based
system. Our rule based system uses tokens obtained from a specialized
tokenization and generates intermediate format addresses, by identifying
the missing address field and their values. The rules are grouped into rule
sets and applied according to a recognition order. The tokens are matched
against the address reference database using a modified Levenshtein dis-
tance measure. Our uncertainty calculus uses the modified Levenshtein
distance measure matching value and the rule strength to modify with
each rule application the intermediate format address credibility. Our rule
base is specialized to work with Hungarian addresses, using the standard
reference database.

Key words and phrases: Address cleansing, Levenshtein distance, reference address database,
rule based system, search, credibility, tokenization, learning.
2010 Mathematics Subject Classification: 68T20, 68T50, 68T05.
1998 CR Categories and Descriptors: H.3.3, J.1.
The Research is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).
https://doi.org/10.71352/ac.37.005

https://doi.org/10.71352/ac.37.005


6 R. Giachetta, T. Gregorics, Z, Istenes and S. Sike

1. Introduction

Companies contact clients by agents. An agent visits several clients and
collect data and information relevant for the company. In this process the
agent records the address of the client and provides this record for further
processing. The first step of this process is digitization, the second step is to
identify the address in a reference database.

This article focuses on the problem of retrieving a digitized address from
a reference address database. We are not concerned about the digitization
process, i.e., how to transform a handwritten text to computer representation,
but we are interested in matching the input address against known addresses.
The source of the input address is an agent, therefore the form of the input (the
granularity of the address, the order of present fields) differs, meaning that the
same address can be written in different manners and fields can be missing, or
due to human error the input can contain mistakes.

Addresses stored in the reference database have a well-defined structure:
postal code, name of the settlement, name of the public place, type of the public
place (street, road, square etc.), building number, and additional data like level,
door number. These structural elements are called fields. Unfortunately, agents
do not follow the structure described, when they collect addresses.

Our objective is to find addresses from the reference database that possibly
match the input recorded, and also order and filter the results based on their
credibility. In practice this is a batch process supervised by a human operator,
where a large number of agent records should be processed.

The complexity of our problem arises from the following facts:

• The fields of the address are recorded in different order. Therefore, split-
ting the input into parts – called tokens – does not result in identifying
fields, since a field can match more than one token. (When two strings
are identified as names, it is not clear which one is the settlement and
which one is the public place name, especially if both names refer to a
city.)

• Fields may be missing or extra information may be added to the input.
For example, large cities have districts and the district is used in the
input, but it is not present in the standard.

• Fields may be abbreviated in the input.

• Fields may be mistyped, i.e., some characters are changed, missing or
duplicated, or extra characters are recorded.



Address standardization 7

• There are different variants of a field’s name, and any of them may be
present in the input.

• The form of the building number may differ from the standard, i.e., 4–8
is used in the reference standard, but only 4 is recorded in the input.

• The form of the additional data is free, their order is arbitrary.

• The fields of the input are not consistent, e.g., the district number does
not correspond to the postal code.

The problems above imply that even if the input is split into tokens using
a lexical analysis, matching the tokens against possible fields is not a straight-
forward task [2]. When the input is split into tokens it is not guaranteed that
each token will correspond to a field (additional data, or street names with
more than one substring), thus tokens should be joined or split further in the
matching process.

The above cleaning, matching process is called “address cleansing” [5]. Sev-
eral companies offer commercial solutions, services, software for this problem,
for example Cleanse+ service1, QAS Batch address correction software2 or the
New Zealand Post3, but they are not publicly documented.

Our objective was to develop an address standardization method and a
largely customizable application prototype.

2. The concept of address standardization

Addresses are identified in multiple steps in which they are separated to
several parts, called tokens. Separators can be whitespace characters, commas,
semicolons or several special cases (e.g. when a digit is next to a letter). The
process transforms these tokens to become address fields. An address field
is a part of the address, which identifies an attribute (postal code, name of
settlement, name of public place, type of public place, house number, building,
staircase, floor, door) and its value. For example, the <Bpest> token can
be recognized as a settlement name with the probable ,,Budapest” value. It
is also possible that multiple adjoining tokens form a field; for instance, the
<XIV><ker> token pair identifies the ,,14th district”.

1http://www.postcodeanywhere.co.uk/address-cleansing
2http://www.qas.com/address-correction-software.htm
3http://www.nzpost.co.nz/business/sending-within-nz/over-300-letters-

documents/address-certification/cleansing-addresses



8 R. Giachetta, T. Gregorics, Z, Istenes and S. Sike

During the process a rule is applied in every step [9]. Rules identify a
single address field using one or more adjacent tokens. After the application
of the first rule the address becomes partly identified. This state is called the
intermediate form. The intermediate form stores the identified fields together
with their values and the rule applications that have led to this form.

The intermediate form also stores a credibility value starting from one that
is the uncertainty value of the form being the correct standardization of the
original input. Every rule application has a uncertainty value (ranged between
0 and 1) based on the transformation made, and on each application of a rule
the credibility of the intermediate form is multiplied by this value. Thus each
step reduces the credibility of the address.

All rules have a precondition → affect format. The precondition is a
token pattern, that is a sequence of token schemata. A token scheme is an
algorithm that checks the compliance of a token. Table 1 shows some examples
of the actually existing token schemes.

scheme name scheme description

<IsSettlement> searching in the reference database the best
matching MatchCount number settlement
names, and returns the MatchCount best
matching settlement names together with
their similarity score

<IsPostalCode> matching to a four-digit number (Hungarian
postal codes are four-digit numbers)

<IsPostalCode

@Settlement>

matching to a four-digit number, returns 1 if
the postal number corresponds (exists) in a
previously identified settlement

<IsDistrict @PostalCode> matches the token as a district having value
[1-23] (Budapest has 23 districts) in Arabic
or Roman numbers, then verify the match of
the district with the postal code.

<IsPublicPremisesName

@Settlement>

searching for the given settlement the
best matching MatchCount number public
premises name, and returns them with their
Levenshtein distance metric

Table 1: Token schemes

If a pattern can be matched with a part of token sequences, then the rule
can be applied. For instance, the <IsSettlement> scheme fits in any token that
strongly resembles settlement names stored in the reference database. Another
example is the <PostalCode> scheme, which fits numbers that have three or
four digits. Rules are grouped into a rule database table according to the



Address standardization 9

address fields they recognize. An example of rule application can be seen in
Figure 1.

Figure 1: Rule application

Since multiple rules, moreover multiple variations of a single rule can be
applied to an address at the same time, the transformation process can have
several branches. The result of rule applications is a tree structure, and a
branch ends when no further rule can be applied. The leaf elements of this tree
are called final addresses. For example, the address ,,Szeged, Makó utca 5.”
means ,,5th Makó str. Szeged”; the <IsSettlement> scheme can fit in either
,,Szeged” or ,,Makó” and even to ,,utca”, but with less uncertainty. The goal
is to find a set of branches – also called rule application chains – that leads to
final addresses with good credibility values.

2.1. Weighting of nodes

Every intermediate form has a credibility value, noted C. This represents
how the recognitions and identifications all correspond to the intention of de-
scriptor of the initial address. It is not a probability measure, but it is always
between 0 and 1. The absolutely credible intermediate form has a value of 1,
and the completely incredible has 0. The initial input address also has the
value of 1, and it is decreased at every rule application that does not make a
completely credible recognition.

Every rule application has an uncertainty measure that is used to multiply
the intermediate credibility of form.

C(new intermediate form) = C(rule application)·C(old intermediate form)

The credibility of the rule application depends on two factors.

1. The strength value of the rule, which is stored in the database, indi-
cates the usefulness of the rule. For example, the <IsPostalCode> →
PostalCode = 1 with strength = 50 rule refers to a 50% credibility



10 R. Giachetta, T. Gregorics, Z, Istenes and S. Sike

that a four digit number is a postal code, therefore the credibility of the
current intermediate form is halved when this rule has been applied. The
strength value can be simply updated manually to optimize rule applica-
tions and their effects.

2. The matching value defines the degree in which the rule fits the tokens
in the concrete case. For instance, in the case of the <IsSettlement>

→ Number = 1 rule, the difference between the current token and the
settlement names stored inside the database is calculated. Candidates
are chosen from the best fitting names and the better the match, the
better the fitting value. The value is calculated using a similarity measure
function.

The credibility of the rule application is the product of the two factors:

C(rule application) = C(rule strength) · C(matching value)

2.2. Similarity measure

The similarity measure assigns values between 0 and 1 for two strings. The
more the two strings are matching, the higher value is assigned. This function
uses a modified version of the Levenshtein-distance algorithm with dynamic
programming [4]. Compared to the original algorithm, more emphasis is put on
the correspondence of the first characters and beside the possibility to insert or
remove characters our version also offers character replacement. The similarity
value is calculated by sim(x, y) := exp(−d(x, y)), where d(x, y) is the modified
Levenshtein-distance.

Penalty points are calculated during every transformation of the string [2].
These penalty points vary depending on the performed action and also previous
actions (e.g. three successive insertions result in less penalty points than an
insertion, a removal and a second insertion). After the algorithm is completed,
the penalty points are transformed into interval [0, 1].

3. The problem space

The problem space of the address recognition algorithm can be outlined as
a directed graph. The vertices of the graph represent intermediate forms and
the root vertex corresponds to the original input address that has no identified
fields. The leaf vertices are intermediate forms where no further rule can be
applied either because all tokens have been identified, or all possible rules have
been applied. The leaf vertices are the final address candidates. Edges represent
the rule applications. The graph does not contain any circles, because no rule
reduces the number of identified tokens.



Address standardization 11

One vertex has several children since several rules can be applied to one
intermediate form, moreover one rule can produce several results. For example
(see Figure 2), the settlement identification rule maps from the string ,,Gár” to
,,Gárdony”, to ,,Gyál” and to several others. Even the vertex ,,Gárdony 2483
I. u. 9” on the second level has got several children because the ,,postal code”
rule can be also matched to the number 9 and the ,,empty” rule (it means that
there is no postal code) may be applied. Certainly, the credibility values of
these children are worse than 0.75.

Figure 2: Problem space segment

The size of the graph is limited by reducing the set of applicable rules. A
group of rules can only be applied at a certain step of the process, which also
defines the level of the graph in which it can be applied. Therefore, the rules
of step (or level) k + 1 can only be applied after applying a rule on level k.
Since the input addresses might not be complete (e.g. missing postal number
or street number) an <empty> rule is introduced that can be applied at most
levels and jumps to the next level; however it also decreases the credibility
value of the form.

An example of problem space segment can be seen in Figure 2. Identified
tokens are displayed in bold, and credibility values can be seen in the upper
left corner of the vertex.

Using this approach, the graph is reduced to a tree structure where a path
between the root and a leaf represents a rule application chain, in which the



12 R. Giachetta, T. Gregorics, Z, Istenes and S. Sike

credibility value is monotone decreasing. An effective search strategy is neces-
sary for the handling of this problem space in acceptable running time [3].

3.1. Search strategy

Within the problem space, the task is to find leaves (these are considered to
be result vertices) that have the highest credibility values. Leaves generally do
not have unidentified tokens, however, some addresses have parts that cannot
be processed based on the standard addressing (e.g. ,,the 2nd shop at garage
level”, ,,back in the alley”), therefore all leaves are taken into account as results.
Due to the large size of the tree, the goal can only be achieved with a best-first
search heuristic graph algorithm [7] with some modifications.

Starting from the root vertex, a vertex with the highest credibility value
is selected in each step and removed from the priority queue where the queue
contains vertices whose successors are not yet known. Rules are applied to
this vertex and they create successors, which are put into the queue. This is
repeated until a certain amount of leaf vertices are found. When unrecognized
tokens remain in the address, the credibility value is reduced again. Since
the optimal solution is not always the first solution, the algorithm does not
terminate when it finds a leaf vertex.

A cutting heuristic is used to speed up the search. It only considers inner
vertices whose credibility values are not worse than that of the best result found
so far minus a threshold value (called CutLimit).

For this search, several strategic parameters have been introduced that are
also stored and can be modified to fine-tune the algorithm. These parameters
include:

• Delimitations for cutting, the size of the priority queue, maximum dis-
tance of the Levenshtein algorithm, etc. are used to reduce the size of
the problem space and therefore accelerate the algorithm, but this may
also result in the loss of good results. See Table 2.

• Validation penalties are applied when the resulting values of a rule ap-
plication do not match, e.g. the postal code does not belong to the
settlement, or the number does not exist in the street. See Table 3.

• Missing field penalties are also applied in case fields are missing in a result
address, with the most important fields (settlement name, street name)
earning the most penalties. See Table 4.



Address standardization 13

Name Default Range Description

CutLimit 0.05 [0, 1] The maximum difference allowed below
the uncertainty of the best intermediate
form. Intermediate forms with worse
uncertainty are not enqueued in the pri-
ority queue.

PQueueSizeLimit 50 (0...∞) The maximum size of the priority queue
used for intermediate form storage.

MatchCount 10 (0...∞) The maximum number of matching
words returned by the Levenstein dis-
tance function.

DistanceLimit
(DL)

0.4 [0...∞) A general limit value used in several
cases, e.g. as the maximum distance
value allowed by the Levenstein func-
tion. (A value of 3 usually refers to
largely unmatching words).

ValidatedsCount-
Limit

5 [0...∞) The upper limit for the number of ad-
dresses after validation.

Table 2: Delimitation parameters

Name Default Range Description

PostalCode-
Punishment

0.2 (0, DL] Penalty used in case the postal
code does not match the settle-
ment name.

DistrictPunishment 0.2 (0, DL] Penalty used in case the district
number does not match the postal
code.

DistrictChange-
Punishment

0.21 (0, DL] Penalty used when correcting the
district number according to the
postal code.

ValidatePunishment 0.8 (0, 1] Penalty used in case of incon-
sistency during validation of the
public place name rule.

ChangeByValidation-
Punishment

0.98 (0, 1] Penalty used in case of token
change in an intermediate form
due to inconsistency.

InvalidStreetNumber-
Distance

0.05 (0, DL] Penalty used when the street num-
ber does not match the rest of the
address.

Table 3: Validation penalty parameters



14 R. Giachetta, T. Gregorics, Z, Istenes and S. Sike

Name Default Range Description

MissingPostalCode 0.8 [0, 1] Missing postal code.

MissingSettlement 0.5 [0, 1] Missing settlement name.

MissingStreetName 0.7 [0, 1] Missing public place name.

MissingStreetType 0.7 [0, 1] Missing public place type.

MissingStreetNumber 0.7 [0, 1] Missing street number.

MissingDistrict 0.8 [0, 1] Missing district number.

UnknownTokenPunishment 0.8 [0, 1] Unrecognized token.

Table 4: Missing field penalty parameters

3.2. Learning

The effectiveness of the search depends strongly on the credibility values
calculated for the intermediate forms and on the strategic parameters used.
These focus on the search and enable the earliest finding of the most credi-
ble results. The credibility values and the strategic parameters must be tuned
carefully, since inadequate values lead to the loss of good results by rejecting
intermediate forms, or penalizing good candidates. This tuning requires expe-
rience, domain knowledge and/or using trial-error methods. However, the lack
of them can be replaced with a learning mechanism, which can modify these
values based on the experiences of the already resolved tasks.

The usefulness of a step (or the decisive logic that generates it) can only
be judged after seeing whether the step operation led us to any solution or
to a good solution. In this case, all those steps that led us to a solution are
reinforced proportionately [8] to the quality of the good solution.

The easiest way to achieve reinforcement is learning by taking the usefulness
of the rule as the quotient of the number of the efficient uses of all the uses. For
all the rules, we can tell precisely how often its use led us to successful address
recognition. In favour of this, in their intermediate address forms, we record
which rule was used, and based on this, it can be easily scored how many times
a rule was used, and from that, how many of them led to a successful address
recognition.

C(rule strength) =
number of the efficient uses

number of all the uses

When a final address is made, the number of ,,all the uses” of the applied
rules can be increased. (The final address stores all the applied rules that create
it.) If a final address is good (formerly we planned that the end-user can decide
this, in the present application the best final address is the good one) then the
number of ,,all the efficient uses” of the applied rules can be created. So the
above quotient is calculated automatically.



Address standardization 15

Another way of learning might be the correction of called strategical param-
eters during the execution to influence the efficiency and effectiveness of the
model.

4. The prototype application

Based on the theory described in Section 2 and 3 a prototype application
has been developed4. The implementation was carried out using the .NET
Framework infrastructure with MySQL database background.

The database consists of multiple tables and has two parts.

• The first part is the collection of standard addresses in Hungary, e.g.
settlement names, public place names and also public place types (street,
square, way, etc.)5. There is also a table that contains the renaming of
public places (e.g. in 2010 the ,,Moszkva tér” in Budapest was renamed
,,Széll Kálmán tér”). The address list is accurate to the street level, but
there are no data stored regarding floor and door number information in
a building. For the prototype, only part of the Hungarian address list
was used including the most problematic locations.

• The second part consists of the rule tables, which are build up as described
in Section 2. For the prototype, 34 rules have been assembled with level
values reaching up to 11. Therefore, the rule application chain has a
maximum length of 11.

Strategic parameters are stored in XML configuration files, but can easily
be modified from the settings dialog of the application.

The application has a graphical user interface allowing the input of multiple
addresses and gathering results according to credibility values. As can be seen
in Figure 3, there are two screens. One for all results of multiple addresses, and
one for detailed results of a single address. Result numbers can vary depending
on strategic parameters. In both screens the credibility values can be clearly
seen, thus the operator can make the final choice from the best results, or
manually adjust parameters to recalibrate the process.

4Development was performed by students Csaba Bálint, Áron Baráth, Tamás Bibók,
Csaba Czine, Eszter Ginál, Csaba Horváth and Richárd Szabó.

5In the prototype application the rule base was created to deal with Hungarian addresses.
The application graphical interface was also created in Hungarian. That is why in this paper
the examples are given mostly as Hungarian addresses. The rule base can be easily changed
to comply other different address standard and reference databases.



16 R. Giachetta, T. Gregorics, Z, Istenes and S. Sike

(a) Results on multiple addresses

(b) Detailed result for a single address

Figure 3: The prototype application



Address standardization 17

5. Conclusion

We developed a prototype application to clean in a batch process non stan-
dardized, non-verified addresses and match them against a reference address
database. We used a rule based system to stepwise identify the missing fields.
Tokens are matched using token schemes and modified Levenshtein distance
measures. Credibility values are created and updated with reinforcement learn-
ing. A prototype application specialized for the Hungarian addresses and a
Hungarian reference address database6 proved the effectiveness of our address
standardization approach and system.

The prototype application created a list of candidate addresses for an input
string, as the original specification of the system required. The reason for
this requirement has been that previous software tools used were not able to
produce the address expected by human in some cases. The test results of our
prototype were much better: for each input it produced the address expected
by human supervisor with the highest credibility value. This means that the
requirement specified may be changed, and it would be sufficient to show only
the best result and eliminate the human control.

References

[1] Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology, Cambridge University Press, 1997.

[2] Hall, P.A.V. and G.R. Dowling, Approximate string matching, ACM
Comput. Surv., 12 (1980), 381–402.

[3] Knuth, D.E., The Art of Computer Programming, Volume 3: (2nd ed.)
Sorting and Searching, Addison Wesley Longman Publishing Co., Inc.,
1998.

[4] Levenshtein, V.I., Binary codes capable of correcting insertions and
reversals, Soviet Physics Doklady, 10 (1966), 707–710.

[5] Müller, H., Problems, Methods and Challenges in Comprehensive Data
Cleansing, Technical Report, (2003).

[6] Navarro, G., A guided tour to approximate string matching, ACM Com-
put. Surv., 33 (2001), 31–88.

6In Hungarian http://www.geox.hu/gis-terkepek/dsm10



18 R. Giachetta, T. Gregorics, Z, Istenes and S. Sike

[7] Russell, S.J. and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, Pearson Education, 2003.

[8] Sutton, R.S. and A.G. Barto, Reinforcement learning: An introduc-
tion, IEEE Transactions on Neural Networks, 9 (1998), 1054–1054.

[9] Jackson, P., Introduction to Expert Systems (3 ed.), Addison Wesley,
1998, ISBN 978-0-201-87686-4.

R. Giachetta, T. Gregorics, Z. Istenes and S. Sike
Department of Programming Languages and Compilers
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány 1/C
Hungary
groberto@inf.elte.hu

gt@inf.elte.hu

istenes@inf.elte.hu

sike@inf.elte.hu


