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Abstract. Superoptimization is a known technique to integrate the anal-
yses and transformations of a number of separate optimizations in order
to obtain an optimization that is more expressive than the sequential and
iterative application of the original optimizations. This paper describes
the elaboration of this technique within the Low Level Virtual Machine
(LLVM) Compiler Infrastructure. A framework supporting the integra-
tion of modular optimizations into superoptimization is presented. Some
LLVM-specific implementation considerations are also discussed. Finally,
a brief introduction to the use of the framework is provided.

1. Introduction

Compilation is more than merely translating higher level programming lan-
guages into machine code. All of the practically used compilers are optimizing
compilers, which means that besides generating native code the compiler trans-
forms programs in different ways in order to make the generated code more
efficient – either run faster or consume less memory.

Key words and phrases: Compiler, optimization, dataflow analysis, superoptimization.
2010 Mathematics Subject Classification: 68N20.
1998 CR Categories and Descriptors: D.3.4.
The research is supported by the European Union and co-financed by the European Social
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Typically, compilers apply optimizations one after the other, which leads
to an iterative optimization technique. Iteratively applied optimizations can
observe changes performed by preceding transformations. However, this simple
technique is known to be ineffective in some cases, namely when optimizations
would benefit from sharing information about the program to be optimized.
To address this problem, separate optimizations can be combined into more
complex optimizations. Such a more complex optimization is sometimes called
a superoptimization. A case study on handcrafted superoptimizations is given
in [2].

Superoptimization is an improvement to iterative optimization in respect
of the efficiency of the generated code. However, superoptimizations are large
and monolithic, and so their complexity makes them unusable in practice. Can
we combine the modularity and maintainability of iterative optimization and
the effectiveness of superoptimization? A framework to compose optimizations
and to share information among them can make this possible. The developers
of the Vortex compiler [3] laid down the foundations for such a technique. In [8]
a method to combine individual optimizations into a modularly built superop-
timization is described, and the semantics of optimization of one instruction
is formally given. Although according to the cited papers the technique was
utilized within the Vortex compiler, the exact algorithm to solve the combined
analysis for a whole program has not been published by the developers.

The main contributions of this paper are:

• an algorithm to optimize a whole program using the above method, and

• the implementation of a superoptimization framework for LLVM (avail-
able for downloading at http://kp.elte.hu/superoptimization).

The Low Level Virtual Machine (LLVM) Compiler Infrastructure [6] “is a
collection of modular and reusable compiler and toolchain technologies”. It
supports, officially or through external projects, the static and dynamic compi-
lation of many programming languages. LLVM provides a static single assign-
ment (SSA) form based virtual instruction set (LLVM intermediate represen-
tation [16]), as well as a collection of core libraries. The aim of this compiler
infrastructure is to facilitate the development of compilers that use LLVM as
an optimizer and code generator.

The rest of the paper is structured as follows. Section 2 illustrates how
superoptimization is more effective than iterative optimization. The two ap-
proaches are compared using a small example. Section 3 summarizes a superop-
timization framework. Section 4 explains how the superoptimization framework
can be implemented within the LLVM infrastructure. Section 5 gives a brief
introduction on the use of the developed LLVM superoptimization framework.
Section 6 discusses related work, and, finally, Section 7 concludes the paper.
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2. Motivation

Typically, compilers perform optimizations one after the other in an it-
erative approach. In LLVM, for instance, optimizations are introduced in a
modular way; an optimization manager is responsible for running the selected
optimizations in some order, and for detecting whether an optimization has
applied any transformations – hence, in the case of changes it is possible to
re-run the (whole or just some sub-) sequence of optimizations.

The possible inefficiency of programs which are optimized by the iterative
technique is demonstrated in this section on a small program snippet. There-
after a trivial solution of information exchange between optimizations, resulting
in a superoptimization, is shown. The lack of maintainability of this solution
is pointed out as well.

Before presenting the iterative optimization, the concept of Control Flow
Graphs (CFGs) described in [10] is required, because we give the examples
using this notation. In Control Flow Graphs, nodes represent instructions and
directed edges represent possible execution paths between them. Diamond
nodes are conditional branches, and rectangle nodes are instructions from which
the control can go further only in one way. The control enters into a Control
Flow Graph through its only instruction with no predecessors.

2.1. Iterative optimization

Iterative optimization is illustrated by a small example in Figure 1. We
start with a simple conditional branch (Figure 1a). Note that the conditional
construct can be eliminated and the value to be stored in the variable result can
be determined in static time (Figure 1d). The application of two well-known
optimizations, constant propagation and reachability analysis, can achieve this
goal.

Constant propagation is an optimization that substitutes occurrences of
variables with their values, if the value of such an occurrence is known in
compile time. In SSA all occurrences of a given variable can be substituted
with the (single) value, if that value is statically known. For instance, the
transition from Figure 1a to 1b is the propagation of value “true” into the
occurrences of variable c. Reachability analysis can be applied to find dead
code, which can be eliminated. The transition from Figure 1b to 1c illustrates
how this works: the “else” branch of the conditional has been found needless
and so has been eliminated.

It is obvious that reachability analysis cannot yet transform the code in
Figure 1a because of the variable c appearing in the condition. However, a
preceding constant propagation can substitute the variable with the stored
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c : = true

c

x : = 0 x : = 1

result : = x

(a) Original CFG

c : = true

true

x : = 0 x : = 1

result : = x

(b) Propagate constants

c : = true

x : = 0

result : = x

(c) Analyse reachability

c : = true

x : = 0

result : = 0

(d) Propagate constants again

Figure 1: Iterative optimization of a program snippet

value “true”. Having performed constant propagation, reachability analysis
can proceed. As a result, the value of x becomes unambiguous, hence another
pass of constant propagation can modify the last assignment and output the
code in Figure 1d. The iterative execution of optimizations is effective in the
example given in Figure 1 with performing one reachability analysis between
two constant propagations.

The example shows that dependencies may exist among optimizations, i.e.
the result of an optimization is dependent on that of another. Moreover, there
may be mutual dependencies between constant propagation and reachability
analysis: one execution of constant propagation reveals new opportunities for
reachability analysis and vice versa. The mutual dependencies of optimizations
could be resolved by iterative execution for the CFG of Figure 1, but there are
graphs on which the iterative optimization is unavoidably ineffective.

2.2. Superoptimization

The next example is the CFG of the Euclidean algorithm for non-negative
integers, depicted in Figure 2. In the case when the value of parameter b is 0,
the condition of the loop will be false right at the first time, and the result of
function “gcd” will be the value of parameter a. Now consider the program
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b �= 0

a, b : = b, (a mod b)

return a

Figure 2: CFG of function gcd(a, b)

x, y : = 10, 0

z : = gcd(x, y)

(a) Original program

x, y : = 10, 0

y �= 0

x, y : = y, (x mod y)

z : = x

(b) After inlining

x, y : = 10, 0

z : = 10

(c) Desirable form

Figure 3: Simple example with Euclidean algorithm

snippet in Figure 3a. Inlining function “gcd” produces the CFG in Figure 3b.
The conditional will be false when the execution first reaches it. Thus z will
store the initial value of x in the end of the execution. The optimized form of
the original program snippet is shown in Figure 3c.

Note that the iterative optimization using constant propagation and reach-
ability analysis is unable to transform the CFG in Figure 3b. The reachability
analysis cannot eliminate the conditional construct, because its condition con-
tains a variable; furthermore, constant propagation can substitute neither x
(by ten) nor y (by zero) because of the assignment to x and y inside the loop.
However, it is apparent that a combination of these two optimizations could
achieve the desired state shown in Figure 3c.

The ineffectiveness of the iterative optimization here is due to the lack of
proper communication between the individual optimizations. They could only
exchange information via transformations, and they cannot share knowledge
about the current state of the code to optimize. One has to define a new in-
dividual optimization which utilizes the combined knowledge of the dependent
optimizations to ensure the combined effect of the optimizations. The com-
plex optimizations, which combine the logic of some simpler optimizations, are
called superoptimizations. A superoptimization combining constant propaga-
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tion and reachability analysis can convert the CFG in Figure 3b into the one
in Figure 3c, as it can neglect the back edge inside the loop, because it is aware
of the value of the condition when the execution hits it for the first time, and
therefore it can eliminate the “then” branch from the code.

The watchful Reader might notice that in this very example, adding one
more optimization, namely Loop Unrolling, to the set of applied optimizations,
the iterative approach can also transform the CFG in Figure 3b into the one
in Figure 3c. Still, it is clear that a superoptimization constructed from a set
of optimizations is more powerful than the iterative application of the same set
of optimizations.

Unfortunately, a monolithic superoptimization, which is constructed manu-
ally, is rather unmaintainable compared to the simple component optimizations.
This is the reason why superoptimizations are practically unusable without a
technique to construct them modularly.

One might think that an alternative to superoptimizations could be a tech-
nology to construct optimizations from transformations which use common
analyses. This technology would be supported by current practice, because
the analyses and transformations are executed separately in many compilers.
However, this approach only moves the complexity problem to another level,
since in this case the analyses have to be aware of all the possible transforma-
tions to compute the most precise information for the current program. For
this reason a better solution should be found – such a solution is proposed in
the forthcoming sections.

3. Superoptimization framework

This section describes a method to combine individual optimizations auto-
matically so that the result of execution is equivalent to the superoptimization
determined by the separate optimizations. The concept of Integrated Analy-
ses and that of Composed Analysis was suggested in [8]. Integrated Analyses
are a generalization of Data Flow Analyses. Composed Analysis is obtained
by combining Integrated Analyses into a single analysis. The soundness and
termination of Composed Analysis was also proven in [8].

A Data Flow Analysis collects information about a program. This infor-
mation can be used to direct transformations applied on that program. To
compute the necessary information for every single instruction of a program,
a system of data flow equations must be solved. Data Flow Analyses is a
well studied topic – there are several methods to solve data flow equations.
Summaries of Data Flow Analyses and solver algorithms can be found e.g.
in [10, 11].
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3.1. Integrated Analyses

The main difference between Data Flow Analyses and their generalization,
Integrated Analyses, is that the former only provides some information about
the individual instructions of a program, while the latter may provide a re-
placement graph for an instruction as well. Integrated Analyses let us express
a transformation together with the necessary analyses as a single entity.

Individual Integrated Analyses are combined into one special Integrated
Analysis by the Composed Analysis, which recursively optimizes the replace-
ments provided by component analyses, and returns the most efficient replace-
ment according to an arbitrarily chosen metrics. The information sharing be-
tween analyses is achieved by merging all the information collected during both
the analysis of the CFG and the recursive optimization of replacements.

According to the original definition given in [8], an Integrated Analysis
results in either some information or a replacement, but never both, for an
instruction. In our framework, however, an Integrated Analysis is permitted
to return some information and a replacement at the same time. This minor
generalization allows us to express certain optimizations more compactly and
efficiently. In the case of the Inliner optimization, when inlining the body of a
function at a call site, the original definition of Integrated Analyses does not al-
low the propagation of any information to successor instructions, it only allows
a replacement graph to be returned. However, information about the inlined
function is very useful to be propagated in order to avoid re-analysing the func-
tion at its next call site. Due to the generalization of the original definition,
Integrated Analyses in our framework support this beneficial behavior.

At first glance it might be strange that with Integrated Analyses the analysis
of an instruction is allowed to yield a replacement and no information at all.
If no information is returned from the analysis of an instruction, what can be
used as input for the analysis of the successor instruction(s)? The answer is
that the Composed Analysis collects information during the optimization of
the replacement graph, and this information will be propagated as input to the
analysis of every successor instruction.

3.2. Composed Analysis

A Composed Analysis, as defined originally in [8], combines Integrated
Analyses only for analysing a single instruction. In order to implement a super-
optimization framework, it was necessary to work out an algorithm to optimize
a whole program utilizing Composed Analysis. This algorithm is one of the
contributions of this paper.
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Algorithm 1 to optimize a program with Composed Analysis

1: put entry point(s) into working queue Q
2: while Q is not empty do

3: get next instruction from Q into i
4: if i is virtually dead then

5: process i as a virtually dead instruction
6: continue with next instruction
7: else if i is a loop header then
8: if information about i’s loop is in fixed point then
9: process 1-step-outside exiting edges

10: continue with next instruction
11: else

12: prepare for re-analysing i’s loop
13: end if

14: else

15: update i’s ingoing information
16: end if

17: analyse i with the computed ingoing information
18: store replacement for i
19: propagate outgoing information to i’s successors using Algorithm 2
20: end while

21: perform stored replacements

The solver algorithm elaborated here traverses a CFG either in forward
or backward direction, depending on the traversal order of the analysis to be
performed. As Integrated Analyses are a generalization of Data Flow Analyses,
the algorithm has been developed from a well-known Data Flow Algorithm.
The applied modifications make it possible to handle replacements and related
problems. However, unlike the algorithm which can be found in [11] Section 6.3,
our algorithm decides dynamically in which order the instructions are to be
visited. The decision is made according to the availability of information on
the edges of the Control Flow Graph. The principles of our algorithm are also
similar to those of the structural analysis algorithm given in [10] Section 8.7.

Algorithm 1 uses a working queue to store instructions to be analysed,
i.e. an instruction can only be put in the queue when all its predecessors are
already analysed. Initially, only instructions with no predecessors are inserted
in the queue. Until the queue becomes empty, the algorithm processes the next
instruction from the queue, which means that the order the instructions are
to be visited is decided dynamically, while processing instructions. However,
a preliminary traversal is needed by a typical efficient Data Flow Algorithm,
such as the one described in [11], in order to make up a plan about the order
in which instructions are to be visited. Delaying the analysis of an instruction
until its predecessors have been analysed, and analysing instructions insistently
in an order that matches the structure of the program leads to a very efficient
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traversal algorithm – in the sense of how many times instructions must be
visited before reaching a fixed point of information. This idea is also utilized
in the structural analysis algorithm which can be found in [10].

A crucial part of analysing a program is the act of deciding whether the
analysis has reached a fixed point during the collection of information about
a loop construct. As usual with Data Flow Analyses, there are three sorts of
CFG edges to consider when analysing loops: entering into a loop, jumping
back to the header of a loop and exiting from a loop. Also, a given CFG edge
may belong to more than one category at the same time. In order to ensure
that the information about a loop construct is in fixed point, loop headers are
also to be considered carefully. When the traversal reaches a loop of which
the source instruction of every entering edge is already analysed, the header
of the loop has to be inserted in the queue (lines 6–7 in Algorithm 2). When
the traversal reaches an instruction with exiting edges, information to each
successor outside of the loop is to be held up until information about the
outermost enclosing loop the edge exits from is proven to be in fixed point. In
Algorithm 2, outgoing information is always stored (line 3), but checking of
readiness is skipped if the particular edge is exiting from the loop (lines 4–5).
When the traversal reaches a loop header from inside of its loop by meeting
condition of line 7 in Algorithm 1, there are two possible cases. In the first case
(lines 8–10) information is in fixed point, and the traversal is free to propagate
information to the outside of the loop, so checking readiness of instructions
reached through an exiting edge is to be performed here similarly to the way
in Algorithm 2. After processing all the exiting edges, traversing can continue
normally. In the second case (lines 11–12), when information is not yet in fixed
point, the algorithm must re-traverse and re-analyse the loop.

Algorithm 2 to propagate information to successors of an instruction i

1: for all successors of i do
2: let the successor be called j and the edge leading to j be called e
3: store outgoing information for j
4: if e is an exiting edge then

5: continue with next successor
6: else if e is an entering edge and j’s loop is ready then

7: put the header of j’s loop into the queue
8: else if e is not an entering edge and j is ready then

9: put j into the queue
10: end if

11: end for

Our contribution to the Data Flow Algorithms mentioned before is the han-
dling of replacements. Replacements for each instruction are stored (line 18 in
Algorithm 1), when the Composed Analysis returns them. Eventually, after
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analysing the whole program, the stored replacements are performed (line 21).
However, the handling of replacements really complicates things. On the one
hand, a replacement provided by the analysis can only be performed when the
information of the outermost enclosing loop is in fixed point. That is why re-
placements are stored, and not performed immediately. On the other hand, not
yet performed replacements must be taken into account when checking whether
the analysis has reached a fixed point. This makes it necessary to introduce
the concept of the virtual state of the CFG, and virtually dead instructions.

The virtual state of the CFG consists of the edges which would be present
after performing the currently stored replacements. Replacements can delete
existing edges from the CFG – although they are not allowed to introduce new
ones. The analysis does not provide outgoing information for the edges which
the replacement deletes. Storing outgoing information (line 3 in Algorithm 2)
in such a case means that no information is actually stored, only a flag is set.
Therefore, the computation of ingoing information for an instruction i can be
based on merging information about only those instructions which would be
the predecessors of i after performing the replacements.

While maintaining the virtual state of the CFG, an instruction may be
left behind with only virtually removed ingoing edges. Since such instructions
cannot be reached by executing the program represented by the virtual state of
the CFG, they are virtually dead instructions. There is no ingoing information
for such an instruction, hence those instructions cannot be analysed. They have
to be handled specially: the only information to be propagated about those in
the virtual state of the CFG is that their outgoing edges are virtually removed.
Algorithm 1 checks for virtually dead instructions and processes them between
lines 4 and 6.

Further details about this algorithm together with some examples can be
found in the technical report [5]. The presentation is general enough to enable
the implementation of the algorithm in different environments. However, it
is worth to take the specialities of those environments into account in order
to arrive at an efficient implementation. A few of our implementation consid-
erations for the Low Level Virtual Machine are discussed in the forthcoming
section.

4. Superoptimizing in LLVM

The Low Level Virtual Machine (LLVM) Compiler Infrastructure is a modu-
larly built compilation framework. A new compiler can be easily constructed by
composing the existing modules of LLVM. Moreover, the functionalities of such
a compiler can be extended by implementing new modules in the framework.
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Due to this extensible, modular design, developers of high-level programming
languages often use LLVM for building compilers.

A short summary of the optimization module of LLVM is given in Sec-
tion 4.1. Section 4.2 discusses some characteristics of LLVM which our frame-
work is affected by. In Section 4.3 some implementation considerations of the
framework are briefly revealed.

4.1. LLVM support for optimization

LLVM offers a simple way to implement separate analyses and transfor-
mations as optimization passes. The passes are activated by an optimization
manager which applies the scheduled passes in an efficient order. A transfor-
mation can gain information from analyses if those analyses have been applied
previously. Since the optimization manager has to determine the activation
order of the passes, it requires each pass to declare

• which other passes compute information needed by the current pass, and

• which are the passes that need not be re-run after this pass (i.e. the result
of which passes are not affected by the execution of the current pass).

According to this information, the manager is able to share the results of anal-
yses among transformations, and keep the number of analysis executions at the
minimum. A transformation can let the manager know whether it performed
any modifications. Based on this information, the execution of the optimization
manager can be organized into iteration.

4.2. LLVM and the superoptimization framework

LLVM was designed to ease the implementation of optimizations and to
that end many known compiler techniques have been utilized. One of those
techniques is the application of the Static Single Assignment Form (SSA),
which is supposed to simplify Data Flow Analyses. SSA means that every
variable can occur at the right hand side of at most one assignment in the
source code. To select a value from different execution paths the so called φ
function is used. A simple example is given in Figure 4. In order to fully
exploit the benefits of the SSA form, one has to work with DU-chains. Both
DU-chains and UD-chains are available in LLVM. DU-chains let us access all
uses of a definition at the place of the definition, and UD-chains let us access
the definition of a variable wherever the variable is used.

Unfortunately, the use of DU-chains in transformations causes non-local
modifications of the analyzed program, and this is forbidden in superoptimiza-
tion [8]. Thus, the Integrated Analyses are unable to profit from DU-chains
and, consequently, the SSA form is also useless for our framework. In fact, the
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c

x : = y x : = z

v : = x

(a)

c

x1 : = y x2 : = z

x : = φ(x1, x2)

v : = x

(b)

Figure 4: The conventional (a) and SSA (b) form of a simple branch

SSA form of LLVM programs forced us to handle the φ instructions in a rather
special way. This is because replacements inside loops can only be performed
if the information is in fixed point, and to check whether this is the case the
virtual state of the CFG must be considered; therefore, virtual φ instructions
must be used. For instance, Figure 5 depicts the SSA form of the inlined “gcd”
function given in Figure 3b. In order to realize the optimized form (which can
be seen in Figure 3c), the Integrated Analyses have to operate with modified
φ instructions, otherwise the unknown values of x1 and y1 interfere with the
elimination of the conditional branch. So when the second assignment is being
analysed for the first time, the Integrated Analyses have to be given a modified
assignment, namely: x, y : = φ(x0), φ(y0). Then the suggested replacement,
which eventually is the elimination of the branch, causes neglecting the back
edge and reaching a fixed point of information, and hence the replacement can
be performed.

x0, y0 : = 10, 0

x, y : = φ(x0, x1), φ(y0, y1)

y �= 0

x1, y1 : = y, (x mod y)

z : = x

Figure 5: SSA form of inlined “gcd” in Figure 3b
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In contrast to the SSA form, there are advantageous features as well in
LLVM with respect to the superoptimization framework. To mention but a
few, the structure of LLVM programs makes the control flow explicit. More-
over, iterators are available to access predecessor and successor instructions
according to the CFG of the program. Finally, the existing LoopInfo analy-
sis and SimplifyCFGPass transformation have proven to be very useful. The
former can identify loops and various types of edges in the program, and the
latter can eliminate possible block chains left behind by the framework.

4.3. Further implementation considerations

In this section some particularities of our approach to implement a super-
optimization framework for LLVM are presented. These can be regarded as
“the lessons learned” from this research, and are useful for understanding the
details of the framework.

LLVM programs are explicitly separated into “basic blocks”. A basic block
is a sequence of instructions without a branch. The control can enter into a
basic block only through its first instruction. Therefore, it is enough for the
analyses to store the ingoing information of only the first instruction of each
basic block – for all other instructions it can be computed easily by demand.

It is very realistic to assume that the functions to merge information ar-
riving at a CFG node from different edges are associative and commutative
operations, thus the ingoing information of a basic block can be merged in-
crementally. Merging is performed immediately when information is being
propagated from a predecessor, so there is no need to store outgoing informa-
tion permanently. However, information which has been propagated through
an exiting edge of a loop is held up until it is proven to be in fixed point.

As the merging of ingoing information is made incrementally, so does the
checking of fixed point condition for loops. For each loop the framework main-
tains whether information belonging to that loop is in fixed point – maintenance
is due when ingoing information is merged on back edges.

Typical analyses work in an iterative manner: they propagate information
through back edges and seek for a fixed point of information about loop con-
structs. There are, however, some special analyses which visit each instruction
exactly once. In contrast to the previously mentioned iterative gathering of
information, such analyses maintain a so called “non-iterative information”,
which is never propagated through back edges and is always treated as be-
ing in fixed point. For example, an analysis that counts instructions meeting
some condition is a typical analysis with non-iterative information. On the
other hand, there are analyses which collect information iteratively, and gain
runtime benefit from being aware of propagating through back edges. For ex-
ample, an interval analysis, applied in the case of incrementing a variable inside
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a loop, can reach a fixed point very fast, if it sets the upper bound of the vari-
able to the maximal representable value in one step, rather than incrementing
the boundary value step-by-step. In order to support these two use cases, the
framework supports abstractions for both the iterative and non-iterative gath-
ering of analysis information. In the iterative case a special merge function
is provided for back edges – as a default implementation it merely calls the
regular merge function.

The result of the analysis of an instruction is either some information or a
replacement for that instruction or both. Replacements are performed as soon
as possible. This means that replacements for instructions outside of loops are
performed at the end of the containing basic block, and other replacements
are performed only when the information of their outermost enclosing loop is
proven to be in fixed point.

The final note about replacements is that their introduction required a
slight modification to the code of the LLVM infrastructure. One of the C++
classes that constitute the implementation of LLVM, BasicBlock, had to be
made suitable for subclassing by introducing a protected constructor and turn-
ing one of its operations, eraseFromParent, virtual. The reason for this was to
enable the creation of an immutable proxy class as a subclass of BasicBlock.
The proxy class is used to represent successors of instructions within replace-
ments. This is necessary because replacements are represented with Function

objects (same as functions are represented in LLVM), which has a positive
and a negative consequence. The positive one is that recursive optimization of
replacements can be implemented in a straightforward way. The negative con-
sequence is that since basic blocks of a function can only refer to each other, the
introduction of proxies to implement references to successors in other functions
was unavoidable.

5. Using the LLVM superoptimization framework

In this section a brief introduction to the use of the framework is provided.
Section 5.1 discusses how Integrated Analyses can be implemented. Section 5.2
reveals two ways an LLVM program can be optimized with the framework.
Finally, Section 5.3 revisits the motivational example in LLVM.

5.1. Developing Integrated Analyses

The superoptimization framework, as well as LLVM itself, is implemented
in C++. To implement an Integrated Analysis, one has to design a C++ class
to represent the information which is used by the Integrated Analysis, and
the class implementing the analysis as well. Integrated Analyses are derived
from the abstract class IntegratedAnalysis, which introduces two abstract
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operations: initInfo and process. The former is a constant function which
should return the initial information of the optimization implemented by the
specific Integrated Analysis. The process operation should define the analysis
of a single instruction.

As mentioned earlier, there are two abstractions for analysis information:
AnalysisInfo and IterativeAnalysisInfo, where the latter is a special-
ization of the former, and supports information propagation on back edges.
Every class representing analysis information has to be capable of making
a copy of itself (copy operation), and merge the same type of information
into itself (merge operation). A class representing iterative analysis informa-
tion has to provide the asGeneralAs operation, and it may optionally provide
the generalizingMerge operation. The obligatory asGeneralAs is utilized to
check if the information is in a fixed point. The optional generalizingMerge
is used by the framework to merge information through back edges; a default
implementation is provided for this operation, which simply calls the merge

function.

The result type of the process function is the AnalysisResult class.
Its specialization for information propagation is the ContinueResult class,
which has two further subclasses: TerminatorContinueResult maps infor-
mation to be propagated for multiple successors of an instruction, while In-

BlockContinueResult holds only one information instance for propagating to
the next instruction of a sequence. Another subclass of AnalysisResult is
ReplaceResult, which supports the creation of replacements. A Replace-

Result object makes the proxy objects (see the end of Section 4.3) to the suc-
cessors accessible, and creates the basic blocks of a replacement on demand. Fi-
nally, the CombinedResult class, which is again a subclass of AnalysisResult,
supports both information propagation and replacements at the same time.
This class aggregates a ContinueResult instance and a ReplaceResult in-
stance.

So far five Integrated Analyses have been implemented in the LLVM super-
optimization framework: four forward analyses (Constant Propagation, Com-
mon Subexpression Elimination, Inliner and Reachability Analysis) and one
backward analysis (Dead Assignment Elimination). It turned out that the
implementation of an optimization as an Integrated Analysis needs 1.5 times
more lines of code than the optimization pass written to standard LLVM. This
is the overhead one has to pay in order to define an optimization pass that
can be organized automatically into a superoptimization with the help of our
framework.
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5.2. Activation of the framework

The LLVM superoptimization framework with the implemented five Inte-
grated Analyses has been implemented as a function level optimization pass,
as it is written in [17]. Therefore, it can be used via the opt command line
tool with option flag -so. The prepared optimization applies the already im-
plemented four forward analyses and then the one backward analysis. Because
the forward analyses are not dependent on Dead Assignment Elimination, there
is no need to iterate the forward and backward analyses.

Activating the framework in source code is also quite simple. There are
two classes which handle the Integrated Analyses: ForwardAnalysis for the
forward and BackwardAnalysis for the backward ones. An Integrated Anal-
ysis can be added to an optimization with the operation addAnalysis. An
LLVM function can be optimized by the actual added analyses with operation
traverse, which returns a logical value indicating if any replacements were
performed during traversal. An example of the use of Constant Propagation
and Reachability Analysis to optimize an LLVM function is given in Listing 1.

Listing 1 Optimize a function with two Integrated Analyses.

bool runOnFunction(Function &F) {

ForwardAnalysis FA;

FA.addAnalysis(createConstantPropagator());

FA.addAnalysis(createReachabilityAnalysis());

return FA.traverse(F);

}

5.3. The motivational example in LLVM

Now the example from Section 2 is revisited in LLVM. The LLVM function
of the Euclidean Algorithm for non-negative integers with CFG in Figure 2
can be seen in Listing 2. The LLVM code of the problematic example from
Figure 3a is in Listing 3, and the state of the program after inlining “gcd” is
shown in Listing 4.

LLVM has a Constant Propagation pass (constantprop) and a pass with
an extended Reachability Analysis (simplifycfg). These two optimizations
are unable to eliminate the unnecessary branch from the function in Listing 4.
The Constant Propagation pass substitutes %x and %y in the phi instructions,
but does nothing more, and those substitutions do not help the other pass.

The superoptimization framework using Constant Propagation and Reacha-
bility Analysis eliminates the conditional branch and the block, which becomes
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unnecessary. Moreover, an optimization pass using also Dead Assignment Elim-
ination produces the code in Listing 5, which consists of only one instruction.

Listing 2 LLVM code of function gcd(a, b).

define i32 @gcd(i32 %a, i32 %b) {

entry:

br label %head

head:

%a1 = phi i32 [%a, %entry], [%b1, %body]

%b1 = phi i32 [%b, %entry], [%n, %body]

%cond = icmp eq i32 %b1, 0

br i1 %cond, label %exit, label %body

body:

%n = srem i32 %a1, %b1

br label %head

exit:

ret i32 %a1

}

Listing 3 LLVM code of CFG in Figure 3a.

define i32 @gcd_of_10_and_0() {

entry:

%x = add i32 10, 0

%y = add i32 0, 0

%z = call i32 @gcd(i32 %x, i32 %y)

ret i32 %z

}

6. Related work

The topic of Data Flow Analyses has been researched for a long time, there-
fore good summaries are available, e.g. the related sections of [10, 11]. The Data
Flow Algorithm which is the basis of our algorithm was used by I. Forgács [4],
who modified it to solve interprocedural analyses in polynomial time. Another
efficient solution for interprocedural Data Flow Analyses can be found in [13].
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Listing 4 LLVM code of the inlined “gcd” example in Figure 3b.

define i32 @gcd_of_10_and_0() {

entry:

%x = add i32 10, 0

%y = add i32 0, 0

br label %head

head:

%a1 = phi i32 [%x, %entry], [%b1, %body]

%b1 = phi i32 [%y, %entry], [%n, %body]

%cond = icmp eq i32 %b1, 0

br i1 %cond, label %exit, label %body

body:

%n = srem i32 %a1, %b1

br label %head

exit:

ret i32 %a1

}

Listing 5 Result of the superoptimization.

define i32 @gcd_of_10_and_0() {

entry:

ret i32 10

}

Incremental Data Flow Analysis, which means the selective re-analysis of a
program after a modification, is also a well researched area. An algorithm for
incremental analysis is provided in [14]. The methods to determine which parts
of a program must be re-analyzed are known as impact analyses. A comparison
of the major impact analysis methods is given in [15].

The resolution of the phase-ordering problem which occurs during iterative
optimization is discussed in [2] through the combination of three analyses,
however no general solution is revealed. Another possible solution for the phase-
ordering problem is given in [12] where the iterative application of optimizations
is kept, but the actual order the optimizations are applied in is determined
dynamically with respect to the defined needs of the optimizations.
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The basis of the superoptimization framework is described in the reports [1,
7] and the conference paper [8]. In those papers the critique of the iterative
optimization technique and a method for combining individual optimizations
automatically into a superoptimization are presented. According to the ref-
erenced papers, a superoptimization framework was developed for the Vortex
compiler. A brief summary of this compiler is in [3].

The soundness of transformations performed by optimizations is usually
proven by hand. A solution for automatic proving of correctness is given in [9]
via a domain specific language the transformations have to be defined in. In
that approach a set of proof obligations is generated from the definition, and the
correctness of the transformation is decided by an automatic theorem prover.
The correctness of a superoptimization created from correct transformations is
investigated in [7, 8].

7. Conclusion

Optimization is a crucial step during compiling software and the practically
used optimization technique is known to be ineffective in some cases. One
way to address the problem is the creation of superoptimizations, but super-
optimizations are proven to be too complex to create and maintain manually.
A method was given in [8] to integrate special modular optimizations into a
superoptimization.

In this paper the slightly modified version of that method was reviewed
along with an algorithm which can utilize the method to optimize a whole
program. Then some implementation considerations and an introduction to
the use of the framework was provided, as we have implemented the framework
for the Low Level Virtual Machine.

References

[1] Chambers, C., J. Dean and D. Grove, Frameworks for Intra- and
Interprocedural Dataflow Analysis, Technical Report, University of Wash-
ington Computer Science & Engineering, 1996.

[2] Click, C. and K.D. Cooper, Combining analyses, combining optimiza-
tions, ACM Transactions on Programming Languages and Systems, 17(2)
(1995), 181–196, DOI 10.1145/201059.201061



198 D. Juhász and T. Kozsik

[3] Dean, J., G. DeFouw, D. Grove, V. Litvinov and C. Chambers,
Vortex: an optimizing compiler for object-oriented languages, in: OOP-
SLA ’96 Proceedings of the 11th ACM SIGPLAN conf. on Object-Oriented
Programming, Systems, Languages, and Applications, ACM New York,
USA, 1996, 83–100, DOI 10.1145/236337.236344
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