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Abstract. We introduce a probabilistic classification method which ex-
ploits the conditional independences between the features (random vari-
ables). This idea is at the heart of the selection of a special type of infor-
mative features. The so called t-informative features are selected from the
great amount of observed features in order to diminish the uncertainty of
the classification variable and in the same time avoid the overfitting of the
model. We construct a probabilistic function of the selected t-informative
variables which classifies a new entity into one of the classes. We present
the efficiency of our algorithm in real-life applications.

1. Introduction

Classification is an important task for decision making under uncertainty.
The large number of applications, ranging from the classical ones (such as
automatic character recognition and medical diagnosis) to more recent ones
in data mining (such as credit scoring, gene selection, credit card transaction
analysis) have increased the research activity in this field.
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Probabilistic classification is a special branch of pattern recognition. Com-
prehensive books about probabilistic pattern recognition are Devroy, Györfi
and Lugosi [8] and Bishop [1]. A good introductory book about reasoning
under uncertainty is Pearl [20].

A simple yet powerful model which uses conditional indepences for the
classification task is the Naive Bayes model. It assumes that the random vari-
ables associated with the features are conditionally independent given the class
variable. Although these independence assumptions are often unrealistic, nev-
ertheless this model prove to be robust and effective for classification across a
wide range of applications, see Duda et al [9] and Cheesman and Stutz [5].

Probabilistic graphical modeling languages for representing complex do-
mains, learning these representations from data and algorithms for reasoning
using these representations can be found in Koller and Friedman [15].

In this paper we propose a new approach for probabilistic classification.
In practice it often occurs that the classification variable depends on a plenty
of variables, and these variables depend on each other. Redundant variables
in the model may cause overfitting which leads to poor generalization (the
performance of themodel on a new dataset). First one has to reduce the number
of variables involved in the classification as much as possible. For example if in
Figure 1. a) the nodes correspond to the indices of the random variables X1,
X2, X3, X4, X5 then the correlation coefficients between the variables may be:
R(X1, X5) = 0.85, R(X2, X5) = 0.69, R(X3, X5) = 0.90, R(X4, X5) = 0.78.
In the same time the following relation may exist between the conditional
entropies: H (X5|X1, X2, X3, X4) = H (X5|X3, X4) < H (X5|X1, X3). Here
the conditional entropy H (X5|X1, X3) for example is defined as

−
∑

P (X1 = x1, X3 = x3, X5 = x5) logP (X5 = x5|X1 = x1, X3 = x3),

where the summation is running over all possible x1, x3, x5 values of the ran-
dom variables X1, X3, X5. Although X5 has the largest two correlations with
the random variables X1 and X3, the entropy of X5 may be reduced more con-
siderably by conditioning on the random variables X3, X4 than conditioning
on the random variables X1, X3. For example this may happen if X1 and X3

has relatively large correlation while X3 and X4 are independent or condition-
ally independent given X5. If now X5 is considered as classification variable
then it is enough to observe the variables X3 and X4, only. In this case we
say that X5 ”directly depends” on the variables X3 and X4 and ”indirectly
dependends” on the variables X1 and X2. The same can be formulated also as
X5 ⊥ X1|X3, X4 and X5 ⊥ X2|X3, X4 where ”⊥” is used for the notation of
conditional independence. In the graph of Figure 1. a) the edges represent the
direct dependences between X1, X2, X3, X4, X5.

This example shows the importance of finding those variables which in-
fluence directly the classification variable and which should be included in the
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classifier. This task is achieved by an unsupervised learning which discovers the
”direct dependence” structure between the variables. Roughly speaking this
represents the Markov network underlying the variables. In order to discover
the Markov network we fit a probability distribution to the data. It belongs
to a special class of probability distributions called t-cherry probability distri-
butions introduced in [16] and [22]. On the base of the best fitting t-cherry
distribution we select those variables, on which the classifier depends directly.
These variables will be included in the classifier, and then will be trained by
supervised learning on the training dataset. Summing up our approach consists
of two phases. The first one is an unsupervised learning which aims to reveal
the direct dependence structure and the second one is a supervised learning,
which learns the classifier from the training dataset.

This paper consists of five sections. The second section of the paper gives
a short mathematical background of Markov networks and t-cherry junction
trees. In the third section we define the concept of t-informative variables and
define our probabilistic classifier. In the fourth section we present numerical
experiments for six datasets from the UCI Repository of Machine Learning [11].
The last section lists some conclusions of the present paper.

2. Markov network, t-cherry junction tree

Let X = {Xi}i=1,...,d be a set of discrete finite random variables over
the same probability space. Let Λi denote the set of values of Xi, and let
V = {1, . . . , d} be the set of indices. The Markov network links the joint prob-
ability distribution to a graph based on the conditional independence structure
between the random variables.

First we give a short review of the concepts on graphs that are used in this
paper. Let V = {1, . . . , d} be a set of vertices and Γ a set of subsets of V called
set of hyperedges. A hypergraph consists of a set V of vertices and a set Γ of
hyperedges. We denote a hyperedge by Ci, where Ci is a subset of V . Two
vertices in the same hyperedge are connected, which means the hyperedge of a
hyperhraph is a complete graph (a clique) on the set of vertices contained in
it.

The acyclic hypergraph is a special type of hypergraphs which fulfills the
following requirements:

• Neither of the edges of Γ is a subset of another edge.

• There exists a numbering of edges for which the running intersection
property is fullfiled: ∀j ≥ 2 ∃ i < j : Ci ⊃ Cj ∩ (C1 ∪ . . . ∪ Cj−1).
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(Other formulation is that for all hyperedges Ci and Cj with i < j − 1,
Ci ∩ Cj ⊂ Cs for all s, i < s < j.)

Let Sj = Cj ∩ (C1 ∪ . . . ∪ Cj−1), for j > 1 and S1 = φ. Let Rj = Cj\Sj .
We say that Sjseparates Rj from (C1 ∪ . . . ∪Cj−1) \Sj, and call Sj separator
set or shortly separator.

Now we link these concepts to the terminology of junction trees.

The junction tree is a special tree stucture which is equivalent to the con-
nected acyclic hypergraphs [19]. The nodes of the tree correspond to the hy-
peredges of the connected acyclic hypergraph and are called clusters, the edges
of the tree correspond to the separator sets and called separators. The set of all
clusters is denoted by C, the set of all separators is denoted by S. The junction
tree with the largest cluster containing k variables is called k-width junction
tree.

An important relation between graphs and hypergraphs is given in [19]. A
hypergraph is acyclic if and only if it can be considered to be the set of cliques
of a triangulated graph (a graph is triangulated if every cycle of length greater
than 4 has a chord). In Figure 1 we show an example.

    a) b)         c)
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Figure 1. a) triangulated graph, b) the corresponding acyclic hypergraph,
c) the corresponding junction tree

Now we link a graph to the joint probability distribution. We consider the
random vector X = (X1, . . . , Xd)

T
, with the set of indices V = {1, . . . , d}.

We denote the random vector (Xi1 , . . . , Xik)
T by XA and the set of random

variables {Xi1 , . . . , Xik} with {i1, . . . , ik} = A by XA. The graph structure
associated to a Markov network consists of the set of vertices V and the set of
edges E = {(i, j) |i, j ∈ V }. We say that the Markov network has
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• the pairwise Markov (PM) property if ∀i, j ∈ V , i not connected to j

implies that Xi and Xj are conditionally independent given all the other
random variables;

• the local Markov (LM) property if ∀i ∈ V, and Ne (i) the neighbourhood
of node i in the graph (the nodes connected with i) Xi is conditionally
independent from all Xj , j /∈ Ne (i), given Xk, k ∈ Ne (i);

• the global Markov (GM) property if ∀A,B,C ⊂ V when C separates
A and B in graphtheoretical sense then XA and XB are conditionally
independent given XC , which means in terms of probabilities that

P (XA∪B∪C) =
P (XA∪C)P (XB∪C)

P (XC)
;

• the factorization (F) property if C denotes the set of cliques of the graph
(maximum complete graphs) then there exist positive functions ψC (XC)
such that

P (XV ) =
∏
C∈C

ψC (XC) .

The following implication is well known [13]: F ⇒ GM ⇒ LM ⇒ PM .
The Hammersley-Clifford theorem states that if the random vector X takes on
all possible combinations of the values of random variables X1, . . . , Xd with
positive probability (positivity condition) then PM =⇒ F . The positivity
is a very strong condition and as the authors claim in [13]: ”The positivity
condition is mathematically convenient; But it hardly seems necessary”. In
this paper we focus on Markov networks characterized by the global Markov
property.

The concept of junction tree probability distribution is related to the junc-
tion tree graph and to the global Markov property. A junction tree probability
distribution is defined as a fraction of products of marginal probability distri-
butions as follows:

P (X) =

∏
C∈C

P (XC)∏
S∈S

[P (XS)]
νS−1

,

where C is the set of clusters of the junction tree, S is the set of separators, νS
is the number of those clusters which contain the separator S.
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Example 2.1. The probability distribution corresponding to the example
in Figure 1 is:

P (X) =
P
(
X{1,2,3}

)
P
(
X{2,3,4}

)
P
(
X{3,4,5}

)
P
(
X{2,3}

)
P
(
X{3,4}

) =

=
P (X1, X2, X3)P (X2, X3, X4)P (X3, X4, X5)

P (X2, X3)P (X3, X4)
.

In our paper [21] we introduced a special kind of k-width junction tree,
called k-th order ”t-cherry junction tree”1 in order to approximate a joint
probability distribution. The k-th order t-cherry junction tree probability dis-
tribution is associated with the k-th order t-cherry tree, introduced in [3], [4].

Definition 2.1. The recursive construction of the k-th order t-cherry tree:

(i) A complete graph of k vertices from V represents the smallest k-th order
t -cherry tree. This set of k vertices is called the first hypercherry.

(ii) By connecting a new vertex ik ∈ V with all {i1, . . . , ik−1} vertices of a
(k − 1)- dimensional complete subgraph of the existing k-th order t-cherry
tree, we obtain a new k-th order t-cherry tree. {{ik} {i1, . . . , ik−1}} is
called k -th order hypercherry. V := V \ {ik}.

(iii) A k -th order t-cherry tree can be obtained from (i) by successive appli-
cation of (ii) till V becomes empty.

Remark 2.1. The k -th order t-cherry tree is a special triangulated graph
therefore a junction tree structure is associated with it.

Definition 2.2. The k-th order t-cherry junction tree is defined in the
following way:

• By using Definition 2.1 we construct a k -th order t -cherry tree over V .

• To each hypercherry there a cluster of the junction tree is assigned.

• To each hypercherry of the form {{ik} {i1, . . . , ik−1}} we assign the set
{i1, . . . , ik−1} and call it separator set.

We denote by Cch, and Sch, the set of clusters and separators of the t-cherry
junction tree.

1
t-cherry tree is the name of the special graph structure behind this junction tree.
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Definition 2.3. If the indices of the random vector XT = (X1, . . . , Xd) are
assigned to a t-cherry junction tree structure then the probability distribution
is called t-cherry junction tree probability distribution (shortly t-cherry pd)
and is given by:

Pt-ch(X) =

∏
C∈Cch

P (XC)∏
S∈Sch

(P (XS))
νs−1

,

where the probability distributions involved in the above formula are marginal
probability distributions of P (X).

Example 2.1 shows a 3-rd order t-cherry junction tree probability distribu-
tion.

3. The classification problem in terms of t-cherry junction trees

First we list some notations and assumptions introduced in [8].

Let (X, Y )
T
be an Rd×{1, . . . ,M} valued random vector. A classifier is con-

structed on the basis of a training set containing n vectors
(
x1, y1

)
, . . . , (xn, yn)

and is denoted by gn. For a given x ∈ Rd the value y ∈ {1, . . . ,M} of Y is
guessed by gn

(
x;
(
x1, y1

)
, . . . , (xn, yn)

)
.

So the classifier gn is a function:

gn : Rd ×
{
Rd × {1, . . . ,M}

}
−→ {1, . . . ,M} .

The construction of gn in this way is called supervised learning.

We assume that
(
X1, Y 1

)T
, . . . , (Xn, Y n)T is a sequence of independent

identically distributed random vectors having the same distribution as (X, Y )
T
.

The training dataset may be the result of experimental observations (me-
teorological data, ECG data, ...) The yi values can be obtained through mea-
surements or through an expert who filled out the yi values after having the
realizations of the xi vectors.

The performance of the classifier gn is measured by the probability of error
occurrence:

Ln = L (gn) = P
{
gn
(
X;
(
x1, y1

)
, . . . , (xn, yn)

)
�= Y

}
.
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The best possible classifier is defined by:

g∗ = argming:Rd→{1,...,M} P (g (X) �= Y ) .

We note that g∗ depends on the probability distribution of the random
vector (X, Y )

T
which usually is unknown.

In the approach presented here we exploit some of the conditional inde-
pendences to construct a good approximation of the probability distribution of
(X, Y )T . In order to do this we search for the best fitting k-th order t-cherry
probability distribution. At first sight the search space may seem to be very
special, however in [21] we proved that finding the best fitting k-th order t-
cherry probability distribution is the best choice among all k-width junction
tree probability distributions.

We search for the best-fitting probability distribution to the training data
by minimizing the Kullback-Leibler divergence ([18]):

KL =
∑
x,y

P ((X, Y )) log
2

P ((X, Y ))

Papp ((X, Y ))
.

From now on the random variable Y will be denoted also by Xd+1 for
notational convenience.

The method for finding a k-th order t-cherry junction tree using this crite-
rion is presented in [21] and [22].

On the basis of the t-cherry junction tree obtained by minimizing the K-L
divergence we define a special type of informative variables in terms of the
t-cherry junction tree.

Definition 3.1. The set of variables

Xt-info =

{ ⋃
C∈Cch

XC | d+ 1 ∈ C

}

are called t-informative variables for Xd+1.

The t-informative variables are the variables contained in those clusters
which contain the classification variable Xd+1. Because of the running inter-
section property these clusters form a junction tree.

Algorithm 3.1. Selection of the t -informative features (unsupervised learn-
ing).

1. Give as input the training dataset in discretized form. (A method for
discretization was proposed in paper [17].)
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2. From the discretized probability distribution determine all the k-th order
marginals (it is favorable if k is not too large).

3. Find the heaviest weighted tree, in the sense (see [21] and [22]):∑
(Xi1 ,...,Xic)∈Cch

I (Xi1 , . . . , Xic)−∑
(Xj1 ,...,Xjs)∈Sch

(νj1,...,js − 1) I
(
Xj1 , . . . , Xjs

)
→ max,

where I (Xi1 , . . . , Xic) is the information content of P (Xi1 , . . . , Xic) (see
[7]).

4. Output: the set of clusters C and the set of separators S.

5. Select those clusters which contain the variable Xd+1(= Y ).

6. Select those variables which occur in the clusters selected in step 5 as
t-informative variables.

In Figure 1 the t-informative clusters for the variable X4 are (X2, X3, X4)
and (X3, X4, X5). The set of t -informative variables are X2, X3 and X5.

The joint probability distribution of the random vector (Xt-info, Xd+1)
T will

be denoted by Pt-info ((Xt-info;Xd+1)). Then we have

(3.1) Pt-info (Xt-info;Xd+1) =

∏
(i1,...,ic)⊂Ct-info

P (Xi1 , . . . , Xic)∏
(i1,...,is)⊂St-info

P (Xj1 , . . . , Xjs)
(νj1,...,js−1)

,

where νj1,...,js = # {{Xj1 , . . . , Xjs} ⊂ C | C ∈ Ct-info} .

For example for the t-cherry tree of Figure 1 and for the classification vari-
able X4:

Pt-info (X2, X3, X5;X4) =
P (X2, X3, X4)P (X3, X4, X5)

P (X3, X4)
,

Remark 3.1. If the number of selected t -informative variables is not too
large then one can use their jointmarginal probability distribution. This can be
determined from the probability distribution underlying the training dataset.
Else it is useful to apply formula (3.1).

Now we are going to define the concept of the conditional t-informative
classifier.
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In the following formulas we will refer to Pt-info ((Xt-info, Xd+1)) as
Pt-info (Xi1 , . . . , Xir , Y ). This probability is the corresponding marginal prob-
ability distribution determined from the training dataset or its approximation
given by (3.1).

In order to introduce the classifier first we introduce some notations.

We suppose that we have a set of training vectors : {(xt, yt)}t∈{1,...,n}.

Usually n > 4

5
N , where N is the total number of the available observation

vectors. These can be selected randomly from the given dataset at the beginnig
of the analysis. The remaining data constitute the test dataset.

It may happen that a vector from the test dataset does not occur in the
training dataset. Hence we define the following set of marginal probability
distributions.

Let

P i,k
t-info

(
xt
i1
, . . . , xt

ir

)
=

{
Pt-info

(
Xj1 = xt

j1
, . . . , Xjk = xt

jk
, Y = i

)
|

{Xj1 , . . . , Xjk} ⊂ Xt-info,

Pt-info

(
Xj1 = xt

j1
, . . . , Xjk = xt

jk
, Y = i

)
> 0

}
and

k∗ = max
{
k | k ∈ {1, . . . , r} ; P i,k

t-info

(
xt
i1
, . . . , xt

ir

)
�= φ

}
.

P i,k∗

t-info is in fact the set of the largest order marginals of P i,k
t-info

(
xt
i1
, . . . , xt

ir

)
which are positive for a given realization

(
xt
i1
, . . . , xt

ir

)
.

We define the following discrete random variable:

γk∗

xt
i1

,...,xt
ir

:

(
1 . . . i . . . M

p1 . . . pi . . . pM

)
where

pi =

∑
Pi,k∗

t-info(xt
i1

,...,xt
ir
)
Pt-info

(
Xj1 = xt

j1
, . . . , Xjk∗ = xt

jk∗
, Y = i

)
∑

Pi,k∗

t-info(xt
i1

,...,xt
ir
)
Pt-info

(
Xj1 = xt

j1
, . . . , Xjk∗ = xt

jk∗

) , i = 1, . . . ,M.

Remark 3.2. It is easy to see that
M∑
i=1

pi = 1.

Definition 3.2. The classifier g
(r)

n,t-info is defined in the following way:

g
(r)

n,t-info : R
d × {Rr × {1, . . . ,M}} −→ {1, . . . ,M} , r < d

g
(r)

n,t-info (x1, . . . , xd) = argmaxi∈{1,...,M} P
(
γk∗

xi1 ,...,xir
= i

)
.
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The classifier defined in this way is obtained by supervised learning.

Remark 3.3. One can see from this definition that for classifying a new
d-dimensional vector we use a number of r t -informative features only.

We call the classifier defined in Definition 3.2 conditional t-informative clas-
sifier.

Definition 3.3. The performance of the classifier g
(r)

n,t-info is measured by
the conditional probability of error:

Ln = L
(
g
(r)

n,t-info (X)
)
= P

(
g
(r)

n,t-info (X) �= Y |
(
x1, y1

)
, . . . , (xn, yn)

)
.

In practice the probability of error can be approximated by the relative
frequency of errors in the set of test data vectors. The probability of accuracy
is defined by 1− Ln.

4. Numerical experiments with the UCI Machine Learning
Repository

In this section we present numerical experiments according to six classifi-
cation problems. We used datasets from the Repository of Machine Learning
Databases maintained by the University of California at Irvine [11].

The accuracy of our approach was estimated by randomly selecting a sub-
set of the dataset, called training set. The training set consisted of 80% of
the observations. The remaining part of the observations was used as a testing
dataset. On the testing dataset we counted the ratio of the right classifica-
tions when applying our method. This procedure was repeated 20 times with
randomly selected training sets. The average accuracy of our procedure was
obtained as the mean value of the ratios of right classifications, obtained for
each experiment. In the following we give brief description of the datasets. We
compare our results with those published in [2], [10] and [14].

1. Australian Credit Card (ACC): The dataset, submitted to the repository
by Quinlan, consists of 690 records of Master Card applicants, 307 of
which are classified as positive and 383 as negative. While 37 records
have some missing data, they were not omitted from our analysis. Each
record consists of 15 features, which corresponds to random variables.
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It is very interesting that ”this problem detect a degree 1 pattern con-
sisting of the ninth attribute alone, which correctly predicts the outcome
in 85.1% of the cases” ( see [2]). Using our conditional t -informative (CI)
approach we got similar result. We also found, that by adding features
to the t -informative features the prediction accuracy does not improve
what is in accordance with the results in [2].

2. Wisconsin Breast Cancer (WBC): The dataset, compiled by Mangasarian
and Benett, is widely used in machine learning community for comparing
machine learning algorithms. Each observation describes a cytological
test specified by nine numerical attributes, which were obtained from
31 attributes. Currently the dataset consists of 699 observations; out of
which 683 are complete (have no missing data). We use just these records
in our experiment. The classification task is ”malign” or ”benign”.

3. Congressional Voting (CV): The dataset, contributed by Schlimmer, in-
cludes votes for each of US House of Representative Congressmen in the
98th Congress, second session of 1984, on 16 key issues identified by Con-
gressional Quarterly Almanac (CQA, Volume XL). The dataset contains
435 data (267 Democrats and 168 Republicans). The task is to identify
the party membership on the bases of the result of the 16 votes. We use
the whole dataset, despite of Boros et al. who removed from the dataset
of observations corresponding to six congressmen who did not vote on
most of the issues.

4. Diabetes (D): This dataset, compiled by the national Institute of Diabetes
and digestive and Kidney disease, was contributed to the repository by
Sigilito. The dataset consists of 768 complete observations, about 2/3
of which correspond to patients showing signs of diabetes and the rest
exhibiting no such signs. Each patient is described by 8 numerical at-
tributes.

5. Cleveland Heart Disease (CHD): The Cleveland Clinic Foundation heart
disease dataset, contributed to the repository by Detrano, contains 303
observations, 165 of which describe healthy people and 138 sick ones.
Each patient is described by 13 attributes.

6. German Data (GD): The dataset was provided by Prof. Hans Hofmann,
Institut für Statistik und Ökonometrie Universität Hamburg. It contains
categorical/symbolic attributes. Each customer is characterized by 24
attributes. The dataset consists of 1000 observations.

In Table 1 the correct prediction rates and their standard deviations ob-
tained by CtIC (Conditional t -Informative Classifier), by LAD (Logical Analy-
sis of Data) ([2]) and by GA (Genetic Algorithm) ([10]) are given. Paper [2] has



Probabilistic classification 213

no results according to the German Data dataset and paper [10] has no results
according to the Wisconsin Breast Cancer and Congressional Voting datasets.
The average prediction rates were calculated over 20 runs for CtIC and LAD,
and over 10 runs for GA. The k values given according to CtIC mean the or-
der of the t-cherry tree applied in the construction of the set of t-informative
variables.

CtIC k LAD GA
ACC 86.6% (2.5) 3 85.5% (2.6) 86.3% (0.8)
WBC 95.9% (1.5) 2 97.2% (1.3) –
CV 96.7% (1.9) 3 96.6% (2.1) –
D 75.4% (3.9) 2 72.2% (4.3) 74.1% (0.5)
CHD 84.6% (5.5) 3 83.8% (6.0) 82.3% (7.1)
GD 73.5% (3.1) 3 – 72.9% (0.8)

Table 1. Correct prediction rates (in percent) on the test problems

For the German Data dataset other approaches using SVM combined with
Grid, F-score and GA (see [14]) found 76.0%, 77.5% and 77.9% classification
accuracies with standard deviations 3.86, 4.03 and 3.97, respectively.

These experiments highlight that our Conditional t -Informative Classifier
is competitive with the well-established classifiers published earlier.

5. Conclusions

In this paper we introduced a classification method which by using some
of the conditional independences between the features diminishes the number
of informative variables which have to be taken into consideration. Unlike
other approaches exploiting the conditional independeces, like for example K2
([6]), which discovers the Bayesian network, our approach does not require the
ordering of the variables (which usually needs collaboration with experts).

Our approach uses just the k-th order marginals obtained from the training
data. Using their information content we were able to fit the t-cherry prob-
ability distribution to our data. Based on this concept we determined the
t-informative variables which were included in the classifier. In this way we
reduced the dimensionality of the problem in order to avoid the phenomenon
of overfitting. Discovering the dependence structure makes also possible to ob-
tain informative variables for more than one classification variables in the same
time. This allows the efficient structuring of databases, too.
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