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Abstract. We determine class of five completely additive real valued
functions satisfying particular relations.

1. Introduction

1.1. Notations

Let G be an additive commutative semigroup with identity element 0. Let
Ag and AF denote the set of G valued additive and completely additive func-
tions respectively.

In case G = R, then we simply write A (respectively A*) and when H =
= C, then we write M (respectively M*). The domain of f € Ag (Af) can
be extended to Z by defining f(—1) = f(0) = 0. Then f(n) = f(|n|), and
f(nm) = f(n) + f(m) remain valid in n,m € Z* := Z \ {0}. Similarly, for
g € My, defining g(—1) = ¢g(0) = 1 and g(—n) = g(n), we can extend g over Z
by g(n) = g(|n]). Then g(nm) = g(n)g(m) holds, if (n,m) =1 and m,n € Z*.
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1.2. Regular behaviour of additive and multiplicative functions

P. Erdé8s [2] proved that if f € A be such that f(n+ 1) — f(n) — 0 as
n — oo, then f(n) is a constant multiple of logn. Since then this beautiful and
simple assertion saw a plenty of generalizations.

It is natural to determine all g € M for which g(n + 1) — g(n) — 0 as
n — oo. It clearly holds if g(n) — 0 (n — o0), or if g(n) = n®* (n € N)
and s < 1. In 1984, celebrating P. Erdés’s 70th anniversary in a conference,
I. Katai conjectured that no more solution exists. E. Wirsing proved this
assertion and the proof was sent in a letter to I. Katai. More than ten years
later Y. Tang and S. Pintsung proved the same assertion. Finally, they wrote
a joint paper together with E. Wirsing [11].

The result of Wirsing—Tang—Pintsung would imply that:

If fe A and
(1.1) f(n+1)— f(n) =0 (mod1)
then f(n) = clogn (mod 1) holds for some ¢ € R.

Let g(n) = €™/ From (1.1) we have g(n+1)g(n) — 1 (n — o), whence

lg(n+1) — g(n)* = 2 — 2Re(g(n + 1)g(n)) — 0
and so, from |g(n)| = 1 we have that g(n) = n'". Thus,
fln) — ilogn =0 (mod1).

It is not hard to show that:

If f,ge M and g(n+1) — f(n) = 0 (n — 00), then either f(n) — 0 and
g(n) — 0, or f(n) = g(n) =n'" holds for alln € N.

Thus, if f,g € Aand g(n+1) — f(n) — 0 (mod 1), then

g(n) = f(n) =7logn (mod 1).

1.3. Conjectures of I. Katai

In these directions the following conjectures are due to 1. Katai.
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Conjecture 1. If fo, f1, ..., fx € A* and
fom)+ filn+1)+ ...+ fu(n+k) (mod 1) —0,
as n — oo, then there are 1g,..., T, € R such that
o+ +7 =0

and
fo(n) =m9logn (mod 1),..., fr(n) = 7logn (mod 1)

for all n € N.

Conjecture 2. Let fy, f1, ..., fr € A* and,

(1.2) L,=fon)+ filn+ 1) +...+ fu(n + k).
If L, =0 (mod 1) (n € N), then

(1.3) fon) = filn) = ... = fu(n) =0 (mod 1).

This conjecture is known for k = 2,3 (see [4] and [5]). In this paper we
prove this conjecture and its variants for the case k = 4 by assuming that the
relation L, =0 (mod 1) holds for all n € Z. R. Styer [10] determined all those
vafla f2 € Aso that,

fon)+ filn+ 1)+ fa(rn+2)=0 (mod 1) (neN).
In [6] it was proved that for arbitrary a,b € N; all solutions f1, fo, f3 € A* of
filn—a)+ fo(n) + fs(n+b)=0 (mod1l) (neN, n>a+1)

form a finite dimensional space. If f;(¢) = 0 (mod 1) (¢ = 1,2,3) holds for
all primes ¢ < max(3,a +b), then f;(n) =0 (mod 1) (j = 1,2,3) and for all
n e N.

Let go, ..., gr be complex valued completely additive functions on Z[i] (the
ring of Gaussian integers). Assume that ¢;(0) = 0 and g;(¢) = 0 for e = £1, £¢
and that g;(af) = g;(a) + g;(B) holds for every o, 5 € Z[i]. Let

k
Sk(a) = Zgj(a + 7).
§=0
Assume that
(1.4) Sk(a) € Z[i] (« € Z]i]).

It is expected that (1.4) would imply g¢,(a) € Z[i] (j =0,1,...,k). This has
been proved in [9] for k = 3 and in [7] for k = 5.

I. Kétai in [3] stated a weaker conjecture:
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Conjecture 3. If P(x) = 1+ Az + Agx? + ... + Apa® € Rz \ Q] and
f e A" satisfy

fn)+Aif(n+1)+ A f(n+2)+...+ Axf(n+k)=0 (mod 1).
Then f(n) =0 for alln € N.

This is true for kK = 2 and for k = 3 (see [3, 4, 5]). It is clear that conjecture
2 implies conjecture 3. In [8] A. Kovéacs and B. M. Phong proved Conjecture 3
for k = 4.

1.4. Owur aim

Let Ag(n),A1(n) ,...,Ax(n) € Q for all n € N. We are interested to
determine all those fo, f1, ..., fr € A* for which
(1.5) fo(Ao(n)) + f1(Ar(n)) + ... + fr(Ak(n)) =0 (mod 1)
holds.

The domain of f can be extended to Qi (the group of positive ratio-
nals) by defining f(Z£) = f(n) — f(m). Let Q5™ be the (k + 1)-fold direct
product of Q4. Let B be the subgroup of Q’f‘l generated by the elements
(Ao(n), Ai1(n) ,..., Ag(n)). Clearly, if (ag, a1,...,ar) € B, then

fo(ao) + f1(0q> + ...+ fk(ozk) =0 (mod 1).

It B=Q*, then fo(Bo) + f1(B1) + -+ fu(Br) =0 (mod 1) holds for §; = n
and B, =1 for all v # ¢, and so fy(n) =0 (mod 1) holds for all £ =0,... k.

If B # Q’frl, then it may occur that there exists such a solution of (1.5) for
which f;(n) =0 (mod 1), j =0,...,k does not hold identically.

Let ¢ be a fixed constant and

D:{(60776k>|ﬁ_]:p§0761}:1 if V#Japep}

Let us assume that DB = Qﬁ“. Then one has:

If ( éh), ceey f,gh))(h = 1,2) are such solutions of (1.5) for which f,sl)(p) =
fl@(p) (mod 1) forv=0,1,....k, p<K, then

M) = fBm) (mod1l) (neN; v=0,1,...,k).

This is obvious, since for f,(n) = f,El)(n) - f,EQ)(n) the relation
k
> filay) =0 (mod 1)
3=0

holds for every (g, ...,ax) € Q{fl.
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Let &, = (Ao(n), -, Ax(n)) and assume that the group B = Q%*'. Then,

for any given (rg,--- ,rg) € Q’ffl there exist suitable nq,--- ,n; € N for which
t
(T()?"' ark) == H 767,]]7

j=1

(e; € {—1,1}) i.e. that,

t
re =[] Any) (=01, k).
j=1

Thus one has,

Theorem 1. Let B be the group generated by &, (n = 1,2,--+) and B =
= Q]f'l. Let G be an Abelian group, Go be an arbitrary subgroup of G. Let
fij € Ag, and assume that

k
th = fi(4;(n) €Gy (n=1,2--").
=0
Then fj(n) € Gg for alln € N and j =0,--- , k.

We recommend [1] for further study.
1.5. Statement of the results

We shall prove the following three theorems.

Theorem 2. Let fo, f1, f2, f3, fa € A*. Assume that
Ag(n) = fo(n) + filn+ 1) + fa(n +2) + fs(n+3) + fa(n +4) =0 (mod 1)
for allm € Z. Then
fo(n) = fi(n) = f2(n) = f3(n) = fa(n) =0 (mod 1)
holds for alln € Z.

Theorem 3. Let fo, f1, f2, f3, fa € A*. Assume that
By(n) = fo(n) + fi(n+2) + fa(n +3) + fs(n+4) + fa(n+6) =0 (mod 1)
for allm € Z. Then
fo(n) = fi(n) = fa(n) = f3(n) = fau(n) =0 (mod 1)
holds for all n € Z.
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Theorem 4. Let fy, f1, fo, f3, f1 € A*. Assume that
Cy(n) = fo(n) + filn +1) + fo(n+3) + fa(n +5) + fa(n +6) =0 (mod 1)
for alln € Z. Then
fo(n) = fi(n) = fa(n) = f3(n) = fa(n) =0 (mod 1)
holds for all n € Z.

2. Proof of Theorem 2

Firstly we prove a few lemmas.

Lemma 1. Let Ty, 71,72 € A*. Assume that
To(n)+Ti(n+1)+T2(n+2)—To(n+4) —T1i(n+5)—To(n+6) =0 (mod 1)
holds for all n € N. Then

To(n) =Ti(n) =Ta(n) =0 (mod 1)
holds for all n € N.

Proof. This is Theorem 1 in [7]. [ ]

Lemma 2. Let ag, a1, as € A*. Assume that
(2.1) H(n) = ap(n)+a1(n+1)+az(n+2)+a1(n+3)+ap(n+4) =0 (mod 1)

holds for all n € N. If

(2.2) ap(n) =a1(n) =az(n) =0 (mod 1) for n <12
Then,
(2.3) ap(n) =a1(n) =az(n) =0 (mod 1) for all n e N.

Proof. Assume that the conditions (2.1) and (2.2) are satisfied and (2.3)
is not true. Then there is a minimal positive integer ng with ng > 12 for which
a;(ng) Z 0 (mod 1). Then ng should be a prime p > 13. Let as(p) = £ £ 0
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(mod 1). Using H(p — 2) = 0 (mod 1) we have that ag(p +2) = —¢ (mod 1)
and p+ 2 € P. Thus

(2.4) p=2 (mod 3).

Using (2.4) and p > 13, we have 2|p+3, 3|p+4, 2|p+ 5, consequently we infer
from H(p+2) =0 (mod 1) that ap(p+6) = —§ (mod 1) and p+6 € P. Since

H(p+6)=ao(p+6)+ai(p+7)+ax(p+8) +ai(p+9)

+ap(p+10) =0 (mod 1)

and 2|p+7, 2|p+9, 3|p+ 10, therefore az(p+8) = —¢ (mod 1) and p+8 € P.
Thus we have proved that p,p+ 2,p+ 6,p + 8 € P, which implies that

(2.5) p=1 (mod5).
Next, we prove the following assertion:
(2.6) if peP, q<2p—3, then ai1(q) =0 (mod 1).

This clearly holds if ¢ < p. Let p < ¢ < 2p — 3. Then either 3|q — 2 or 3|q + 2.
Since

H(g—1)=ao(¢g—1)+a1(q) +a2(¢g+1)+a1(¢+2)+ap(¢g+3) =0 (mod1)
and
H(q—3) =aolqg—3)+ai(g—2) +az(¢— 1)+ ai(q) +ao(g+1) =0 (mod1)
and 2|g + ¢, 4* < pif €= —-3,-1,1,3. Thus

a1(q) +a1(¢+2)=0 (mod1l) and ai1(¢—2)+ai(qg) =0 (mod1).

Since either a1(¢ —2) = 0 (mod 1) or a1(¢ + 2) = 0 (mod 1), consequently
a1(¢) =0 (mod 1). Hence (2.6) is proved.

From

H2p+1)=ao(2p+1)+a1(2p+2) +a2(2p+ 3) + a1(2p + 4)

+ao(2p+5) =0 (mod 1),

observing from (2.4), (2.5) and (2.6) that 4]2p+2, 5|2p+3, 3|2p+5, and that
a1(2p+4) =a1(p+2) =0 (mod 1), we deduce that ag(2p + 1) =0 (mod 1).
Therefore, H(4p — 2) =0 (mod 1) implies that

ag(dp —2) +a1(dp — 1) + az(4p) + a1(dp+ 1) + ap(dp +2) =0 (mod 1).
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Since 6[4p — 2, 5|4p+ 1 and ap(2p + 1) = 0 (mod 1), therefore
as(p) +a1(4p—1)=0 (mod 1).

Thus,

(2.7) a1(dp—1)=—-¢ (mod 1), and 4p—1 € P.

Since H(2p —3) = 0 (mod 1), 42p — 2, 3|2p — 1 and ag(2p + 1) = a1(p) =
=0 (mod 1), therefore ag(2p —3) =0 (mod 1).
From H(4p — 6) =0 (mod 1) we deduce that

ap(dp —6) +a1(dp—5) +a2(dp—4) +a1(4dp — 3) + ap(dp —2) =0 (mod 1).
It is obvious that 6]4p — 2 implies ag(4p — 2) = 0 (mod 1), 3|4p — 5. Thus

either dp —5=3q, ¢ € P, g < 2p—3, or 4’?5 is not a prime. In both cases
we deduce from (2.6) that a;(4p —5) =0 (mod 1). Thus we derive,

ap(2p —3) +a1(dp—3) =0 (mod 1).
Consequently,
(2.8) a1(dp—3)=0 (mod 1).
Finally, from H(4p —4) =0 (mod 1) we have
ao(4p —4) + ar(dp — 3) + a2(dp — 2) + a1 (4p — 1) + ao(4p) =0  (mod 1).

Since ag(p) =0 (mod 1), 8|4p—4, 6|4p—2, we get from (2.8) that a1 (dp—1) =
=0 (mod 1). This contradicts (2.7). ]

Lemma 3. Let ag, a1, as € A* and
H(n) = ag(n) +a1(n+1) +az(n+2) +ai1(n+3) + ap(n + 4).
If
(2.9) H(n)=0 (mod1l) forall neN,
then (2.2) is true, i.c.
ag(n) =a1(n) =az(n) =0 (mod 1) for n <12

Proof. Let B be the subgroup of Qi generated by the sequences

L= (n(n+4), (n+1)(n+3), n+2) (n € N).
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It is easy to see ( by (2.9)) that,
(2.10) ag(a) +a1(b) +az(c) =0 (mod 1) forall (a,b,c) € B.
We use the following notations for a prime p:
ap=(p,1,1), b, =(1,p,1) and ¢, =(1,1,p).
We show that a,,b,, and ¢, € B for all primes p < 11. This assertion along
with (2.10) would imply (2.2).
Using a simple Maple program, for,
ne{1,2,3,4,5,8,12,7,11,14,48,9,13, 16,22, 23,19, 15, 25, 26, 28, 31},

we can give ap, by, ¢, for primes p,q < 31, and r < 17 in terms of L,, and
a2, as, b27 b37 C2, C3 and Cs.

Table 1
n L, ap, by, cr
1 (5,2°,3) as = pF-
2 (22.3,35,22) bs = s,
3 (3.7,23.3,5) ar = o
1 (2°.5.7,2.3) br = g, = Hapa
5 (3%5,213,7) Cr = madhim = Lk
8 (25.3,3%.11,2.5) bii = g = agaig?%
12| (20.3,3.5.13,2.7) bis = prat e = T
232 22
7 (7.11,24 5, 32) a1y = iy = S
2 I
11| (3.5.11,23.3.7,13) Gl = gl = paripnty
3
14 | (22.32.7,3.5.17,24) bir = i = B
3 2
48 | (2°.3.13,3.7217,2.5%) | aiy = gt = o
9 (32.13,23.3.5,11) c11 = agalfbggbsbs = LiLﬁfﬁignggaz
L L4L13L14a2b302a3
12 <(21635171772i§7’; 5,52)) - L e | A
Yy ctdy & 19 — aga5b17czc2 - L21L14ag(:31;3254 i
22 | (221113,52.23,233) | oy = Loy, = Hiluledilili
T
23 | (33.23,24.3.13,5%) A28 = o = T
19 | (19.23,2°511,37) | a9 = sl = L?nggg‘é‘i’ffjfcgcg
- PE) I
15 | (3519,2°3%,17) | oip = Ll = il
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" Ly p: bq’ Cr2 P
25 | (52.29,23.7.13,3%) a2 = s = BrTesa

] 177723
26 | (22.3.5.13,3%.20,227) | byg = L = i‘éﬁﬁfjj;(fgfgjg
28| (7,20381,235) | b= et = mrtacing
31| (5.7.31,2017,311) | am = o h = Ll%ﬁgﬁ}f;i“ffjscz%

Now, by using the above relations for n = 6, 10, 18, 24, 32, 30, 54 and
n = 62, we will get the following 8 equations.

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
and

(2.18)

By = Lalo _ agbgcz € B,
LiLy  agb3c3
LoLsLyg 2
FEy = = € B,
LiL3LgLia  ajb3b3cscs
LiLoLyyL 5p3¢8
[y = SL27147I8 2%530225 B,
LyL7Lys a3boch
LiLyL7L aZcd
By o= 14427 = = 6 22436 5 €B,
L3L3Ly a3bsbzches
jo LiLi2LigLyy a3 5
L3L4L3L3 L1503 aSadb3biciet ~
LsLyLogL b
By — slaloskao 36922268,
LiLaLsLslizlos  a3asbycics
B = LiLsLipLualss _ bacs B
T L3LsLiLsLigLas  ajajbfeac?
LuLsLoL2,L T
Ey = 34 509514562 6771333522 cB
L3L7L12L31Las agbseses
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This system has solutions in as, as, bs, bs, 2, c3, c5, which are given in terms
of Ey,---,FEg. Thus as,as, bs, b3, 2, c3, c5 are elements of B.

The solutions of the above equations (2.11)—(2.18) can be obtained now as
follows: we express as from the expression of E; in (2.11), similarly c¢5 from
(2.13). After taking these expressions of as and ¢5 into equations (2.11)—(2.18),

1

7

we get c3, bs, c2 and a3 from the expressions of %, %’% and %,respectively.
4

Finally the solution bs can be gotten from (2.14) and (2.18) in the expression

15

of Z5. The solutions are:

B2
905 7151 77772 77109 F1228 11 172 176
4y = E{PEy> Es”Ey " E3 as = Ei"ESE3
= 528 777 }775 ) = TArbrnTpd
E3*®EIE] ESESE{E7
135 1725 17126 1138 21 18 725 43 23
by = Ei*E3°EE°ES by = E3°E"Eg L7
= 77 16 ) = 60 8 37 ?
E¢'Eg EYESES
266 720 45 969 77109 77150
oy — E¢*°EZ"Eg o = EPEZP Eg
= 77461 182 62 1,92 [7194 = 771670 17287 176 7263 17383
ET B E*E“ES E{P T E BB By
and

898 17138 121 1733 1274
cs = El E2 ES E4 ES
- 531 118 ;60
E6 E7 E8

Finally, it is obvious from Table 1 that
as, bs, a7, by, a1, by1 and c1q

are elements of 5. This completes the proof of Lemma 3. |

Proof of Theorem 2. Assume that fo, fi, fo, f3, fi € A* satisfy the
condition

Ap(n) == fo(n) + filn+1) + fa(n+2) + fs(n+3) + fa(n +4) =0 (mod 1)
for all n € Z. Then
Ap(—n—4) = fa(n)+ f3(n+1)+ fa(n+2)+ fi(n+3)+ fo(n+4) =0 (mod 1).
Let

po(n) = fo(n) = fa(n) and  @i(n) = fi(n) — fs(n) forall neZ
Thus, we deduce from the above relations that,

won)+e1(n+1)—p1(n+3)—po(n+4)=0 (mod 1) forall neZ.
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From Lemma 1, we have that ¢o(n) = ¢1(n) = 0 (mod 1), consequently
fo(n) = fa(n) (mod 1) and f1(n) = f3(n) (mod 1) for all n € Z. Hence

Ar(n) = fo(n) + filn+ 1)+ fa(n+2) + fi(n +3) + fo(n+4) =0 (mod 1)

is true for all n € Z. The conditions of Lemma 2 and Lemma 3 are satisfied by
taking a;(n) = fj(n) (j =0,1,2) and

H(n) = fo(n) + fi(n+1) + fa(n +2) + fi(n +3) + fo(n + 4).

Thus
foln) = fi(n) = fa(n) = f3(n) = fa(n) =0 (mod 1)
holds for all n € Z. This completes the proof. |

We can deduce an interesting result from Lemma 3.

Theorem 5. If B denotes the subgroup of Qi generated by the sequences
L, = (n(n 4 4), (n+1)(n+3), nt 2) (n € N),

then we have

B=Ql.
3. Proof of Theorem 3

We follow similar strategy as in the case of Theorem 2 and prove a couple
of lemmas before completing the proof of the theorem.

Lemma 4. Let by, b1, by € A*. Assume that
S(n) :=0bo(n) +bi(n+2) +ba2(n+3)+bi(n+4)+by(n+6)=0 (mod1)
for alln € N. If
bo(n) =b1(n) =ba(n) =0 (mod 1) for n <10,

then
bo(n) =b1(n) =ba(n) =0 (mod 1) forall neN.

Proof. Let no be the minimal positive integer for which b;(ng) #
# 0 (mod 1) holds for some j € {0,1,2}. It is clear that ng should be a
prime P, P > 11. S(P —6) = (mod 1) implies that by(P) = 0 (mod 1),
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S(P —3) =0 (mod 1) similarly that by(P) = 0 (mod 1). It remains to con-
sider the case when b1(P) = £ (mod 1). Then S(P —4) =0 (mod 1) implies
that bg(P + 2) = —¢ (mod 1), P + 2 is a prime, thus P = 2 (mod 3). From
S(P —2)=0 (mod 1) we obtain that
bQ(P — 2) + bl(P) + bQ(P + 1) + bl(P—F 2) + bQ(P + 4) =0 (IIlOd 1),
which, by 3|P 4+ 4, 2|P + 1 implies that
bi(P)+b(P+2)=0 (mod1), ie b(P+2)=-¢ (mod]1).

Finally, we infer from 4]2P +2, 3|2P +5, 4|]2P+6, 6]2P +8 and S(2P +2) =
=0 (mod 1) that

bo(2P +2)+ b1 (2P +4) + b2(2P+5) +b:1(2P+6) +bo(2P+8) =0 (mod 1),

and so
bhi(P+2)=0 (mod1).

This contradicts to the fact that b1 (P+2) = —¢ (mod 1) and consequently the
Lemma 4 is proved. |

Lemma 5. Let by, by, by € A*. If
bo(n) +b1(n+2)+ba(n+3)+bi(n+4) +by(n+6)=0 (mod 1),
for alln € N, then

bo(n) =b1(n) =ba(n) =0 (mod 1) for n <10.

Proof.  The proof is similar to the proof of Lemma 3. Let D be the
subgroup of Qi generated by the sequences

D, = (n(n+6), (n+2)(n+4), n+3) (n€N).
From (3.4) we obtain that,
bo(a) + b1(b) + b2(¢) =0 (mod 1) for all (a,b,c) € D.
We shall use the following notations (p is prime):
A, = (p,1,1)eD, B,:=(1,p,1€D) and C,:=(1,1,p) €D.

We shall prove that A,, B, € D and C, € B for all primes p < 7. This will
prove Lemma 5.
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First, by using a simple Maple program, we shall give A,, B,, C; for primes
p <23, ¢ <23, 7 <23 in terms of L, and As, A3, B, B3, Cy, C3 and As.

n Dn Ap7 qu C7r
4 o3 __D
2 (2%, 2.3, 5) CS_A‘Q‘TLEBQ,
3 4 - Ds
4 (2°.5,24.3,7) Cr = ATA, 515,
De
6 23.32, 245,32 Bs = Gz75%r=
( 7 , ) > AgAngCBg 2 nd 2
2 Dy _ D1ASASB;Cy
1 (7, 3.5, 2%) A7 B350 DuBsCo
3 o D3 DgAgBQC;’,
3 (3%, 5.7, 2.3) B; = ATB:0aCs AsDeth
4 93 o3 _ Dig D15 A5 A5 B5B3Cs
18 | (2%.3°, 2°.5.11, 3.7) B = ATATBIB;C307 — DiDoAs
2 3 _ Ds — DsDg A3
5 (5.11, 3.7, 2°) Al = pThes T BaAABiBICIC,
5 _ D-, — D4sDZD7C>
7 (7.13, 3°.11, 2.5) A = A;B3B:1CaC; _ DiDaDisAads A3 BEB;CY
DsC'
(24'77 23'3'57 11) Cll = A§A7g§BsBs = Dlzgég
3 2 L= Dy — D4 De Do
(3°.5, 11.13, 2°.3) Bz = A3A;B11C3Cs  DisAZAZAZBSB;C3C3
10| (255, 22.37, 13) Cis = i B85,5 = Dot btscs
3 5 92 _ Dy _ DsD14C3
14 (2°.5.7, 2°.3%, 17) Ci7 = ATA, As BIE? ; Dy ACAZA; B, BIC3
— 11 —
11 (11.17,3.5.13,2.7) /Dh; —DAliﬁsjg’sﬁ%%ggCBCS
__ sl ligAy AzAs by DB3CyLg
= D2D5D3 Dy .
4 2 3 _ Dy, _ D21 A3B;BsCs
21 (3%.7,52.23,2°.3) Bays = ATA,B2C3C; —  DiDeAICS
E D D3D1gA2A3AsBSC2C3E
16 | (2°.11, 2°.32.5, 19) Cuo = amanpips, = Doop
3 4 _ D20 _ D1D2D20A§C§
20 | (2°.5.13,2%.3.11,23) Co3 = ATA3 A1, B1BsBy DGDBA%A5§§’B3C2
3 23 6 — 30 — 130A2
30 | (2°.3°.5, 2°.17, 3.11) Bi7 = ATATA; BIC5Cn, — DSA%ASSBSC?SESB i
1 — Dis — D3DgD13D15ASASAZBICS
13 (13.19, 3.5.17, 2%) A9 = A1aBaBsBCl = D.D3D; D3oCl
D DeDgD15B3sC3
15 (325'7» 17.19, 2'32) Big = A2A5A7118517CQC§ - D%gsz“lAa;zég
2 —_ D
17 (17.23,3.7.19,22.5) Ags = A7 BB, BraC2C; —
. D3} D3 D5 D Dy D7 Dso
~ D3yD2DgD11D1sD15ASA3 AIBI"B1CICS
Table 2

Now, by using the above relations for n = 12, 19, 22, 24, 32, 42, 46 and
n = 48, we will get 8 equations.

For n = 12, we have Diy = A3A3B3B;C3C5 =

quently

(3.1)

Flt

~ DeDy2

D2D3A3A3BSC3

Dot 3 Conse-

A2A23602
2413+-2VY3 GD

"~ DyDs

BgCQ
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For n = 19, we infer from A9, B7, B2z, Ci1 and

DyD3D2D13D15Dy1A3A3 A2 B B2CS

D19 = A§A19BSB7BZ3CQCU =

D%D4D2D7D3()C'22
that
D19D?D4D2 D7D A3A3ALBI8B2CS
(3.2) Fy = 20D1DuDeDrDso _ A3 A3 5By BaCy
Dy D3Dg D13 D13 Doy Cs
As,
D1D2D,DsDgDg A
Doy = A3 A7 A11 B3B3 B13C2 = 2200 570
22 2A7A11 D9 D313V 5 DnggAgAngB§030267
we have,
D3D1g D2 As
. F3 .= = D.
(3.3) ® " DyD2D,DsDsDy  ALA3BIBICSCs <
Similarly, we get from B7; and Bi3 that
D3D,DyA3B2C?2
Doy = A3A%A5BS B;B1305 = 223
24 24135 Do D7 1303 D18A3A5BgO§

This implies that,

DisD A3B3C?
(3.4) Py Dl ABGy
D3D4D9 A3A53302

For n = 32, we get from A9, By7, C5, C7 that

D1 D2D13D1s A3 A3 BSCS
DED:C5 ’

D3y = ASA19 B3B3 B17C5C7 =

which gives

. b _DADiDw _ A3AYBICE

= = eD.
D13D18D%D1 Cg)

For n = 42, 46, and 48, we get the following equations:

(3.6) e DyDEDys _ A3A3A5SB§SC§
Dy D18 Doy Cs

€D,

D3D1,D3D15 Ds DD 1
B0 = D DIDIDy DsDeDay AR ASATBIBSCECD < ¥
11 Uy 17 517914730 2 34452 3~2Y3

)
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D1 D1gDag 1
3.8 Fy := = eD.
(3:8) S DuDiDyDy;  AJALABIBICT

The solutions of the above equations (3.1)-(3.8) can be obtained now as follows:
we express Bs from (3.1), similarly As from (3.4), Az from (3.6). Therefore, we
get Cy from (3.3) and (3.6), C3 from (3.3) and (3.5), Bz from (3.2) and (3.5).
Finally the solution Ay can be gotten from (3.3) and (3.7). The solutions are:

11 ;07 17 1119 838 77503 771174 111178 1816 71812 774536 76342
Ay = Fi FiF;"F; L= PP FyR F e E = FyS O F 8 Fg20 Fg
T 101l 25 7390 ©18 T 672 673 1679 12357 Y10 T 12274 11362 3176 3173
L N FZFR PR L St el
125 1,127 1282 17452 1526 12919 172158 772090
B, = Fy?° Fg ' Fg®* Fy L= Fjo0F) P g ° F
= 7142 83 1185 1,228 = 771203 171199 173055 ;74186
Fy P EF LR e e
181 7,103 1222 17304 431 77250 77554 17684
Cy = FiS Fy P Fi2F? L — Fot F3PO PRt Fy
= 77165 17167 17351 598 = 77377 17380 1845 111352
FFP G Fy FTFTUEG Fy
They are elements of D and so Lemma 5 is proved. ]

Proof of Theorem 3. Let fo, f1, fo, f3, f1 € A* and,
Bi(n) = fo(n) + fi(n+2) + fa(n +3) + fs(n+4) + fa(n +6) =0 (mod 1)
for all n € Z. Then

Bi(—n—06) = fa(n)+ fs(n+2)+ fa(n+3)+ fi(n+4)+ fo(n+6) =0 (mod 1).

Let 1o(n) := fo(n) — fa(n) and o1(n) := fi(n) — f3(n) forall n € Z.
Thus, we have,

von) +1(n+2) —1(n+4) —o(n+6)=0 (mod 1) forall neZ.

From Lemma 1 we have that ¢g(n) = ¢1(n) =0 (mod 1), consequently fy(n) =
= fa(n) (mod 1) and fi(n) = f3(n) (mod 1) for all n € Z. Hence,

By(n) = fo(n) + filn +2) + fa(n +3) + fi(n +4) + fo(n +6) =0 (mod 1)

is true for all n € Z. The conditions of Lemma 4 and Lemma 5 are satisfied by
taking b;(n) = fj(n) (j =0,1,2) and

S(n) =bo(n) +b1(n+2) + ba(n +3) + bi(n + 4) + bo(n + 6).

Thus
fo(n) = fi(n) = fa(n) = fs(n) = fa(n) =0 (mod 1)

holds for all n € Z and this completes the proof. |
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From Lemma 4 and Lemma 5 we obtain

Theorem 6. If D denotes the subgroup of Qi generated by the sequences
D, = (n(n +6), (n+2)(n+4), n+ 3) (n eN),

then we have
D=0Q3.

4. Proof of Theorem 4

Lemma 6. Let ¢y, c1, co € A*. If
(4.1) co(n)+ca(n+1)+ca(n+3)+c1(n+5)+cp(n+6)=0 (mod 1)
for alln € N, then
(4.2) co(n) =c1(n) =ca(n) =0 (mod 1) for neNlN.
Proof. In order to prove Lemma 6, we shall use the following fact:
(4.3) If (4.1) holds for all n € N, then (4.2) holds for n < 11.
This can be shown in the same way as we proved Lemma 3 and lemma 5. Let,
T(n)=con)+ci(n+1)+ca(n+3)+c1(n+5)+co(n+6)=0 (mod1).

Let ng be the smallest positive integer n for which ¢;j(n) # 0 (mod 1) for
at least one j. Then ng is a prime p and p > 11. It is easily seen that
T(p—5)=0 (mod 1) and T(p — 6) = 0 (mod 1) imply that co(p) = ¢1(p) =
=0 (mod 1). Let c2(p) =v # 0 (mod 1), then T'(p — 3) =0 (mod 1) implies
that ¢1(p+2) = —v (mod 1).

From T'(p+ 1) =0 (mod 1) we have that ¢;(p+6) = v (mod 1) and from
T(p+5) =0 (mod 1) we have ca(p+8) = —v (mod 1). Asp =2 (mod 3), and
so 3|p + 10, 2|p + 11 and % < p. It is obvious from p,p+2,p+6,p+8 € P
that p =1 (mod 5). We have 0 = T'(2p—3) = ¢(2p—3) +c2(p) (mod 1), thus
co(2p —3) = —v (mod 1).

Let us consider now

0=T(2p—-6j—3)=0 (mod 1)
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for j =1,2,3,4,5. Since 2|2p — 65 — 2, 2|2p — 65, 2|2p — 65 + 2, we have
c1(2p—65 —2)+c2(2p—65) +c1(2p — 65 +2) +co(2p—65+3) =0 (mod 1),
and so

ca1(2p—6j—3)+c1(2p—65j—3)=0 (mod 1) (j=1,2,3,4,5).

Hence ¢p(2p —9) = v (mod 1), ¢p(2p — 15) = —v (mod 1), ¢o(2p —21) =
= —v (mod 1), c¢o(2p —27) = v (mod 1), which with 5|2p — 27 implies that
v=0. u

Proof of Theorem 4. Let fo, f1, f2, f3, f1 € A* and,
Cr(n) = fon) + filn +1) + fa(n +3) + fa(n +5) + fa(n +6) =0 (mod 1)
for all n € Z. Then
Bi(—n—6) = fa(n)+ f3(n+1)+ fa(n+3)+ fi(n+5)+ fo(n+6) =0 (mod 1).
Let

ko(n) = fo(n) — fa(n) and k1(n):= fi(n) — fz(n) forall ne€Z.
Thus, we deduce from the above relations that

ko(n) +ki(n+1) —Kk1(n+5) —ko(n+6) =0 (mod 1) forall neZ.

From Lemma 1 we have ko(n) = k1(n) = 0 (mod 1), and so fo(n) = fa(n)
(mod 1) and fi(n) = f35(n) (mod 1) for all n € Z. Hence,

Cr(n) = foln)+ filn+ 1)+ fo(n+3)+ fi(n+5) + fo(n+6) =0 (mod 1)

is true for all n € Z. Thus the conditions of Lemma 6 are satisfied by taking
¢j(n) = fj(n) (j=0,1,2) and

T(n)=co(n)+c1(n+1)+ca(n+3)+ci(n+5)+ co(n+6).

Thus
fo(n) = fi(n) = fa(n) = fs(n) = fa(n) =0 (mod 1)
holds for all n € Z. [ |

Thus we obtain (from the last lemma),

Theorem 7. If T denotes the subgroup of Qi generated by the sequences
T, = (n(n +6), (n+1)(n+5), n+ 3) (n eN),

then we have

T =0
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