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Abstract. The Bradley–Terry model and its generalizations are popular
models for paired (or multiple) comparisons of individuals or teams. The
literature describes several approaches to maximum likelihood estimation
of the parameters. Here we propose the use of the EM scheme, we study
its convergence properties, and compare it with previous algorithms.

1. Introduction

The Bradley–Terry model [2] is applicable to situations in which paired
comparisons are made between individuals in a group. Suppose that there
are m individuals, and there is a positive parameter λi attached to the ith
individual, representing his overall ability (i = 1, . . . ,m). The model then
asserts that when comparing individuals i and j, the probability that i is the
winner equals

P (individual i beats individual j) =
λi

λi + λj
.

This model has widespread applications in areas such as statistics, sports, and
machine learning.
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The Bradley–Terry model has been generalized in several different ways.
One generalization, called the Plackett–Luce model [9], allows for the compari-
son and ordering of more than two individuals at a time. Also in this direction,
Huang, Weng, and Lin [5] study a case when two teams are compared, where
the team’s overall ability depends on the abilities of its members. Agresti [1]
introduced a model for paired comparisons when one of the contestants has
a “home-field advantage”. Rao and Kupper [10] modifies the Bradley–Terry
model to allow for ties.

The maximum likelihood estimation of the parameters in these models has
been an important issue from the beginning. Under mild conditions the ex-
istence of the ML estimator is guaranteed, and it can be found by iterative
methods in each case. The Newton–Raphson method is applicable, of course.
However, Hunter [6] proposes the use of MM algorithms, which are simpler,
faster and more robust. Huang, Weng and Lin [5] describe a descent-direction
type algorithm for their model. We remark that while maximum likelihood
works well in many settings, Guiver and Snelson [4] have shown that, in the
case of the Plackett–Luce model, it overfits when there is sparse data. They
propose a Bayesian approach to overcome this difficulty.

The main contribution of our paper is that generalized Bradley–Terry mod-
els can be formulated using exponentially or geometrically distributed latent
variables, and thus it is natural to consider the EM scheme for likelihood max-
imization.

The paper is structured as follows. In Section 2 we summarize the EM-
scheme, and briefly review the work of Hunter on MM algorithms. In Sections
3 through 6 we derive EM algorithms for all the models mentioned above.
Finally, Section 7 discusses the convergence properties of the algorithms.

2. EM and MM algorithms

Suppose that we have a parametric model for our observed data X; denote
the vector of parameters by β. The likelihood function is denoted by L(X, β);

maximum likelihood estimation amounts to finding the parameter vector β̂
where the likelihood function attains its global maximum over the parameter
space.

The EM algorithm is an iterative procedure for finding β̂ in incomplete-data
settings. Suppose that the observed data X is “incomplete”. By this we mean
that there is a set of complete data Z, of which X is a function. Denote the
complete data likelihood function by L(Z, β). The EM algorithm then proceeds
as follows:
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Start with initial values β(0). In the (s+1)st iteration perform the following
two steps:

1. Expectation step (E-step): Calculate the expected value of the complete
data log-likelihood, given the incomplete data and parameter values β(s):

Q(β, β(s)) = E(logL(Z, β)|X, β(s)).

2. Maximization step (M-step): Maximize Q(β, β(s)) in β to obtain the
values β(s+1).

The EM algorithm in its above generality was introduced by Dempster et
al. [3]. They showed that the likelihood L(X, β(s)) is increasing in s. However,
in general it is not guaranteed that the sequence of likelihood iterates converges
to the global maximum, and we can expect the convergence of the parameters
β(s) even less. For more on EM algorithms we refer to the book by McLachlan
and Krishnan [8].

The MM (minorization-maximization) algorithm is a more general scheme
for maximizing the likelihood function. It also consists of two steps.

1. Minorization step (M-step): Having the current iterate β(s), find a func-
tion Qs(β) minorizing the log-likelihood at β(s). By this we mean

Qs(β) ≤ logL(X, β), with equality if β = β(s).

2. Maximization step (M-step): Maximize Qs(β) in β to obtain the values
β(s+1).

Again, the likelihood L(X, β(s)) is increased in each step. In fact, the EM
algorithm can be formulated as a special MM algorithm. For more on MM
algorithms, see Hunter and Lange [7].

For most of the models considered in this paper Hunter [6] derives MM
algorithms. He uses the simple inequality

− lnx ≥ 1− ln y − (x/y), x, y > 0

to define minorizing functions Qs(λ). Moreover, in the minorizing functions,
the components of λ are separated, thus maximization can be carried through
explicitly.

3. The Plackett–Luce model

The Placket–Luce model can be viewed as a generalization of the Bradley–
Terry model to multiple comparisons. In each comparison a subset I ⊂



146 V. Csiszár

⊂ {1, 2, . . . ,m} of the individuals is picked, and ordered from best to worst.
Thus the outcome is a permutation π of the elements in I, with π(1) the overall
winner, and π(|I|) the overall loser. The model asserts that the probability of
the ordering π equals

P (π) =

|I|∏
k=1

λπ(k)∑|I|
j=k λπ(j)

.

The next two lemmas describe two totally different ways how one can “re-
alize” the Plackett–Luce model. One uses exponentially distributed random
variables, the other uses draws from an urn. We omit the proofs, since they
are straightforward.

Lemma 3.1. The Plackett–Luce model is equivalent to the following. To
each individual i ∈ I, independently of each other, attach an exponentially
distributed random variable Zi, with parameter λi. The order of the contestants
is π if and only if Zπ(1) < Zπ(2) < . . . < Zπ(|I|).

Lemma 3.2. The Plackett–Luce model is equivalent to the following. Sup-
pose that we have an urn with balls marked with numbers from 1 to m, and the
proportion of balls with mark i is equal to λi (we may suppose that

∑m
i=1

λi =
= 1). We draw balls from the urn with replacement, until all numbers appear at
least once. This defines an order of the individuals 1, . . . ,m (or of any subset
I of the individuals), namely, the order in which they appeared.

Now we can start to derive two different EM algorithms. First, let us use
Lemma 3.1. Suppose that we have a sample of N comparisons, in the jth of
which the set Ij of individuals is ordered, and their order is πj . The task is
to find the maximum likelihood estimator of the parameters λ = (λ1, . . . , λm).
We can treat the sample as incomplete data, whereas the complete data would
be the values Z = {Zj,i : j = 1, . . . , N, i ∈ Ij}.

For the expectation step we need the complete data log-likelihood, which is

logL(Z, λ) = log

⎛⎝ N∏
j=1

∏
i∈Ij

λie
−λiZj,i

⎞⎠ =
N∑
j=1

∑
i∈Ij

(log λi − λiZj,i).

Thus, denoting by Ni the number of comparisons in which individual i is a
contestant,

E(logL(Z, λ)|π1, . . . , πN , λ∗) =
m∑
i=1

Ni log λi −
m∑
i=1

λi

∑
j:i∈Ij

E(Zj,i|πj , λ
∗),

since Zj,i is independent of πk, k �= j. In order to complete the expectation
step we need the following lemma (the proof is again omitted, since it is well-
known).
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Lemma 3.3. Let Zi be independent rv’s, exponentially distributed with
parameters λi, i = 1, . . . , n. Then

E(Zi|Z1 < Z2 < . . . < Zn) =

i∑
k=1

1∑n
r=k λr

.

We need another notation: if i ∈ Ij , then let αj(i) be such that πj(αj(i)) = i
(αj(i) is the rank of individual i in the jth comparison). Thus

E(logL(Z, λ)|π1, . . . , πN , λ∗) =
m∑
i=1

Ni log λi −
m∑
i=1

λi

∑
j:i∈Ij

αj(i)∑
k=1

1∑|Ij |
r=k λ

∗
πj(r)

.

For the M step we need to maximize this expression in the parameter vector
(λ1, . . . , λm). The solution is explicit, since the parameters λi are separated.
We obtain that

(3.1) λ
(s+1)

i = Ni

⎡⎣ ∑
j:i∈Ij

αj(i)∑
k=1

1∑|Ij |
r=k λ

(s)
πj(r)

⎤⎦−1

.

We notice that parameter update (3.1) is very similar to that obtained by
Hunter via the MM algorithm. Denote by Mi the number of comparisons, in
which individual i is ranked last. The difference between the two algorithms is
that in Hunter’s algorithm, when updating λi, one subtracts Mi from the nu-

merator and Mi/λ
(s)
i from the denominator of the right-hand side of expression

(3.1).

Consider the special case, when only paired comparisons are made, that is,
the Bradley–Terry model. Then the update equation simplifies to

(3.2) λ
(s+1)

i = Ni

⎡⎣∑
k �=i

Nik

λ
(s)
i + λ

(s)
k

+
Mi

λ
(s)
i

⎤⎦−1

,

where Nik is the number of comparisons between i and k.

We now turn to deriving an EM algorithm based on Lemma 3.2. The
complete data then consists of the N drawing sequences Z = {Zj,k : j =
= 1, . . . , N, k = 1, . . . , Rj}, where Rj is the random number of draws necessary
for all individuals to appear at least once.

For the expectation step we need the complete data log-likelihood, which is

logL(Z, λ) = log

⎛⎝ N∏
j=1

Rj∏
k=1

λZj,k

⎞⎠ =
N∑
j=1

m∑
i=1

Rj,i log λi,
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where Rj,i is the number of times i appears in the jth drawing sequence. Thus
the conditional expectation is

E(logL(Z, λ)|π1, . . . , πN , λ∗) =
m∑
i=1

log λi

N∑
j=1

E(Rj,i|πj , λ
∗).

Once we calculate the conditional expectations of Rj,i, we can maximize the

function subject to the condition that
∑

λi = 1, which means that λ
(s+1)

i will

be proportional to
∑N

j=1
E(Rj,i|πj , λ

(s)).

Lemma 3.4. In the setting of Lemma 3.2 let Xi denote the number of
times we draw an i-ball. Let A denote the event that the balls we are waiting
for appear in the order 1, 2, . . . , k. Then

E(Xt|A) = λt

k∑
j=1

⎛⎝ k∑
i=j

λi

⎞⎠−1

, if t > k,

and

E(Xt|A) = 1 + λt

k∑
j=t+1

⎛⎝ k∑
i=j

λi

⎞⎠−1

, if t ≤ k.

Proof. We will denote a geometrically distributed variable by Y ∼ Geo(p),
meaning P (Y = k) = (1−p)k−1p. Given the event A, let Yt,j denote the number
of times a t-ball is drawn strictly between the first occurrence of a (j − 1)-ball

and the first occurrence of a j-ball (1 ≤ j ≤ k). Then Xt =
∑k

j=1
Yt,j if t > k,

and Xt = 1 +
∑k

j=t+1
Yt,j if t ≤ k. It is easily shown that

Yt,j |A ∼ Geo

( ∑k
i=j λi

λt +
∑k

i=j λi

)
− 1,

if t �∈ {j, . . . , k}, which is indeed the case in all terms occurring in Xt. The
result follows. �

Thus we arrived at the EM parameter-update

(3.3) λ
(s+1)

i = Ni + λ
(s)
i

⎡⎣ N∑
j=1

|Ij |∑
k=1

1∑|Ij |
r=k λ

(s)
πj(r)

−
∑

j:i∈Ij

αj(i)∑
k=1

1∑|Ij |
r=k λ

(s)
πj(r)

⎤⎦ .

We remark that it is not necessary to normalize the parameter vector in each
step.
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4. The Rao–Kupper threshold model

The generalization of the Bradley–Terry model due to Rao and Kupper
allows a tie as the outcome of a comparison. In their model

P (i beats j) = λi/(λi + θλj),

P (j beats i) = λj/(λj + θλi),

P (i ties j) = (θ2 − 1)λiλj/[(λi + θλj)(λj + θλi)].

They call θ > 1 a threshold parameter. We can use similar latent variables
as the ones in Lemma 3.1 for the Plackett–Luce model. The next lemma is
straightforward again.

Lemma 4.1. The Rao–Kupper threshold model is equivalent to the follow-
ing. Suppose that we have to compare i with j. Attach to them independent and
exponentially distributed random variables Zi and Zj, with parameters λi and
λj, respectively. Then i wins if Zi < Zj/θ, j wins if Zj < Zi/θ, and otherwise
a tie occurs.

We now derive an EM algorithm assuming for simplicity that the parameter
θ is known. In this case Z = {Zj,i : j = 1, . . . , N, i ∈ Ij} is the complete data,
whose log-likelihood is

logL(Z, λ) = log

⎛⎝ N∏
j=1

∏
i∈Ij

λie
−λiZj,i

⎞⎠ =
N∑
j=1

∑
i∈Ij

(log λi − λiZj,i).

Thus, denoting by Ni the number of comparisons in which individual i is a
contestant,

E(logL(Z, λ)|π1, . . . , πN , λ∗) =
m∑
i=1

Ni log λi −
m∑
i=1

λi

∑
j:i∈Ij

E(Zj,i|πj , λ
∗),

since Zj,i is independent of πk, k �= j. We need the following lemma.

Lemma 4.2. Let Zi and Zj be independent rv’s, exponentially distributed
with parameters λi and λj. Then

E(Zi|Zi < Zj/θ) =
1

λi + θλj
,

E(Zi|Zj < Zi/θ) =
1

λi
+

θ

λj + θλi
,

E(Zi|Zj/θ < Zi < Zjθ) =
1

λi + θλj
+

θ

θλi + λj
.
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Proof. The first two formulae are special cases of Lemma 3.3, since e.g.
Zj/θ is also exponentially distributed with parameter θλj . The third formula
can be derived either by using the theorem of complete expectation, or by
definition, using the conditional density function. �

Returning now to the conditional expectation, we get

Q(λ, λ∗) =
m∑
i=1

Ni log λi−

−
m∑
i=1

λi

∑
k �=i

(
(Wik + Tik)

1

λ∗i + θλ∗k
+ (Lik + Tik)

θ

λ∗k + θλ∗i
+ Lik

1

λ∗i

)
,

where Wik, Lik, Tik denote the number of times i won, lost, and tied with k,
respectively. The coordinates of the parameter vector are again separated, the
maximum is attained for

(4.1) λ
(s+1)

i = Ni

⎡⎣∑
k �=i

(
(Wik + Tik)

1

λ
(s)
i + θλ

(s)
k

+

+(Lik + Tik)
θ

λ
(s)
k + θλ

(s)
i

+ Lik
1

λ
(s)
i

)]−1

.

Let Li =
∑

k �=i Lik be the total number of losses of i. Then again, we notice
that our EM update is similar to the MM update of Hunter: his algorithm is

obtained by subtracting Li from our numerator and Li/λ
(s)
i from our denomi-

nator in (4.1).

5. The home-field advantage model

In the model suggested by Agresti pairs of individuals compete, but the
probability that i beats j depends on whether i is at home or not. Explicitly,
the winning probabilities are given by

P (i beats j) =

{
θλi/(θλi + λj) if i is at home,

λi/(λi + θλj) if j is at home,

where θ > 0 measures the strength of the home-field advantage or disadvantage.
This model can be dealt with in the same manner as the Bradley–Terry model.
In the following derivation we keep in mind Lemmas 3.1 and 3.3.
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The complete data consist of the exponentially and independently dis-
tributed random variables Z = {Hj , Fj : j = 1, . . . , N}, where Hj is the
variable associated with the individual h(j) at home and Fj with the individ-
ual f(j) on foreign field in the jth game. Thus Hj has parameter θλh(j) and
Fj has parameter λf(j). The complete data log-likelihood can be written as

logL(Z, λ, θ) = log

⎛⎝ N∏
j=1

(θλh(j)e
−θλh(j)Hjλf(j)e

−λf(j)Fj )

⎞⎠ =

= N log θ +

m∑
i=1

Ni log λi − θ

N∑
j=1

λh(j)Hj −
N∑
j=1

λf(j)Fj .

Turning to the conditional expectation we get

E(logL(Z, λ, θ)|π1, . . . , πN , λ∗, θ∗) =

= N log θ+

m∑
i=1

Ni log λi−θ

N∑
j=1

λh(j)E(Hj |πj , λ
∗, θ∗)−

N∑
j=1

λf(j)E(Fj |πj , λ
∗, θ∗).

The conditional expectations of Hj and Fj are as follows:

E(Hj |πj , λ
∗, θ∗) =

1

θ∗λ∗h(j) + λ∗f(j)
+

I(f(j) won)

θ∗λ∗h(j)
,

E(Fj |πj , λ
∗, θ∗) =

1

θ∗λ∗h(j) + λ∗f(j)
+

I(h(j) won)

λ∗f(j)
.

Thus, the conditional expectation of the complete data log-likelihood equals

N log θ +

m∑
i=1

Ni log λi −
∑
i �=k

Nik
θλi + λk

θ∗λ∗i + λ∗k
−

m∑
i=1

(
HLi

θλi

θ∗λ∗i
+ FLi

λi

λ∗i

)
,

where Ni is the number of games played by i, Nik is the number of games
between i and k in which i is at home, HLi is the number of games which i
lost at home, and FLi is the number of games which i lost on foreign ground.
Since the parameters are not completely separated, it is not straightforward
to maximize Q((λ, θ), (λ(s), θ(s))), but a cyclic algorithm is readily executable,
by maximizing first in θ, then in λ. Writing out explicitly, the maximum of
Q((λ(s), θ), (λ(s), θ(s))) is attained at

(5.1) θ(s+1) =
N∑

i �=k
Nikλ

(s)
i

θ(s)λ
(s)
i +λ

(s)
k

+
∑m

i=1
HLi

θ(s)

,
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while the maximum of Q((λ, θ(s)), (λ(s), θ(s))) is attained at

(5.2) λ
(s+1)

i =
Ni∑

k �=i

(
Nikθ(s)

θ(s)λ
(s)
i +λ

(s)
k

+ Nki

θ(s)λ
(s)
k +λ

(s)
i

)
+ HLi+FLi

λ
(s)
i

.

Again, we can notice the similarity with Hunter’s MM algorithm, his algo-
rithm follows by applying the following changes: in the formula (5.1) of θ(s+1)

subtract the second term from the denominator, and subtract
∑m

i=1
HLi from

the numerator. In the formula (5.2) of λ
(s+1)

i also subtract the second term
from the denominator, and subtract HLi + FLi from the numerator.

6. Paired team comparisons

Huang, Weng and Lin propose a generalization of all the models overviewed
so far. Namely, in each comparison the participants are disjoint teams of indi-
viduals. If each individual has an ability parameter λi, as before, then a team’s
ability may be calculated as the sum of the abilities of its members.

Here we discuss the simplest case, the team version of the original Bradley–
Terry model. Let the two teams be I and J , where I, J ⊂ {1, . . . ,m}, and
I ∩ J = ∅. Then

P (team I beats team J) =

∑
i∈I λi∑

i∈I λi +
∑

j∈J λj
.

We have again two equivalent “realizations” of the model, using latent variables.
The straightforward proofs are once again left to the reader.

Lemma 6.1. The team version of the Bradley–Terry model is equivalent
to the following. To each individual, independently from each other, attach an
exponentially distributed random variable Zi, with parameter λi. Then team I
beats team J if and only if mini∈I Zi < minj∈J Zj.

Lemma 6.2. The team version of the Bradley–Terry model is equivalent to
the following. Suppose we have an urn with balls wearing numbers from 1 to m,
with the proportion of balls with the number i written on them equalling λi (we
may suppose that

∑m
i=1

λi = 1). We draw balls from the urn with replacement,
until a ball with label in I ∪ J appears. If this ball’s label is an element of I,
then team I wins, otherwise team J is the winner.

Let us start to derive an EM algorithm based on Lemma 6.1. Let there be
N different team-formations I1, . . . , IN , where Ij is separated into two disjoint
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teams. These two teams play Nj games against each other. For any player
� ∈ Ij denote by Wj(�) (Lj(�)) the number of times �’s team wins (loses)
in the jth team-formation. We will use the notation qj(�) =

∑
i∈�′s team

λi,
qj =

∑
i∈Ij λi, and qj(�

c) = qj − qj(�). Now define the complete data as

Z = {Zj,k,� : j = 1, . . . , N, k = 1, . . . , Nj , � ∈ Ij},

where Zj,k,� ∼ Exp(λ�), and all these variables are independent.

Skipping some steps (very similar to the ones in the previous models), we
arrive at the conditional expectation of the complete-data log-likelihood:

Q(λ, λ∗) =
m∑
�=1

⎛⎝M� log λ� − λ�

∑
j:�∈Ij

Nj∑
k=1

E(Zj,k,�|πj,k, λ
∗)

⎞⎠ ,

where M� is the number of matches played by player �. Again, we need a lemma
to calculate the conditional expectation of Zj,k,�.

Lemma 6.3. Let Xi ∼ Exp(λi), Yj ∼ Exp(μj) be independent random

variables, i = 1, . . . , n, j = 1, . . . ,m. Let X
(n)
1

< · · · < X
(n)
n denote the

ordered random variables (similarly for the Yj’s). With the notation λ =
∑

λi,
μ =

∑
μj,

E(X1|min{X(n)
1

, Y
(m)

1
} = X

(n)
1

) =
1

λ+ μ
+

λ− λ1

λ

1

λ1

,

and

E(X1|min{X(n)
1

, Y
(m)

1
} = Y

(m)

1
) =

1

λ+ μ
+

1

λ1

.

Proof. Starting with the first result the conditional probability density
function of X1 is

f(x1|min{X(n)
1

, Y
(m)

1
} = X

(n)
1

) =

λ+ μ

λ

[
λ1e

−λ1x1e−(λ+μ−λ1)x1 +

n∑
i=2

λ1e
−λ1x1

∫ x1

0

λie
−λiye−(λ+μ−λ1−λi)ydy

]
=

=
λ+ μ

λ

[
λ1e

−(λ+μ)x1 +

n∑
i=2

λ1λi

λ+ μ− λ1

e−λ1x1(1− e−(λ+μ−λ1)x1)

]
=

=
λ+ μ

λ

[
λ1e

−(λ+μ)x1 +
λ1(λ− λ1)

λ+ μ− λ1

(e−λ1x1 − e−(λ+μ)x1)

]
.

Multiplying by x1 and integrating between 0 and ∞, the result follows. The
other formula can be derived similarly. �
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Substituting these results into Q(λ, λ∗) and maximizing, we get the EM-
update
(6.1)

λ
(s+1)

� = M�

⎧⎨⎩ ∑
j:�∈Ij

Lj(�) +Wj(�)

q
(s)
j

+

(
Lj(�) +Wj(�)

q
(s)
j (�)− λ

(s)
�

q
(s)
j (�)

)
1

λ
(s)
�

⎫⎬⎭
−1

.

Let us turn to the EM algorithm based on the urn model of Lemma 6.2. The
expectation of the complete data log-likelihood is similar to the one obtained
for the Plackett–Luce model. We need to calculate the expected number of
times a ball is drawn, given that one of the teams wins. This is solved by the
next lemma.

Lemma 6.4. In the setting of Lemma 6.2, denote by A the event that I
wins, and let Xi be the random number of times an i-ball is drawn. Then

E(Xi|A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λi∑
j∈I λj

if i ∈ I

0 if i ∈ J

λi∑
j∈I∪J λj

if i �∈ I ∪ J

Proof. The first two cases are trivial, while in the third case it is easy to

show that Xi|A ∼ Geo
( ∑

j∈I∪J λj∑
j∈I∪J λj+λi

)
− 1. �

A direct consequence of this lemma is the EM-update

(6.2) λ
(s+1)

� =

⎧⎨⎩ ∑
j:�∈Ij

Wj(�)

q
(s)
j (�)

+
∑

j:� �∈Ij

Nj

q
(s)
j

⎫⎬⎭λ
(s)
� .

It is interesting to note that this EM algorithm is similar to the one given
by Huang, Weng and Lin. From their update formula we get ours by adding∑
j:� �∈Ij

Nj

q
(s)
j

to both the numerator and the denominator of the multiplier of λ
(s)
� .

We remark that Huang, Weng and Lin studied generalizations of the Bradley–
Terry team model. Namely, they considered the cases of multiple team com-
parisons, home-field advantage, and ties as well. These models could also be
treated with our EM-approach, but we do not pursue these further.
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7. Discussion of convergence

In this final section we briefly discuss convergence of our EM algorithms.
Fortunately, all the work has been done by Hunter [6], who formulated con-
ditions under which a unique ML estimate exists, and the MM algorithms
converge to this ML estimate. The word-by-word copy of the conditions and
the proof can be applied to our EM algorithms. The reason for this is that the
convergence of the algorithm follows from the nice properties of the complete
data likelihood function, the conditions on the iteration step are very mild and
hold trivially in our case, too. The same holds for the work of Huang et al.,
thus the convergence results for their algorithm apply to our EM algorithms,
too.

Theorem 7.1. Under the assumptions of Hunter [6], the EM algorithms
defined by the iteration steps (3.1), (3.3), (4.1), and (5.1)–(5.2) converge to the
unique maximum likelihood estimate of the parameter vector. Moreover, if the
conditions of Huang et al. [5], Theorem 4, are satisfied, then the EM algorithms
defined by the iteration steps (6.1) and (6.2) converge to the unique maximum
likelihood estimate of the parameter vector.

For convenience, we sketch the proof for the original Bradley–Terry model,
the simplest case. Let us denote the parameter space by Λ = {λ ∈ R

m :
:
∑m

i=1
λi = 1, λi > 0 ∀i}. The first step is to show that the log-likelihood

function �(λ) = logL(X,λ) is upper compact on Λ if and only if in every
possible partition of the individuals into two nonempty subsets one individual
in the second set beats some individual in the first set at least once. Since in
all EM algorithms �(λ(s+1)) ≥ �(λ(s)), this assumption implies the existence
of at least one limit point of the sequence of iterates. Next, by the following
theorem any limit point is a stationary point of �(λ), that is the gradient is 0
at λ.

Theorem 7.2. (Lyapunov’s theorem.) Suppose M : Λ → Λ is continuous
and � : Λ→ R is differentiable and for all λ ∈ Λ we have �(M(λ)) ≥ �(λ), with
equality only if λ is a stationary point of �(·). Then, for arbitrary λ(1) ∈ Λ,
any limit point of the sequence {λ(s+1) = M(λ(s))}s≥1 is a stationary point of
�(λ).

We can apply Lyapunov’s theorem with the map M defined implicitly by
the iteration step of the algorithm, which is clearly continuous. Moreover, we
noted before that the EM algorithm is a special case of MM algorithms: the
function Q(λ, λ(s)) calculated in the E-step is in fact a minorizing function of
�(λ) at λ(s), up to an additive constant. Notice that if the minorizing function
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is differentiable (as is the case now), it must be tangent to the log-likelihood
at the current iterate. Therefore �(λ(s+1)) = �(λ(s)) implies that λ(s) is a
stationary point of �(λ). In order to finish the proof, one reparametrizes the
log-likelihood so that it becomes strictly concave (note that MM algorithms do
not change under reparametrization of the log-likelihood). For the Bradley–
Terry model the reparametrization βi = log λi − log λ1 is suitable. Finally,
strict concavity implies the existence of at most one stationary point, namely
the maximizer, hence the sequence of iterates must converge to this unique
maximum likelihood estimator.

The similarity of the MM algorithms in the literature and our EM algo-
rithms seems to be a “coincidence”, although one wonders if there is any deeper
reason for it. Another issue, which we do not pursue here further is the speed
of convergence. Preliminary simulation studies suggest that the EM algorithms
are generally slower than the MM ones. It is well known that EM algorithms
are in general quite slow, but there are several methods to speed them up. We
leave it for future work to explore the applicability of these methods to our EM
algorithms.
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