
Annales Univ. Sci. Budapest., Sect. Comp. 36 (2012) 255–275

A HEURISTIC PROCESS FOR GUI WIDGET

MATCHING ACROSS APPLICATION VERSIONS

Arthur-Jozsef Molnar (Cluj-Napoca, Romania)

Communicated by László Kozma

(Received December 20, 2011; accepted January 25, 2012)

Abstract. This paper introduces an automated heuristic process able
to achieve high accuracy when matching graphical user interface widgets
across multiple versions of a target application. The proposed implemen-
tation is flexible as it allows full customization of the process and easy
integration with existing tools for long term graphical user interface test
case maintenance, software visualization and analysis.

1. Introduction

A large portion of modern software employs graphical user interfaces (GUIs)
for interacting with users. A paradigm that has proven highly successful, GUIs
are widely used in applications targeted for many types of devices such as note-
books, tablets, smartphones and the like. Technically, GUI driven software is
a class of event-driven system where the GUI creates and fires events han-
dled by the program underneath; it is this sequence of events that guides the
application’s execution.

Key words and phrases: GUI test case, widget matching, heuristic.
2010 Mathematics Subject Classification: 68N30, 68N99.
1998 CR Categories and Descriptors: D2.5.
The author was supported by programs co-financed by The Sectoral Operational Programme
Human Resources Development, Contract POS DRU 6/1.5/S/3 - “Doctoral studies: through
science towards society”

https://doi.org/10.71352/ac.36.255

https://doi.org/10.71352/ac.36.255


256 A.-J. Molnar

Many modern applications expose their features through complex GUIs
using multiple windows and hundreds of widgets to improve application pre-
sentability and ease of use. In many cases, GUI code can comprise more than
half of the application code [4]; being interacted with directly by end users, its
correct functioning is considered crucial [8].

During program execution the user interface is the only visible component
to users. However, many times its building blocks are found scattered across
the application: windows and widgets are built using several approaches (e.g:
writing source code, using design tools or declarative HTML or XML based
technologies) while additional libraries can provide specialized components or
display schemes1. These peculiarities demand new approaches in the design,
visualization and testing of GUI driven software.

This paper aims to address some of the existing challenges using an auto-
mated heuristic process able to match GUI widgets across application versions.
This allows rapid creation of GUI test cases automatically reusable for new
application versions. In addition, user interfaces can be compared between
versions to provide important information about GUI changes that can be
used in software understanding, visualization and testing.

This paper is structured as follows: the following section presents required
preliminaries while the third section details the heuristic process. The next
sections describe the implemented algorithms and our extensive case study.
The last section is reserved for conclusions and future work planned.

2. Preliminaries

The main goal of our process is to improve automated GUI testing by
reusing existing test cases across many application versions. This present sec-
tion is dedicated to presenting the state of the art in GUI testing focused on
previous work sitting at the foundation of our heuristic process.

GUI testing tools can be generally divided into two categories: capture-
replay and model-based. Capture-replay tools are used in two distinct phases:
during the capture phase the program records the user’s interactions with the
target GUI and creates a recorded test case. The second phase consists of re-
playing the recorded test case. The efficiency of these tools is related to how
they record GUI interactions (e.g: do they use screen coordinates or they iden-
tify widgets using reflection or other means) and their capability at evaluating
the result of running a test case. Adamoli et al. showed that capture-replay

1e.g: Java look&feel



A heuristic process for widget matching 257

can be successfully used for automated performance testing [7, 1], or for testing
complex applications when combined with model based techniques [9].

The most important limitation of capture-replay derives from the lack of
a backing model, which makes identifying and actioning GUI elements error-
prone. This translates to uncertainty in recording and analyzing test results.
These issues pushed recent date efforts towards model-based implementations.
The existence of a formal model allows automatically building test suites, helps
with evaluating test results and eases the implementation of visualization tools.

Our research is based on the theoretical foundation provided in Memon’s
Phd. thesis [4], which defines the class of targeted GUIs as a hierarchical,
graphical front-end to a software system that accepts as input user-generated
and system-generated events, from a fixed set of events and produces determin-
istic graphical output. A GUI contains graphical objects; each object has a fixed
set of properties. At any time during the execution of the GUI, these proper-
ties have discrete values, the set of which constitutes the state of the GUI.[4].
As a natural consequence, a GUI’s state is represented using a set of objects
and their associated properties. Our implementation represents the GUI as a
tree of maps: each GUI object (or widget) is represented as a Map in which
keys represent relevant properties and associated values provide the data (e.g:
Class=”JButton”, Text=”Ok”, Background=”LightGray”). The GUI hierar-
chy is closely reflected in our implementation: the root node represents the
GUI itself, its children represent application windows while widgets contained
in windows start at the third level of the tree. Of course, not all widgets provide
values for all properties. For example, only windows will have a Title property,
while widgets such as buttons and menu items will have Accelerator, Text or
Icon properties.

Many of the ideas detailed in [4] were implemented in the GUITAR testing
framework [11, 6]. A mature model-based implementation, GUITAR provides
support for most of the major steps in testing: obtaining the GUI model,
building and running test cases. Its maturity and consistency make it state of
the art in GUI application testing. GUITAR consists of four applications:

• GUIRipper automatically records the target application’s GUI model.
It employs reflection and automated interaction to record all accessible
application windows, widgets and their properties, saving the resulting
model in XML format [5]. The current version supports Java, Windows
and several mobile target platforms (Android and iOS).

• GUI2EFG computes the valid event sequences for a model obtained using
GUIRipper. This is particularly important when building test cases, as
not every widget is actionable at all times.



258 A.-J. Molnar

• TestCaseGenerator is used for building GUI test cases using the event-
flow-graph built by GUI2EFG and an existing GUI model. This tool sup-
ports plugins to allow for the implementation of various testing strategies.

• TestCaseReplayer is used to run the generated test cases and record their
outcome. The tool saves the target application GUI state after each step,
allowing detailed analyses to be performed after test suite execution.

However, GUITAR suffers from some of the problems outlined in the first
section: changing an application’s GUI renders many test cases useless due to
changes in the model. This makes regression testing unfeasible as time invested
for building compelling test suites cannot be redeemed by reusing them over
many application versions.

These challenges have not gone unnoticed and several approaches have been
proposed. An automated mechanism for repairing GUI test cases is presented
in [3]. It works by examining test cases that become unexecutable and repairing
them by inserting or removing events. In [14], Huang et al. detail an approach
for increasing test suite coverage by replacing unfeasible test cases with similar
ones obtained using a genetic algorithm; they evaluate their implementation on
a set of synthetic programs. These approaches prove that GUI test cases can be
successfully repaired to run on newer versions of the target software. However
they shift focus from exactly replaying older test cases which precludes their
use for regression testing.

Preliminary work on GUI widget matching was presented by McMaster and
Memon [13]. Given two GUIs G and G‘, they define the problem of matching
equivalent widgets:

”For each actionable GUI element ei ∈ G, find a corresponding element
ej ∈ G′ whose actions implement the same functionality.” [13] More formally,
each widget from G and G’ must be assigned to one of the following data
structures [13]:

• Deleted - Contains elements only found in the older GUI.

• Created - Contains elements only found in the newer GUI.

• Maintained - This is a set of GUI element mappings of the type (ei �→ ej)
that contains pairs of equivalent elements, with ei ∈ G and ej ∈ G’

The efficiency of their proposed heuristic set is then examined using a typical
Find/Replace window.



A heuristic process for widget matching 259

3. The process

This section details our implemented process based on the preliminaries
above. The implementation comes in the form of a Java library designed for
easy integration with other tools. To run the heuristic process the execute
method of the DefaultHeuristicService class must be called using the following
parameters:

• The GUIs. The first two parameters encode the GUI models to be
matched. To decouple our implementation from existing tools we im-
plemented our own model, based on the one used by the GUITAR frame-
work. A model transformer is available to enable transforming GUI mod-
els from GUIRipper format to our implementation; to use other GUI
models, a new transformer implementation must be provided.

• A configuration file. Using an XML configuration file allows flexibility in
implementing custom heuristics and controlling the execution strategy.

The matching process works in three phases:

1. Window Matching. The first phase of the process is matching the ap-
plication windows. This is the only point where windows are matched,
therefore the accuracy of the entire process is sensitive to errors in this
step.

2. Widget Matching. All GUI matches are performed during this phase2.
This step is performed by running the widget matching heuristics over
the window pairs matched in the previous step until no new matches are
found.

3. Finalization. This is the last step of the process. Widgets that remained
unmatched are now classified as Deleted or Created based on the GUI ver-
sion they belong to. This is a clean-up step that categorizes all previously
unmatched elements.

It is important to note that our process is able to match widgets only when
they belong to matched application windows. This emphasizes the importance
of correctly identifying matching windows and introduces limitations in iden-
tifying widgets moved across windows.

The matching process is customizable by providing a configuration file that
provides the heuristic set to be used together with an execution strategy. The

2except windows as they are already matched



260 A.-J. Molnar

heuristics are provided as a prioritized list ordered by decreasing heuristic accu-
racy. The execution strategy is responsible with running the provided heuristics
in a way that achieves maximum accuracy. The current implementation pro-
vides the following strategies:

• Cyclic Execution Strategy. All heuristics are executed in order of priority
and set to perform at most one match per execution. The process ends
when running the full heuristic set reveals no new matches.

• Priority Execution Strategy. This strategy attempts to ensure that mat-
ches are always performed by the highest accuracy heuristic. To achieve
this, the heuristics are executed in descending order of accuracy always
restarting from highest accuracy whenever a match is found. This strat-
egy has the effect that matches found by lower accuracy heuristics can be
used by high accuracy implementations in finding new matching elements.

Our experiments showed priority execution strategy to be the most accurate.
Custom execution strategies can be implemented by extending the Abstrac-
tHeuristicExecutionStrategy class and providing a custom configuration file
when running the process. Existing heuristics are presented in the following
section which also describes how new heuristics can be implemented and used
in the process of matching both GUI windows and widgets.

4. The heuristics

Our experimentation led to a number of heuristic implementations de-
scribed in the following paragraphs, starting with the WindowMatchingHeuris-
tic, which is currently our only window matcher.

WindowMatchingHeuristic3

This heuristic is used for matching application windows. Its accuracy is
crucial as errors in window matching lead to none of the contained widgets being
correctly paired. The implementation uses window titles to first match root
windows and then to examine remaining window pairs. If both GUI versions
have only one window they are matched regardless of title.

3All heuristics are implemented using Java classes of the same name



A heuristic process for widget matching 261

PropertyValuesHeuristic

This is an heuristic factory able to generate instances based on a provided
configuration that defines the way property values must match according to
provided criteria. The current implementation supports three criteria:

• Equality. Property values must be both non-null and equal.

• Similarity. Property values must be similar when diffed [15]. An integer
parameter gives the maximum number of add or delete diff operations
allowed for the values to be considered similar. When employing this
criteria, the total number of add and delete operations represents the
match score. Eligible widget pairs are then matched according to lowest
match score. This approach allows for flexibility when property values
change across GUI versions.

• Nullity. Both property values must be null.

Using these criteria a large number of heuristics can be generated. Note that
the number or type of criteria is not limited. We can easily create a heuristic
that searches for widgets with equal Class property value, similar values for
Text and Icon properties and null Accelerator value.

PropertyValuesHierarchyHeuristic

This is a heuristic factory extending PropertyValuesHeuristic. The dif-
ference is that this implementation creates heuristics that search for widget
matches only among children of already matched components. This adds an
additional constraint based on evidence suggesting that many times matching
GUI containers contain matching children. The separate implementation also
allows optimizing the matching code to work faster for complex GUIs.

SingletonComponentHeuristic

This heuristic factory produces instances that match components based on
the uniqueness of a provided property value. This is distinct from the imple-
mentations above as it enforces matched property values to be unique across
the analyzed windows. For example, an instance using the Class property
would match a widget with Class value of javax.swing.JButton from the older
window with another JButton instance only if they are both the only JBut-
ton’s on their respective windows. Note that the implementation also counts



262 A.-J. Molnar

already matched widgets when establishing uniqueness. This particular im-
plementation was arrived at by analyzing the accuracy of the process for the
jEdit [16] text editor. Several of its versions implement custom components,
such as HistoryTextField which prove difficult to match correctly using only
property-value based implementations.

InverseHierarchyHeuristic

This heuristic is useful for matching components that were extensively mod-
ified across GUI versions. Given component A ∈ GUIolder and component
B ∈ GUInewer, A matches B according to this implementation if:

• All children of A have a matching component that is a child of B.

• A has the same non-zero number of children as B.

Our experiments showed this heuristic to be very accurate in correctly identi-
fying menu items altered by changing their Text and moving them within the
menu system.

FinalHeuristic

The last phase of the matching process is performed by this heuristic. Its
role is to assign all unmatched widgets in the older and newer versions to the
Deleted and Created sets respectively. This final phase of the matching process
cannot be customized and is implemented to ascertain that all GUI components
are classified.

Our process is designed to be easy to set up, use and improve. In addition to
the proposed heuristics, custom implementations can be provided by extending
one of the following classes: AbstractGlobalHeuristic is the base class used for
window matchers while AbstractWindowHeuristic is employed for matching
widgets. Both classes have a run method to receive required parameters and
to contain the matching logic. In addition, extending current implementations
is possible in order to provide highly customized heuristics.

The heuristics hereby described are used in the case study discussed in the
following section. This list however is neither extensive or comprehensive; we
believe heuristics that provide higher accuracy exist and one of our future goals
is targeted towards finding them. However, the following section shows that
current implementations provide a solid base for deploying a highly accurate
process that is generally applicable and reasonably efficient with regards to
memory and processing requirements.



A heuristic process for widget matching 263

5. Case study

We present a case study aiming to examine the accuracy of our proposed
heuristic process applied to real-world GUI driven software. We examine the
result of running the process and devise a number of metrics to answer the
following research questions: (1) How can we measure the accuracy of the
matching process? (2) What is the optimum heuristic process configuration?
(3) How accurate is the process when applied to complex GUI software with
the aim of enabling long term test-case maintenance and software visualization?
(4) What type of matching errors can be expected and how can we limit their
number?

To answer these questions we conducted a case study using several versions
of popular open-source software available at SourceForge. We targeted applica-
tions with complex GUIs and long development history reflected in their source
repositories.

Target applications

This section describes the two studied Java applications.

FreeMind

FreeMind is a widely used mind-mapping application[17], with over 14 mil-
lion downloads and an 87% user rating on the SourceForge website4. For our
experiment we downloaded weekly versions from the FreeMind CVS and disre-
garded versions without source code changes. The final repository consists of 13
distinct versions spanning between November 2000 (version 0.2.0) and Septem-
ber 2007 (version 0.8.0b). According to hosting statistics the application was
downloaded over 3.8 million times during that period. CVS timestamps and
relevant information about the complexity of the studied versions are provided
in Table 1.

The number of widgets increased almost three-fold from 101 to 280, making
FreeMind’s GUI a good candidate for evaluating the matching process. An
important aspect concerning the studied versions was our inability to properly
record the Options window using GUIRipper, which was therefore not taken
into account in this study.

4as of 26.11.2011



264 A.-J. Molnar

Version CVS Timestamp Classes LOC Widgets Windows
0.1.0 01.11.2000 77 3597 101 1
0.2.0 01.12.2000 90 4101 106 1
0.2.0 01.01.2001 106 4453 132 1
0.3.1 01.04.2001 117 6608 127 1
0.3.1 01.05.2001 121 7255 134 1
0.3.1 01.06.2001 126 7502 136 1
0.3.1 01.07.2001 127 7698 137 1
0.4.0 01.08.2001 127 7708 137 1
0.6.7 01.12.2003 175 11981 244 1
0.6.7 01.01.2004 180 12302 251 1
0.6.7 01.02.2004 182 12619 251 1
0.6.7 01.03.2004 182 12651 251 1
0.8.0 01.09.2007 544 65616 280 1

Table 1. Versions of FreeMind used

jEdit

jEdit is a popular pluginable text editor[16] with a user rating of 77% and
over 6.6 million downloads to date. For our study we downloaded 17 released
versions spanning January 2000 (version 2.3pre2) to May 2010 (version 4.3.2fi-
nal). SourceForge statistics reveal over 5.7 million downloads during that pe-
riod. Table 2 presents the versions in our repository together with relevant
information for our process.

Across the studied versions, the number of code lines increases from 23
thousand to over 100 thousand which is coupled with an effective doubling in
widget count. Also, the number of windows targeted by our process varies
between 12 to 16 according to application version. The only caveat regards
jEdit’s Options window which could not be ripped correctly and was therefore
excluded from our study.

Heuristic metrics

This section describes our efforts in answering research question (1). To
the best of our knowledge the hereby proposed process is a first of its kind
and therefore requires new metrics to evaluate its accuracy. The first step
was to create oracles to provide the correct match decisions for every version
pair studied. This was achieved manually with the aid of a widget comparison
module added to our jSET tool [2], available on our SVN repository [18]. This
is how the 28 required oracles were obtained5.

We started by defining a few measurements available using the oracle data
itself:

5We have 30 application versions which lead to 29 pairs; however we use 2 different
applications and so we have 28 version pairs



A heuristic process for widget matching 265

Version CVS Timestamp Classes LOC Widgets Windows
2.3pre2 29.01.2000 332 23709 482 12
2.3final 11.03.2000 347 25260 533 14
2.4final 23.04.2000 357 25951 559 14
2.5pre5 05.06.2000 416 30949 699 16
2.5final 08.07.2000 418 31085 701 16
2.6pre7 23.09.2000 456 35020 591 12
2.6final 04.11.2000 458 35544 600 12
3.0final 25.12.2000 352 44712 584 13
3.1pre1 10.02.2001 361 45958 590 13
3.1pre3 11.03.2001 361 46165 596 13
3.1final 22.04.2001 373 47136 648 13
3.2final 29.08.2001 430 53735 666 12
4.0final 12.04.2002 504 61918 736 13
4.2pre2 30.05.2003 612 72759 772 13
4.2final 01.12.2004 650 81755 860 14
4.3.0final 23.12.2009 872 106398 992 16
4.3.2final 10.05.2010 872 106510 992 16

Table 2. Versions of jEdit used

• Correct Decision Count (CDC). The number of correct decisions for a
given version pair. We define a decision as the action taken by the process
to classify a widget as Deleted, Created, or a widget pair as Maintained.
Therefore this represents the total number of elements in the three defined
data structures. Note that this differs from the number of widgets because
a matched pair in the Maintained structure is counted as one decision.
CDC represents the number of correct decisions that have to be taken for
maximum accuracy.

• Correct Match Count (CMC). The number of elements in the Maintained
structure. This represents how many elements in the older GUI have an
equivalent in the newer version.

• Dissimilar Widget Count (DWC). Represents the number of widgets
changed in the studied version pair. This includes all widgets in the
Deleted and Created structures together with the number of widgets in
matched pairs where at least one property value that does not refer to
widget size or location has changed. As an example, if a button’s icon is
changed across versions the widgets are considered dissimilar. However,
if only the position and size of the button changes it is not categorized
as such.

After running the heuristic process our automated evaluation algorithm ana-
lyzes the obtained results alongside available oracle data and computes values
for the following metrics:



266 A.-J. Molnar

• Heuristic Correct Decision Count (HCDC). The number of correct deci-
sions taken by the process. Its value is a number between 0 (no correct
decisions taken) and the CDC value available using oracle data.

• Heuristic Correct Match Count (HCMC). The number of correctly de-
termined functionally equivalent GUI element pairs. This is the number
of elements correctly assigned to the Maintained structure computed by
the heuristic. Its value is a number between 0 (no correct matches) and
the CMC value available using oracle data.

• Heuristic Correct Decision in Dissimilar Widgets Count (HCDDWC).
The number of correct decisions taken for dissimilar widgets. Its value is
a number between 0 and the DWC available using oracle data.

To better understand the accuracy of a heuristic run the following measure-
ments are calculated:

• Heuristic Decision Rate (HDR). The percentage of correct heuristic de-
cisions, calculated as HCDC

CDC .6

• Heuristic Match Rate (HMR). The percentage of correct heuristic matches,
calculated as HCMC

CMC .

• Heuristic Dissimilar Widgets Decision Rate (HDWDR). The percentage
of correct decisions for dissimilar widgets, calculated as HCDDWC

DWC .

Implementing multiple metrics allows us to better study the accuracy of dif-
ferent heuristic sets and to better ascertain how well the process is suited to
different goals. The overall accuracy of the process is best expressed using the
Heuristic Decision Rate, as it takes all GUI elements into account. A high
Heuristic Match Rate is important for enabling GUI test-case maintenance be-
cause it shows that most equivalent widget pairs were correctly identified; this
leads to test suites that have a long life across multiple application versions.
The long named Heuristic Dissimilar Widgets Decision Rate can assess the
accuracy of the heuristic set for changed elements, which is important when
analyzing frequently changing GUIs. Due to the particular nature of the prob-
lem we decided these measurements to have greater value than classical false
positive/negative analyses. However, new metrics are easy to define and im-
plement as our tool source code is available for download [18].

6While these measurements take values between 0 and 1 we use percentages for conve-
nience.



A heuristic process for widget matching 267

Property Meaning
Hierarchical Matching widgets must have matching ancestors
(diff) Icon Widget icon names are diffed to detect changed icons

Icon Widget icon name
(diff) Text Widget text is diffed to detect changed text

Class Widget class
Text Widget text

Accelerator Widget keyboard accelerator
Index Widget index in parent container

Width Height Widget size
X Y Widget location in window

Table 3. Widget properties in descending order of heuristic accuracy for widget
matching

Best heuristic set

We performed several experiments in order to answer research question (2).
As the process is implemented as a prioritized list of heuristics we ordered our
implementations in descending order of accuracy. This ensures that matches
are always determined by the most accurate heuristic available. Using our data
repository and oracle information we prioritized widget properties according to
how well they indicate component equivalency. Our experimentation showed
several property prioritizations yielded good results, with differences usually
within 1 percentage point when aggregated over the entire data set. The pri-
oritized property table used in our case study is shown in Table 3. A script
was implemented to generate a comprehensive set of heuristics starting from
the provided data.

Heuristic implementations are generated by running two loops over the
property list. The outer loop controls the number of disregarded properties
(ndp) and takes values from 0 to the number of properties minus 2. By creat-
ing the strictest heuristics first we preserve the inherent structure of the priority
list. The ”minus 2” limit was imposed to prevent the creation of permissive
heuristics that fail to provide accurate matches. The second loop controls
which properties are disregarded. This loop traverses the table from bottom
to top disregarding ndp properties. At each step a new heuristic is generated
and added to the priority list. For example, if all values but Hierarchical, Icon
and diff Text are disregarded (when ndp = 7 for the table above) a Proper-
tyValuesHierarchyHeuristic7 that checks for Icon equality and Text similarity
is generated. Note that although Table 3 has 10 rows, we have distinct rows
for Text and Icon criteria. When a heuristic is generated and provided with
multiple criteria for a given property the strictest one is used8. Another aspect

7when the Hierarchical property is not disregarded hierarchical heuristics are generated
8In our case property value equality



268 A.-J. Molnar

relates to property grouping. In Table 3 properties relating to widget loca-
tion and size are grouped so generated heuristics evaluate them together. This
makes sense because while we refer to a widget’s location or size as a single
logical property, they are actually expressed as distinct properties in our model.

We experimented with property order to find generally applicable configu-
rations able to provide high accuracy. Our most accurate configuration is the
one in Table 3. However we found that certain scenarios were not properly ad-
dressed using this approach. One of them consists of custom implementations
of GUI components used across several versions (e.g: jEdit’s HistoryTextField)
that were consistently mismatched. Another problem was frequent changes to
some containers, notably application menus. Both our target applications have
menu structures that were significantly altered across the studied versions. We
believe these issues to be of a general nature not limited to our studied ap-
plications. The solution to these problems lay in implementing two additional
high accuracy heuristics: SingletonComponentHeuristic and InverseHierarchy-
Heuristic, which solved the majority of the issues.

Case study results

This section addresses research question (3) by presenting results obtained
when applying our heuristic process to the 28 version pairs of FreeMind and
jEdit. These experiments were run using our test harness capable of automat-
ically running and evaluating heuristic configurations.

The results below were obtained using the heuristic set detailed in the pre-
vious section, filtered by removing low performing implementations and to
which SingletonComponentHeuristic and InverseHierarchyHeuristic instances
were added. We believe this set provides a good balance between accuracy,
generality and speed of execution.

During our experimentation we observed several factors that skewed the
obtained results. The first such factor regards composite widgets. These are
UI components that consist of multiple widgets working together to enable
complex behaviour. A prime example is the combo-box, which usually consists
of a text field, a button and a scrollable list. The second factor is the presence
of certain components used for delimitation purposes, such as menu separators,
invisible panels and such.

As our process targets test-case maintenance and software visualization
we decided to ignore delimitation widgets in our evaluation and to disregard
children of composite widgets. While we believe these settings provide the
most accurate representation of the matching process results, changing ignored
widget types (including children of composite widgets) is easily accomplished
using our process’ configuration files.



A heuristic process for widget matching 269

Measurement FreeMind jEdit Total
Correct Decision Count 1799 8976 10775
Correct Match Count 1524 7461 8985
Dissimilar Widget Count 797 4115 4912
Heuristic Decision Count 1787 8953 10740
Heuristic Match Count 1505 7321 8826
Heuristic Correct Decision Count 1743 8436 10179
Heuristic Correct Match Count 1502 7194 8696
Heuristic Decision Rate 96.89% 93.98% 94.47%
Heuristic Match Rate 98.56% 96.42% 96.78%
Heuristic Dissimilar Widget Decision Rate 89.46% 80.46% 81.92%

Table 4. Heuristic process results

FreeMind Decision Rate Match Rate Dissimilar Decision Rate
100% 8 9 8

above 95% 10 11 9
above 90% 11 11 9
above 80% 12 12 11

Table 5. FreeMind Result consistency

Table 4 shows the aggregate results obtained by our best heuristic set over
the 28 version pairs. Note that the presented metrics were aggregated over the
entire data set.

The first observation regards the sheer size of the data set. The 28 version
pairs studied contain close to 9000 equivalent widget pairs, more than half of
which are considered dissimilar. It is worth noting that in our interpretation
resizing or moving widgets onscreen does not cause them to be considered
dissimilar, even though this would break many existing implementations for
test case replay.

The most important results are found in the highlighted rows. Considering
the time span of the targeted versions (7 years for FreeMind and 10 for jEdit) we
consider decision rates well over 90% as very promising. We believe match rates
over 95% enable the implementation of long-lived GUI test cases adaptable
across multiple application versions. Also, a high dissimilar widget decision rate
shows that the process is able to match heavily modified widgets successfully,
making it feasible for implementation in quickly evolving applications.

An interesting observation is that our process was consistently more accu-
rate for the FreeMind application. This was expected due to its simpler user
interface and limited use of custom components.

While the process obtained good aggregate results, we were also interested
in achieving good consistency across the studied versions. Table 5 details the
consistency results obtained for the 12 FreeMind version pairs. We observe
that 8 version pairs exhibit flawless heuristic performance, and match rates
are over 80% for all studied pairs. The only disheartening result occurs in one



270 A.-J. Molnar

jEdit Decision Rate Match Rate Dissimilar Decision Rate
100% 0 1 0

above 95% 8 12 0
above 90% 14 16 0
above 80% 16 16 9

Table 6. jEdit Result consistency

version pair that did not achieve 80% decision rate when examining modified
widgets. Manual examination of process log files revealed that only 4 dissimilar
widgets were found, and for 2 of them wrong decisions were taken. Table
6 provides information about the consistency of the heuristic process for the
16 jEdit version pairs. Due to increased complexity and longer time span
elapsed between the tested versions we manage to reach 95% decision accuracy
for only half the studied version pairs. By comparing results’ consistency it
becomes clear that our process is feasible for long-term test-case maintenance
and comparative GUI visualization when using short iterations.

Our website [18] contains all the required tools for duplicating this case
study. Target application source code, recorded GUIs and pre-computed oracle
information are readily available for all studied versions on our SourceForge
SVN repository. The implementation of the heuristic process described in the
previous sections is hosted at the same address and available under a popular
free software license.

Heuristic error analysis

An important aspect for improving process accuracy regards the thorough
analysis of the heuristic errors. This section attempts to provide an answer
to research question (4) by analyzing some common types of mismatches that
occurred in our case study.

Detecting changes to complex widgets

Most GUIs contain widgets displaying complex behaviour such as combo-
boxes or tables. We observed that when such components were changed across
application version, especially by both resizing and moving they were some-
times incorrectly identified. This was due to the limited number of properties
associated with these components. As such, a future direction is implementing
extensible custom matching routines to target complex widget types.



A heuristic process for widget matching 271

Changes beyond GUI level

FreeMind’s evolution between January and February 2004 brought a change
in one of the menu items within the Edit menu that could not be detected using
GUI analysis. This was due to changes at both GUI and event handling level
which required source-code analysis to correctly identify the matching widgets.
Figure 1 shows the menu items, with the heuristic decision highlighting the
erroneously matched pair. Since our process does not leverage source code
information it failed to take the correct decision.

Figure 1. Highlighted items have the same accelerator but are not equivalent

Changes in widget actions

Some of the erroneous decisions taken when analyzing jEdit were due to
changes in event handling that were only subtly reflected in the GUI. Such was
the case of some menu items that maintained their place and accelerator in
the GUI hierarchy with changes being evident by small modifications of the
displayed text.

Our analysis enabled us to identify some areas for improvement. We believe
some error types can be eliminated and future work will be focused on doing so.
Special notice must be awarded however to changes that go beyond GUI level,
as these can be detected only via source code analyzers such as the SPARK
framework provided with Soot [10].

Threats to validity

While we tried to reduce threats to the validity of our case study results we
identified some aspects that need further detailing. The first identified threat
relates to generality and is based on the limited scope of our experimental tar-



272 A.-J. Molnar

gets. Our chosen target applications represent only a fraction of all possible
implementations and as such might not be representative for all GUIs. We tried
to mitigate this aspect by carefully choosing complex GUI driven applications
that were employed in multiple previous studies [21, 19, 20, 7] and providing
ample means of customizing the heuristic process. A second threat regards in-
ternal validity. Our process is fully automated and multiple software safeguards
were implemented to ensure error-free operation. Also, matches obtained by
the heuristic process were double checked with oracle data to eliminate possi-
ble errors in both. We believe our process is free from significant errors in this
respect and as such to be suited for use across a wide range of applications.

6. Limitations and future work

Although our matching process was designed for maximum flexibility, we
identified some aspects that might limit its use. Some of the aspects stem from
the tools we based our research on, while others are good candidates for future
efforts. The following list attempts an overview of these limitations:

• Dynamic user interfaces. Some applications create and dispose of GUI
elements dynamically; recording these would require using a specification
language to describe the rules that govern GUI element creation and
disposal, a task that brings added complexity to the process. Also, user
interfaces that have timing issues (e.g: web interfaces) or that present
a continuous stream of data (e.g: media players) cannot be completely
captured by the GUIRipper tool [4].

• Custom user components. While GUIRipper can be considered a mature
tool, it is not capable of fully recording every application’s GUI. More
so, some applications implement custom components or workarounds to
platform-specific issues which preclude the recording of their properties.
While our process was designed with this in mind, lack of data does lead
to poor heuristic performance. For example, certain versions of jEdit
implement custom menu items to provide key accelerators. These could
not have been recorded and interpreted correctly without modifying the
GUIRipper component.

• Magnitude of changes. We observed our process performed consistently
better for the FreeMind application. The main reason was that we ob-
tained the studied versions directly from source control, so GUI changes
could not accumulate as they did in the case of jEdit. This leads us to



A heuristic process for widget matching 273

believe that our process is best employed when target application versions
are close to each other on the time scale.

We believe our process has extensive applications in GUI software testing
and visualization, therefore our goal is to continually extend and improve its
scope. A future direction consists of performing a more consistent case study
by including several .NET and SWT based GUI applications. Such a study can
provide answers relating to the generality of the heuristic process together with
additional data about how the accuracy of the process changes when examin-
ing nightly or weekly application builds. In addition, this would allow better
understanding of how accuracy is affected by custom widget implementations.

Another direction regards extending this research beyond the desktop para-
digm by including web and mobile applications. Bryce el. al devised a common
model for event driven software testing in [12]. An elaborate study is required
to learn whether the current process is feasible using a general model and to find
suitable heuristic implementations that work for web and mobile applications.

References

[1] Adamoli, A., D. Zaparanuks, M. Jovic and M. Hauswirth, Auto-
mated GUI performance testing, Software Quality Control, 19 (December
2011), 801–839.

[2] Molnar, A.-J., jSET - Java Software Evolution Tracker, Knowledge En-
gineering Principles and Techniques, Cluj Napoca, July 2011.

[3] Memon, A.M., Automatically repairing event sequence-based GUI test
suites for regression testing, ACM Transactions Software Engineering
Methodology, 18, 4:1–4:36, November 2008.

[4] Memon, A.M., A comprehensive framework for testing graphical user
interfaces. PhD thesis, 2001.
http://www.cs.umd.edu/ atif/papers/MemonPHD2001-abstract.html

[5] Memon, A., GUI Ripping: Reverse engineering of graphical user in-
terfaces for testing, in: Proceedings of The 10th Working Conference on
Reverse Engineering, 2003, pp. 260–269.

[6] Memon, A., A. Nagarajan and Qing Xie, Automating regression
testing for evolving GUI software, Journal of Software Maintenance, 17
(2005), 27–64.



274 A.-J. Molnar

[7] Jovic, M., A. Adamoli, D. Zaparanuks and M. Hauswirth, Au-
tomating performance testing of interactive Java applications, in: Proceed-
ings of the 5th Workshop on Automation of Software Test, New York, NY,
USA, ACM, 2010, pp. 8–15.

[8] Brooks, P., B. Robinson and A.M. Memon, An initial characteri-
zation of industrial graphical user interface systems, in: ICST 2009: Pro-
ceedings of the 2nd IEEE International Conference on Software Testing,
Verification and Validation, Washington, DC, USA, 2009, IEEE Computer
Society.

[9] Omar El Ariss, Dianxiang Xu, Santosh Dandey, Brad Vender,
Phil McClean and Brian Slator, A systematic capture and replay
strategy for testing complex GUI based Java applications, in: Proceedings
of the 2010 Seventh International Conference on Information Technology:
New Generations, Washington, DC, USA. IEEE Computer Society, 2010,
pp. 1038–1043.

[10] Lhotak, O. and L. Hendren, Scaling Java points-to analysis using
SPARK, in: Proceedings of the 12th international conference on Compiler
construction, Warsaw, Poland, 2003, pp. 153–169.

[11] Glenford, R.-S. and J. Myers, The Art of Software Testing, Second
Edition. Revised and updated by Tom Badgett and Todd M. Thomas, with
Corey Sandler, John Wiley and Sons, New Jersey, U.S.A., 2004, June 2005.

[12] Bryce, R., S. Sampath and A. Memon, Developing a Ssngle model
and test prioritization strategies for event-driven software, IEEE Transac-
tions on Software Engineering, 2011.

[13] McMaster, S. and A.M. Memon, An extensible heuristic-based frame-
work for GUI test case maintenance, in: Proceedings of the IEEE Interna-
tional Conference on Software Testing, Verification, and Validation Work-
shops, Washington DC, USA. IEEE Computer Society, 2009, pp. 251–254.

[14] Si Huang, M.B. Cohen and A.M. Memon, Repairing GUI test suites
using a genetic algorithm, in: Proceedings of the 2010 Third International
Conference on Software Testing, Verification and Validation, Washington,
DC, USA. IEEE Computer Society, 2010, pp. 245–254.

[15] Website, Home of an implementation for diff-match-patch,
http://code.google.com/p/google-diff-match-patch

[16] Website, Home of the jEdit text editor,
http://sourceforge.net/projects/jedit

[17] Website, Home of the FreeMind mind mapping application
http://sourceforge.net/projects/freemind

[18] Website, Home of our GUI testing tool repository,
https://sourceforge.net/projects/javaset



A heuristic process for widget matching 275

[19] Xun Yuan and A.M. Memon, Alternating GUI test generation and
execution, in: Proceedings of the Testing: Academic & Industrial Confer-
ence - Practice and Research Techniques, pages 23–32, Washington DC,
USA. IEEE Computer Society, 2008, pp. 23–32.

[20] Xun Yuan and A.M. Memon, Generating event sequence-based test
cases using GUI runtime state feedback, IEEE Transactions on Software
Engineering, 36 (2010), 81–95.

[21] Xun Yuan and M.B. Cohen and A.M. Memon, GUI Interaction
Testing: Incorporating Event Context, IEEE Transactions on Software
Engineering, 2011.

A.-J. Molnar
Department of Computer Science
Faculty of Mathematics and Computer Science
Babeş-Bolyai University
Cluj-Napoca
Romania
arthur@cs.ubbcluj.ro




