
Annales Univ. Sci. Budapest., Sect. Comp. 36 (2012) 277–297

EXTENDED PATTERN MATCHING FOR
EMBEDDED LANGUAGES

Gergely Dévai (Budapest, Hungary)

Communicated by Zoltán Horváth
(Received December 21, 2011; revised January 25, 2012;

accepted February 14, 2012)

Abstract. Users of embedded languages might want to pattern match
on embedded programs. Making this possible requires a considerable effort
from the developer of the language, because the underlying data types are
usually hidden.
This paper first analyses the available solutions for this problem. As pattern
synonyms [13] and function patterns [6] seem promising, a compromise
between these two is proposed: restricted function patterns. These are more
general than pattern synonyms, but it is still possible to process them at
compilation time. It is interesting that this proposal makes Haskell’s rules
about matching numeric literals more regular. It also provides Erlang’s list
prefix patterns in a consistent way instead of ad hoc implementations.
Finally, a lightweight prototype implementation is presented, which imple-
ments the functionality of the proposal, but cannot give the static guaran-
tees that proper compiler support could achieve.

1. Problem definition

It is usually desirable to hide the implementation details of libraries and
provide abstract interfaces for the users. On the other hand, this prevents

Key words and phrases: Restricted function patterns, pattern matching, EDSLs.
1998 CR Categories and Descriptors: D.3.3.
A preliminary, draft version of this paper was included in the Draft Proceedings of Trends in
Functional Programming 2011.
The Research is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).
https://doi.org/10.71352/ac.36.277

https://doi.org/10.71352/ac.36.277

278 G. Dévai

the user from performing pattern matching, a convenient feature of functional
languages. There are numerous proposals to tackle this old problem. This
paper will definitely not try to solve this issue in general, but will inspect it
from the point of view of embedded languages and explore the possibility of
using a special class of expressions in patterns.

Let us start with a toy embedding which in turn is a suitable model to study
problems to be solved when creating embedded languages.

data Expr = Symbol String | Expr :$ Expr

Function symbols and values are represented by their names via the Symbol con-
structor, while application (:$) can be used to build compound expressions by
applying a function expression to an argument. Using this simple type, one can
already define basic arithmetic operations and start manipulating arithmetic
expressions. The most convenient way to do this in Haskell is the instantiation
of the Num class.

instance Num Expr where
fromInteger n = Symbol $ show n
a + b = Symbol "+" :$ a :$ b
a * b = Symbol "*" :$ a :$ b
...

Using the terminology of language embedding, the Expr type is used to build
the abstract syntax tree of embedded programs, while the Num instance serves
as the user interface and defines a piece of the syntax. It seems like a good
idea to hide the internal representation, i.e. the constructors of the Expr type
behind a module boundary and only expose the functions in the Num class to
the user.

Let us suppose that one would like to use this language to optimize expres-
sions based on the arithmetic laws 0 + a = a, 1 ∗ a = a and 0 ∗ a = 0. The
desirable implementation of this would use pattern matching of the following
form:

optimize :: Expr -> Expr
optimize (0 + a) = a
optimize (1 * a) = a
optimize (0 * a) = 0
optimize a = a

However, this is invalid as the left-hand sides of these equations are not pat-
terns. In fact, without further support from the library, it is impossible to
implement this transformation, because the interface provides functions only
for constructing, but not for deconstructing expressions.

Extended pattern matching 279

The next section briefly summarizes the currently available techniques. It
concludes that pattern synonyms and function patterns are quite close to what
we want to achieve here. Based on these, section 3 defines restricted function
patterns and section 4 highlights some of their advantages. Section 5 addresses
the difficulties related to the proposal. Finally, the last two sections present a
library to test the functionality of the extended pattern matching and conclude
the paper.

2. Available solutions

2.1. Selectors

One way to make deconstruction of expressions possible while hiding its
constructors is to provide the user with a set of functions to examine expressions
and ask for their parts. These functions fall into two categories: some of them
provide information on the form of the expression and thus can be used to
separate cases, other functions return components of an expression of a given
form.

is_add :: Expr -> Bool
is_add (Symbol "+" :$ _ :$ _) = True
is_add _ = False

is_mul :: Expr -> Bool
is_mul (Symbol "*" :$ _ :$ _) = True
is_mul _ = False

arg1 :: Expr -> Expr
arg1 (_ :$ a :$ _) = a

arg2 :: Expr -> Expr
arg2 (_ :$ _ :$ a) = a

The functions is_add and is_mul yield true if the expression in question is a
compound one with topmost operation addition or multiplication respectively.
Unpacking the arguments of such expressions is done by selectors like arg1
and arg2. Using these functions one can implement the desired optimization
transformation:

280 G. Dévai

optimize :: Expr -> Expr
optimize e

| is_add e && arg1 e == 0 = arg2 e
| is_mul e && arg1 e == 1 = arg2 e
| is_mul e && arg1 e == 0 = 0
| otherwise = e

This approach is problematic for the following reasons:

• A considerable amount of utility functions must be provided to make
deconstruction of expressions convenient.

• Partial functions like arg1 and arg2 in our example makes the library
dangerous.

• Implementation of the optimization transformation is far from the clarity
of the desirable solution envisioned at the end of section 1.

2.2. Data type for matching

This solution enables pattern matching by adding a data type to the inter-
face of the library. A function to convert expressions to this additional type is
also provided.

data Arith
= Expr :+: Expr
| Expr :-: Expr
| Expr :*: Expr
| Other

arith :: Expr -> Arith
arith (Symbol "+" :$ a :$ b) = a :+: b
arith (Symbol "-" :$ a :$ b) = a :-: b
arith (Symbol "*" :$ a :$ b) = a :*: b
arith _ = Other

One can first use the arith function to convert an expression to an arithmetic
expression. This transformation may fail, for example if the topmost operation
of the expression is not one of the selected arithmetic functions. In this case the
result is Other. Pattern matching can distinguish between failure and success
as well as examine the topmost operation and access its arguments in the latter
case.

There are two possibilities to construct the Arith type:

Extended pattern matching 281

• If it is a recursive data type (i.e. the constructor parameters are of
type Arith), pattern matching can analyse the structure in depth, but
the extracted arithmetic expressions need to be converted back to Expr.
This means that an inverse conversion is needed in addition.

• In the setting above (i.e. the constructor parameters are of type Expr),
pattern matching is limited to one level at a time1, but the arguments
extracted are already of type Expr. This saves us from writing the inverse
conversion.

Using this solution, one gets the following implementation of our model trans-
formation:

optimize :: Expr -> Expr
optimize e = case arith e of

0 :+: a -> a
1 :*: a -> a
0 :*: a -> 0
_ -> e

This solution is much more satisfactory compared to that of section 2.1, but
still not perfect:

• Arithmetic operations are represented in a different way in patterns (:+:)
and expressions (+).

• There is still a considerable overhead when writing the library: extra data
type(s) and conversion function(s) are needed to make pattern matching
possible.

2.3. View patterns

This is a light-weight Haskell extension [3] that goes well with the solution
of the previous section. The conversion from Expr to Arith can happen inside
the pattern:

optimize :: Expr -> Expr
optimize (arith -> 0 :+: a) = a
optimize (arith -> 1 :*: a) = a
optimize (arith -> 0 :*: a) = 0
optimize e = e

1Note that the view patterns extension described in section 2.3 elegantly removes this
limitation.

282 G. Dévai

To match an expression with a view pattern, the value is first transformed using
the function before the arrow and the result is matched with the pattern on its
right hand side. The real power of this extension is shown when view patterns
are nested. One can write patterns like the one in this function:

distr (arith -> a :*: (arith -> b :+: c)) = a * b + a * c

A similar solution can be achieved with the transformational patterns described
in [12]. These extensions sometimes make the solution of section 2.2 more ele-
gant, but the problems listed there (different operators in patterns and expres-
sions, implementation overhead) still apply.

2.4. Active patterns

Instead of view patterns, there is a feature called active patterns [17] in
F#. This language element merges the data type to be used for matching
and the conversion function into one artifact. The example is provided in
haskellish pseudocode instead of F# to ease the comparison with other solutions
presented.

(|(:+:)|(:*:)|(:-:)|Other|) e = case e of
Symbol "+" :$ a :$ b -> a :+: b
Symbol "-" :$ a :$ b -> a :-: b
Symbol "*" :$ a :$ b -> a :*: b
_ -> Other

The definition of an active pattern is like a function definition where the name
of the function is replaced by the enumeration of the resulting data type’s
constructors. Now we can formulate the optimization function using pattern
matching with active patterns:

optimize (0 :+: a) = a
optimize (1 :*: a) = a
optimize (0 :*: _) = 0
optimize e = e

This is even more elegant than the pattern matching solutions presented so
far, as there is no need for explicit application of the conversion function. Yet,
this is not entirely satisfactory: extra work (definition of the active pattern) is
needed to make pattern matching possible, and we still have to use different
operators in patterns and expressions.

Extended pattern matching 283

2.5. Pattern synonyms

The Strathclyde Haskell Enhancement [13] is a preprocessor for Haskell that
implements a selection of proposed language extensions. One of them is called
pattern synonyms. One can define pattern synonyms using the following syntax:

pattern Add x y = Symbol "+" :$ x :$ y
pattern Mul x y = Symbol "*" :$ x :$ y

Add and Mul are allowed to appear both in expressions and in patterns. They
are simply replaced with the right-hand sides of their definitions much like
macros. The idea goes back to abstract value constructors introduced in [5].
To make semantics clear and the replacement possible at compile time, strict
rules constrain the definition of pattern synonyms. The names are capitalized
identifiers and the right-hand sides have to be valid patterns except that pattern
synonyms are also allowed in place of constructors. Consequently, they are
linear: all variables are used exactly once in the right-hand side of the definition.
However, the currently available implementation does not check this property.

Using the pattern synonyms defined above, our optimization function takes
this form:

optimize :: Expr -> Expr
optimize (Add 0 e) = e
optimize (Mul 1 e) = e
optimize (Mul 0 e) = 0
optimize e = e

The result is similar to that of section 2.4 and would yield the same code if
infix pattern synonyms were supported. So far this solution requires the least
additional effort from the programmer of the library. It may sometimes even
be possible to provide pattern synonyms instead of functions in the public
interface, but the limitations on the form of identifiers may make this undesir-
able and it is sometimes (like in our case with the functions of the Num class)
impossible.

2.6. Function patterns

Curry [11] is a functional logic programming language based on Haskell and
Prolog. Its syntax is similar to that of Haskell; therefore, the definition of the
Expr data type seen in section 1 is completely valid Curry code. Unfortunately,
Curry does not support type classes and numeric literals are not polymorphic.
This implies the following changes in the front-end of our toy language embed-
ding:

284 G. Dévai

num :: Int -> Expr
num n = Symbol $ show n

(+.) :: Expr -> Expr -> Expr
x +. y = Symbol "+" :$ x :$ y

(*.) :: Expr -> Expr -> Expr
x *. y = Symbol "*" :$ x :$ y

The reason for mentioning Curry in this paper is that it provides the best
solution for the problem at hand: function patterns [6]. Patterns in Curry
are allowed to contain not only constructors and variables, but also functions,
including built-in and user-defined ones.

optimize :: Expr -> Expr
optimize (num 0 +. x) = x
optimize (num 1 *. x) = x
optimize (num 0 *. _) = num 0
optimize e = e

If it were possible to overload arithmetic operations and numeric literals in
Curry, this definition would be exactly our wish. Note that this is achieved
without any further support from the library, because the functions used to
construct expressions can also be used in patterns to deconstruct them.

However, the semantics of this extended pattern matching in Curry is far
from that of Haskell. For example, the function

f :: [Int] -> ([Int], [Int])
f (xs ++ ys) = (xs,ys)

has multiple results for non-empty lists. The function application f [1,2] yields
the following set of results: ([],[1,2]), ([1],[2]), ([1,2],[]). This is
acceptable in a functional logic language, but unsuitable for languages like
Haskell. Furthermore, processing function patterns of Curry is a complex task
that causes runtime overhead.

3. Restricted function patterns

The solutions presented in the previous section can be divided into the
following categories:

Extended pattern matching 285

• Section 2.1 avoids pattern matching. It is inconvenient and unsafe.

• Sections 2.2-2.4 are all approximations of views [18]. The basic idea
behind them is that the value to be matched is first transformed to some-
thing that can be matched. The problem here is that, in addition to
implementing functions to construct entities of the embedded language,
a considerable effort is needed to provide ways of deconstructing them via
pattern matching.

• An orthogonal possibility is shown in sections 2.5 and 2.6. Both pattern
synonyms and function patterns provide a way to build patterns.

The goal here is to define a restricted class of function patterns that are more
powerful than pattern synonyms, but much more restricted than Curry’s func-
tion patterns in order to provide static guarantees and no performance over-
head. The idea is to allow arbitrary expressions in patterns, if there is an
equivalent valid (traditional) pattern.

Definition 3.1. If functions f x1 x2 . . . xn = e and f ′ x1 x2 . . . xn = e′ are
both of type A1 → A2 → · · · → An → B, such that they are (extensionally)
equal and e′ is a valid pattern, then e is a restricted function pattern (RFP),
and e′ is its canonical form.

For example, all patterns in the “desired implementation” of the optimize
function presented at the end of section 1 are restricted function patterns. The
following table shows their canonical forms.

RFP Canonical form
0+a (Symbol "+" :$ Symbol "0") :$ Symbol "a"
1*a (Symbol "*" :$ Symbol "1") :$ Symbol "a"
0*a (Symbol "*" :$ Symbol "0") :$ Symbol "a"
a a

Is RFP a given expression or not? This is not a decidable problem in gen-
eral as results about the halting problem show. Nevertheless, it is possible to
construct a decision algorithm that accepts only RFPs. It rejects all non-RFPs,
but also some of the RFPs. For example, symbolic execution of the expression
with a fixed limit on the number of reduction steps is such an algorithm. An
expression is accepted if symbolic execution reaches the canonical form. If it
is impossible to continue symbolic execution (for example, non-trivial pattern
matching is performed on a parameter) or the number of reduction steps reach
the limit, the function is rejected. Note however that the result of this de-
cision algorithm is hard to predict, which is a major concern from the user’s

286 G. Dévai

point of view. Finding a decision algorithm that is powerful enough and easily
predictable is an important future task.

Even if symbolic execution is not the ideal decision algorithm, it has a
useful feature: it provides the canonical form of all accepted RFPs. This way
the compiler can simply replace RFPs by the corresponding canonical form.
As those are “normal” patterns, it is possible to process them in the usual
way. Note that all this happens in compile time: an RFP is transformed to an
ordinary pattern making no runtime overhead and no change to the pattern
matching algorithm. This also means that RFPs are deterministic: if the match
succeeds, each variable in the pattern is bound to a single value. In contrast,
Curry’s function patterns are processed at runtime and are indeterministic.

In fact, a smart compiler already does something similar for optimization
purposes. It may perform symbolic computation to reduce the expressions as
much as possible to increase runtime performance. RFPs are good candidates
for such an optimization. The difference is that the optimization-related trans-
formations happen in expressions instead of patterns.

4. Applications

4.1. The problem at hand

The problem defined in section 1 can be solved in an elegant way using
RFPs.

optimize :: Expr -> Expr
optimize (0 + a) = a
optimize (1 * a) = a
optimize (0 * a) = 0
optimize a = a

• This solution is as clear and readable as that of Curry.

• There is no extra work needed by the creator of the library to enable
pattern matching.

• The RFPs can be replaced with their canonical forms at compilation time
causing no runtime overhead.

Extended pattern matching 287

4.2. List prefix patterns

In the Erlang programming language, "prefix" ++ Str is a valid pat-
tern [4]. In fact, it is syntactic sugar for the list pattern [$p,$r,$e,$f,$i,$x
| Str]. These correspond to “prefix” ++ str and ’p’ : ’r’ : ’e’ :
’f’ : ’i’ : ’x’ : str in Haskell, which are an RFP and its canonical
form. This means that one can use RFPs to implement a function that chops
off the “prefix” prefix of input strings:

unprefix :: String -> String
unprefix ("prefix" ++ str) = str
unprefix str = str

While in Erlang this feature is an ad hoc extension to pattern matching, RFPs
provide it in a consistent way.

This example shows the weekness of the naive decision algorithm mentioned
in section 3. In case a very long string literal were used in the example above,
symbolic execution would reach the limit on the number of steps and the pattern
would be rejected.

This example also demonstrates that RFPs are more powerful than pattern
synonyms, because it is impossible to define the append function as a pattern
synonym. On the other hand, RFPs are more restricted than Curry’s function
patterns, because neither str1 ++ str2 nor str ++ “postfix” are RFPs.

4.3. Matching numeric literals

One of the ingenious features of Haskell that makes this language particu-
larly suitable for language embedding is that numeric literals are polymorphic.
The literal 0 for example can be of any type that instantiates the Num class. In
the case of our toy embedding, the literal 0 of type Expr means Symbol “0”
because of the implementation of the fromInteger function for the Expr type.
In fact, an integer literal n is automatically transformed to fromInteger n by
the compiler.

The unfortunate bit is that the same has to happen also in patterns. In the
Num instance below, the fromInteger function is undefined, and this makes
pattern matching unexpectedly unsafe.

data Foo = Foo
deriving (Eq, Show)

instance Num Foo where

288 G. Dévai

fromInteger _ = undefined

f :: Foo -> Bool
f 0 = False
f _ = True

Evaluating the expression f Foo in the Haskell interpreter yields an exception,
because the fromInteger function is called to transform the literal 0 in the
pattern to type Foo. If we change the implementation of fromInteger so that
it does infinite recursion, then so does the matching.

If fromInteger terminates normally, its result is compared to the value
to be matched using the (==) function. In the example above the compiler
generates a default implementation of (==) for the type Foo because of the
deriving clause at the end of the data type definition. However, the programmer
is allowed to implement it in such a way that it raises an exception or hangs,
and in that case pattern matching is fooled again. This design contradicts the
goal that pattern matching should be safe and fast.

Is it possible to correct this? As discussed above, the compiler calls the
function fromInteger to convert integer literals to the desired type. Let us
write this conversion explicitly in the pattern even if this is incorrect Haskell
code:

f (fromInteger 0) = False

Now it is clear that the Haskell compiler in fact uses function patterns! The
problem is that there is no guarantee that these are RFPs. What the compiler
should do is the following:

• If fromInteger 0 is an RFP (like in the case of Expr or the built-in
numeric types), then using the literal 0 is all right: it should be replaced
by the canonical form of fromInteger 0, and the usual pattern matching
algorithm can be used instead of equality. This way there is no need to
make Eq a superclass of Num.

• If fromInteger 0 is not an RFP (for example, if it is undefined), then
the compiler should complain about the pattern. (More on this in section
5.2.)

This means that the RFP extension discussed in this paper would make Haskell’s
current pattern matching rules related to numeric literals more consistent and
safer.

Extended pattern matching 289

5. Problems and solutions

5.1. Lexical ambiguity

Haskell patterns contain constructors and variables. Constructors are capi-
talized identifiers or operators starting with a colon, while variables are identi-
fiers starting with a lower-case letter. In contrast, RFPs can contain ordinary
functions that are syntactically indistinguishable from variables.

Let us suppose that x is defined to be a zero-arity function of type Int as
x = 5. Now it is not clear if x in the pattern (x:xs) is the zero-arity function
with value 5 or a free variable of the pattern. Note that this ambiguity is
only present in the case of symbols without arguments: in the RFP (a b) the
symbol a cannot be a variable unless we allow higher-order patterns. Let us
list the possible solutions for this problem:

• The same issue is present in the Agda programming language [1] that
allows lower-case constructors. Agda’s rule says that x can only be a
variable if it is not defined as a constructor.

• In contrast, Curry considers these symbols as variables and gives a warn-
ing if they shadow zero-arity functions.

• Another possible solution is to invent some syntax to distinguish variables
from functions in dubious cases.

5.2. Type system issues

A much more important problem is that type systems used in practice
cannot express that an expression is an RFP. This is problematic, because
changing the implementation of a function may make the compiler complain
about patterns even if the type of the function is untouched. The following
example illustrates the problem.

double :: Expr -> Expr
double x = 2 * x

The expression double x is an RFP with canonical form Symbol “*” :$ Symbol
“2” :$ x. Let us use it in the following function definition:

halve :: Expr -> Expr
halve (double x) = x
halve x = Symbol "div" :$ x :$ 2

290 G. Dévai

What happens if we change the implementation of double slightly?

double :: Expr -> Expr
double x = x + x

The expression double x now reduces to Symbol “+” :$ x :$ x, which is not
a valid pattern any more, at least not in a language with linear patterns. The
compiler in this case will reject the first equation of the double function. This
may be annoying since the type of double did not change.

There are two possible solutions: either the type system is extended, or the
compiler has to handle non-restricted function patterns in a different way. The
rest of this section explores these possibilities.

5.2.1. Extending the type system

There are certain properties that make a function suitable to be included
in RFPs. Suppose we could express these properties in type signatures and
had a type system that, based on that type information, is able to infer if an
expression is an RFP or not. These changes like in the example above would be
reflected in the functions’ types. To have such a type system, there are three
aspects to consider: well-definedness, parametricity and linearity.

Well-definedness. If the function \x1 x2 . . . xn → e is not well defined for
a set of (well-defined) arguments v1 v2 . . . vn, then e cannot be an RFP. Rais-
ing an exception, returning undefined or going into infinite recursion are not
allowed. In type theory, many different type systems were designed to ensure
the termination of expressions.

Parametricity. Parametric functions use their parameters as black boxes:
no pattern matching is allowed on them. For example, the function singleton
below is parametric, but length is not.

singleton :: a -> [a]
singleton x = [x]

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

Parametric functions are important from our perspective, because this prop-
erty ensures that symbolic execution is possible: it is possible to reduce the
function pattern without binding its free variables. Together with well-defined-
ness, this ensures that symbolic execution terminates and leads to an expression
containing constructors and variables only.

Extended pattern matching 291

Note that non-parametric functions are still allowed in RFPs provided that
their parameters are values known at compilation time. An example is the
append function used in the list prefix pattern in section 4.2. It is parametric
in its second argument but not in the first one. That is why “prefix” ++ str
is an RFP, but str ++ “postfix” is not.

Parametric functions form a well-studied class, which is important for lan-
guage embedding also because of the higher order abstract syntax (HOAS)
technique [15]. For the sake of an example let us extend the Expr type from
section 1 with a new constructor for λ-abstraction. An elegant solution is this
one: Lam (Expr -> Expr). The new constructor Lam has become part of the
abstract syntax of the language and it is a higher order function: hence the
name of the technique (HOAS). This solution makes nontrivial functions (like
β-reduction, for example) quite easy to implement. On the other hand, pass-
ing a non-parametric function to Lam results in an expression which has no
corresponding λ-term, like in the case of the following example.

Lam $ \x -> case x of
Symbol "a" -> Symbol "a"
otherwise -> Symbol "b"

This is why parametricity is important for the HOAS technique. A great
amount of work has gone into solving these kind of problems. An early one is
an extension to the ML language [14] that makes pattern matching possible on
parametric functions. In [7] a type system is developed that can distinguish
the parametric and non-parametric function spaces. Such a type system would
also be useful for checking RFPs.

Linearity. In many functional languages patterns must be linear: using
the same variable more than once in a pattern is invalid. In such a language we
have to ensure that the canonical forms of RFPs are also linear. Linear type
systems [19] are well studied and are important from the perspective of destruc-
tive updates and interaction with the real word while still keeping referential
transparency. A notable example is the Clean language, which implements
uniqueness typing [16] for this purpose.

5.2.2. Warnings instead of errors

If the type system is not strong enough to express that an expression is RFP,
the compiler should not reject non-RFP patterns for the reason discussed at
the beginning of this section. So what should the compiler do if it finds a
non-RFP pattern (or it is not able to prove that it is an RFP)? A possibility
is to give a warning to the user and replace the pattern with one that fails to
match any value. This way the decision of the compiler to accept or reject a
pattern will only depend on the types of the functions involved. Changing their

292 G. Dévai

implementation (without touching their types) may affect only the runtime
behaviour of the pattern match and may result in warnings.

6. Implementation

Before creating a proper language extension, more research is needed about
the issues discussed in section 5. Nevertheless, it was already possible to create
a lightweight Haskell library that provides the functionality of restricted func-
tion patterns, even though it is not able to check the restrictions at compile
time and cannot guarantee the same runtime performance that built-in com-
piler support could. This library is currently available for testing [8] in the
Hackage library database [2].

6.1. Public interface

Using this library, one can implement the optimization function discussed
in section 2 as follows.

opt :: Expr -> Expr
opt e = match e $ do

with $ \a -> 0 + a ∼> a
with $ \a -> 1 * a ∼> a
with $ \a -> 0 * a ∼> 0
with $ \a -> a ∼> a

The match function gets two arguments: the value to be matched and a se-
quence of cases. In order to mimic the syntax of Haskell’s case expressions, the
cases are listed in a monadic environment (hence the do keyword). Cases are
created using the with function of arity one. Its argument is a function with
arbitrary number of arguments (including zero) and it produces a pattern and
a corresponding result combined by the (∼>) operator.

If only RFPs are used as patterns, the library guarantees that a match is
equivalent to a case expression with the corresponding canonical forms. How-
ever, the library is not able to check at compile time if the patterns are really
RFPs; this is the responsibility of the user.

• If the pattern is not well-defined (due to undefined or non-termination),
the match may fail, terminate with undefined or hang.

Extended pattern matching 293

• If the pattern is not parametric, the match may fail, succeed or (in most
of the cases) the nonparametric pattern error is raised.

• If the pattern is not linear, the match may fail or the nonlinear pattern
error is raised.

It might be disappointing that non-parametric patterns makes matching so
unpredictable, but it is important to note that a successful match is always
correct. Whenever a value v matches a case2 \x1x2 . . . xn → p � e and
the variables get bound to the values v1, v2, . . . , vn respectively, the value
(\x1x2 . . . xn → p) v1 v2 . . . vn is well-defined and really matches v. This also
holds for erroneous patterns.

In order to make this kind of pattern matching possible for a new data type,
one has to make it an instance of the Matchable class. This instance defines
the components of compound values. For example, the Machable instance of
the Expr type is the following.

instance Matchable Expr where
Symbol s .=. Symbol z = Just [s :=: z]
(e :$ f) .=. (g :$ h) = Just [e :=: g, f :=: h]
_ .=. _ = Nothing

This means that

• symbols match, if their names match,

• function applications match, if both the functions and the arguments
match,

• there is no other way for expressions to match.

Matchable instances are trivial and could be automatically created by the com-
piler.

6.2. Pattern matching algorithm

Matching a value v with a case c = \x1x2 . . . xn → p � e is performed as
follows. First, the system creates parameters of two kinds that we denote by T
and F . The function c is applied to these parameters such that x1 becomes T
and all others from x2 to xn become F . Let us denote the result by p∗ � e∗.
Now p∗ is matched with v using an algorithm described below and this leads
to one of the following results:

2In mathematical notation � will denote the (∼>) operator of the library.

294 G. Dévai

• If the match fails, the next case is tried.

• If the match succeeds, it provides a value v1 that x1 will be bound
to. The binding is done by applying c to v1. This yields the function
c1 = \x2 . . . xn → p1 � e1. Then the whole algorithm is called again
recursively with this reduced case that has one argument less than the
original.

After eliminating all arguments without failure, one gets pn � en. If pn
matches v, then the case fires and the result is en.

Now let us describe how a pattern pat is matched with a value val:

• If pat is the parameter T then val is returned as a candidate for the next
binding.

• If pat is the parameter F then the match succeeds, but no value is re-
turned.

• If pat is not a parameter then val . = .m is called (see the Matchable
class above). It provides a list of match conditions, and matching is done
recursively for all pairs in this list:

– If any of them fail, the whole match fails.

– If all of them succeed and either none of them or at least two of
them return a value, then the pattern is not linear and an error is
raised.

– If all of them succeed and exactly one returns a value, then the
match succeeds and returns the value.

Matching pn with v is done similarly, but in this case no value is returned (as
there are no more variables to bind).

What are the parameters T and F technically? Besides the function (.=.)
seen before, the Matchable class contains two more functions :

makeParam :: Bool -> a
isParam :: a -> Maybe Bool

Parameter T and F are makeParam True and makeParam False respectively.
The isParam function decides if its argument is a parameter or not. The
following rules must hold:

• isParam (makeParam True) == Just True

• isParam (makeParam False) == Just False

Extended pattern matching 295

• If a is not a parameter, then isParam a == Nothing.

Users of the library do not have to implement these functions (unless they want
to). The default implementation of makeParam throws an exception that wraps
its argument. isParam tries to evaluate its argument to head normal form. If
this succeeds then it was not a parameter, otherwise the exception is caught
and the wrapped logical value is returned. This is only possible within the IO
monad, but it is hidden using the unsafePerformIO function. One reason for
writing custom implementations of makeParam and isParam may be that one
works with exceptions interfering with the ones used by the library.

7. Conclusion

Embedded languages and similar functional libraries often hides the con-
structors of their data types. Instead they provide functions in their public
interfaces that can be used for data construction. This design makes pattern
matching in user code impossible. To make it possible after all, the library has
to provide additional tools to deconstruct data. This paper searches ways to
avoid (or considerably reduce) this additional work.

Pattern synonyms and function patterns are promising techniques. While
the former one is too restrictive, the latter one is too general for a functional
programming language. Therefore, this paper proposes a compromise between
the two: restricted function patterns. A class of expressions is defined that is
safe to be allowed in patterns, because they can be replaced with equivalent
traditional patterns at compilation time.

Problems related to this language extension are analysed and solutions are
proposed. Finally, a lightweight implementation is presented that provides the
functionality of restricted function patterns. The author of this paper has
already used this library in two embedded language projects [10, 9].

The most important future work in this topic is the design of a decision
algorithm for a well defined subset of RFPs. The algorith must be smart
enough to allow all RFPs that are useful in practice and, at the same time,
must be intuitive enough to give results easily predictable by the users. The
basic concepts to consider are already discussed in section 5.2 of this paper,
and preliminary research shows that the combination of symbolic execution
with the size change principle [20] will yield a suitable algorithm.

296 G. Dévai

References

[1] The Agda programming language,
http://wiki.portal.chalmers.se/agda/

[2] HackageDB,
http://hackage.haskell.org/

[3] View patterns: lightweight views for Haskell,
http://hackage.haskell.org/trac/ghc/wiki/ViewPatterns

[4] Erlang/OTP System Documentation, 2011.
http://www.erlang.org/doc/pdf/otp-system-documentation.pdf

[5] Aitken, W.E. and J.H. Reppy, Abstract value constructors, in: ACM
SIGPLAN Workshop on ML and its Applications, 1992, 1–11.

[6] Antoy, S. and M. Hanus, Declarative programming with function pat-
terns, in: Logic Based Program Synthesis and Transformation, Lecture
Notes in Computer Science, 3901, Springer, Berlin/Heidelberg, 2006,
6–22.

[7] Despeyroux, J., F. Pfenning and C. Schürmann, Primitive recursion
for higher-order abstract syntax, in: P. de Groote and J. Roger Hindley
(eds.) Typed Lambda Calculi and Applications, Lecture Notes in Computer
Science, 1210, Springer, Berlin/Heidelberg, 1997, 147–163.

[8] Dévai, G., Restricted Function Patterns (Haskell library),
http://hackage.haskell.org/package/funpat

[9] Dévai, G., Embedding a Proof System in Haskell, in: Z. Horváth,
R. Plasmeijer and V. Zsók (eds.) Central European Functional Pro-
gramming School, Lecture Notes in Computer Science, 6299, Springer
Berlin/Heidelberg, 2010, 354–371.

[10] Dévai, G., M. Tejfel, Z. Gera, G. Páli, Gy. Nagy, Z. Horváth,
E. Axelsson, M. Sheeran, A. Vajda, B. Lyckegård and A. Pers-
son, Efficient Code Generation from the High-level Domain-specific Lan-
guage Feldspar for DSPs, in: Proceedings of the 8th Workshop on Opti-
mizations for DSP and Embedded Systems, 2010, 12–20.

[11] Hanus, M. (ed.), Curry: An Integrated Functional Logic Language (ver-
sion 0.8.2), 2006,
http://www.informatik.uni-kiel.de/c̃urry/report.html

[12] Erwig, M. and S.P. Jones, Pattern Guards and Transformational Pat-
terns, in: Haskell Workshop, 2000.

[13] McBride, C., Strathclyde Haskell Enhancement,
http://personal.cis.strath.ac.uk/c̃onor/pub/she/

[14] Miller, D., An extension to ML to handle bound variables in data struc-
tures: Preliminary Report, in: Proceedings of the First Workshop on Log-
ical Frameworks, 1990, 323–336.

Extended pattern matching 297

[15] Pfenning, F. and C. Elliot, Higher-order abstract syntax, SIGPLAN
Not., 23 (1988), 199–208.

[16] Plasmeijer, R. and M. van Eekelen, Keep it Clean: a Unique Ap-
proach to Functional Programming, SIGPLAN Not., 34 (1999), 23–31.

[17] Syme, D., G. Neverov and J. Margetson, Extensible pattern match-
ing via a lightweight language extension, SIGPLAN Not., 42 (2007),
29–40.

[18] Wadler, P., Views: a way for pattern matching to cohabit with data
abstraction, in: Proceedings of the 14th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages (POPL), ACM, New York,
NY, USA, 1987, 307–313.

[19] Wadler, P., Linear types can change the world!, in: IFIP TC 2 Working
Conference on Programming Concepts and Methods, 1990, 347–359.

[20] Lee, C.S., N.D. Jones and A.M. Ben-Amram, The size-change prin-
ciple for program termination, SIGPLAN Not., 36:3, ACM, New York,
NY, USA, 2001, 81–92.

G. Dévai
Department of Programming Languages and Compilers
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány 1/C
Hungary
deva@elte.hu

