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Abstract. The purpose of this paper is the formulation of modified joint
strategy concept in zero-sum fuzzy matrix game by using possibility dis-
tributions approach.

1. Introduction

In many practical problems, the quantities can only be estimated. In the
case when the quantities are coefficients of the zero-sum matrix games, they
may be characterized by fuzzy numbers. In this paper we consider zero-sum
matrix games with fuzzy payoffs and fuzzy goals. For any pair of strategies,
a player receives a payoff represented as a quasi-triangular fuzzy number. For
example, when a payoff matrix of a game is constructed by information from
a competitive system, elements of the payoff matrix would be ambiguous if
imprecision or vagueness exists in the information. The theory on fuzzy games
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has been developed by Aubin (1981) and Butnariu (1978). Recently new ap-
proaches have emerged for studying fuzzy matrix games (e.g. Bector and Chan-
dra, 2005; Vijay et al, 2007; Cevikel and Ahlatcioglu, 2009; Yu and Larbani,
2009).

In practice, when one or more coefficients of the optimization problem have
uncertain values, then the optimal value will be uncertain. In order to reach
the always α-level of optimal value we must take an optimal decision. Although
the optimal value is uncertain, the decision must be unambiguous. Therefore,
the α-optimal solution set contains vectors of real numbers. The concepts of
modified joint optimal solution and fuzzy optimal value defined by Makó (2006)
do comply with the above presented requirements. These concepts are founded
on the notion of joint optimal solution defined by Buckley (1995).

In this paper we aim at utilizing these concepts to define a new generalized
model for a matrix game with fuzzy goals and fuzzy payoffs by using possibility
distributions approach.

The paper is organized as follows. The basic notions and the elementary
properties of the quasi-triangular fuzzy numbers are discussed in Sections 2 and
3. The concepts of modified joint optimal solution and fuzzy optimal value of
the fuzzy linear programming problem are presented in Section 4. Section 5 is
devoted to the formulation of the concepts of modified joint optimal strategies
in the zero-sum fuzzy matrix game and in the last section an application is
presented.

2. Preliminaries

The fuzzy set concept was introduced in mathematics by Menger in 1942
and reintroduced in the system theory by Zadeh in 1965. Zadeh introduced
this notion to measure quantitatively the vague of the linguistic variable.

Definition 2.1. Let X be a set. A mapping μ : X → [0, 1] is called
membership function, and the set Ā = {(x, μ (x)) : x ∈ X} is called fuzzy set
on X. The membership function of Ā is denoted by μĀ.

The collection of all fuzzy subsets of X will be denoted by F (X). We place
a bar over a symbol if it represents a fuzzy set. If Ā is a fuzzy set of X, then
μĀ (x) represents the membership degree of x to A. The empty fuzzy set is
denoted by ∅̄, where μ∅̄ (x) = 0 for all x ∈ X. The total fuzzy set is denoted by
X̄ , where μX̄ (x) = 1 for all x ∈ X.
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Definition 2.2. Let X be a topological space. The α−level of Ā is defined
as [

Ā
]α

=

{
{x ∈ X : μĀ (x) ≥ α} if α > 0,

cl
(
suppĀ

)
if α = 0.

where cl
(
suppĀ

)
is the closure of the support of Ā.

Definition 2.3. A fuzzy set Ā on vector space X is convex, if all α -levels

are convex subsets of X , and it is normal if
[
Ā
]1

�= ∅.

Definition 2.4. A convex, normal fuzzy set on the real line R with upper
semicontinuous membership function will be called fuzzy number.

Triangular norms and co-norms were introduced by Menger (1942) and
studied first by Schweizer and Sklar (1961, 1963, 1983) to model distances in
probabilistic metric spaces. In fuzzy sets theory triangular norms and co-norms
are extensively used to model logical connections and and or. An important
result is the following:

Theorem 2.1 (Ling, 1965). Every Archimedean t-norm T can be rep-
resented by a continuous and decreasing function g : [0, 1] → [0,+∞] with
g (1) = 0 and

T (x, y) = g[−1] (g (x) + g (y)) ,

where

g[−1] (x) =

{
g−1 (x) if 0 ≤ x < g (0) ,

0 if x ≥ g (0) .

If g1and g2 are generator functions of T , then there exists c > 0 such that
g1 = cg2.

In order to use fuzzy sets and relations in any intelligent system we must
be able to perform arithmetic operations. In fuzzy theory the extension of
arithmetic operations to fuzzy sets was formulated by Zadeh in 1975.

If T is a t-norm and ”∗” is a binary operation on R, then ”∗” can be
extended to fuzzy quantities in the sense of the generalized extension principle
of Zadeh (Fuller, 1998).

Definition 2.5. Let Ā and B̄ be two fuzzy numbers. Then the membership
function of fuzzy set Ā ∗ B̄ ∈ F (R) is

(2.1) μ Ā∗B̄ (y) = sup {T (μĀ (x1) , μB̄ (x2)) : x1 ∗ x2 = y} ,

for all y ∈ R.
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If we replace ”∗” by operations ”+”, ”−”,”·”, or ”/”, then we get the
membership functions of sum, difference, product or fraction.

The fuzzy numbers can also be considered as possibility distributions (Zadeh,
1978). If Ā is a fuzzy number and x a real number, then μĀ (x) can be in-
terpreted as the degree of possibility of the statement ”x is in Ā”, namely
Pos

(
Ā = x

)
= μĀ (x) for all x ∈ R.

Let Ā and B̄ be fuzzy numbers. The degree of possibility that the proposi-
tion ”Ā is less than or equal to B̄” is true will be denoted by Pos

(
Ā ≤ B̄

)
and

defined by the generalized extension principle of Zadeh as

Pos
(
Ā ≤ B̄

)
= sup

x≤y

T (μĀ (x) , μB̄ (y)) .

3. Quasi-triangular fuzzy numbers

Let p ∈ [1,+∞] and let g : [0, 1] → [0,∞] be a continuous, strictly decreas-
ing function with the boundary properties g (1) = 0 and lim

t→0

g (t) = g0 ≤ ∞.

The quasi-triangular fuzzy number is defined by using the Archimedean t-norm:

(3.1) Tgp (x, y) = g[−1]

(
(gp (x) + gp (y))

1

p

)
.

Definition 3.1 (Kovács, 1992). The set of quasi-triangular fuzzy numbers
is

Ng =
{
Ā ∈ F (R) : there are a ∈ R, d > 0 such that(3.2)

μĀ (x) = g[−1]

(
|x− a|

d

)
for all x ∈ R

}⋃
{
Ā ∈ F (R) : there is a ∈ R such that

μĀ (x) = χ{a} (x) for all x ∈ R
}
,

where χA is the characteristic function of the set A. The elements of Ng will be
called quasi-triangular fuzzy numbers generated by g with center a and spread
d and we will denote them with 〈a, d〉.

From relation (2.1) we have that, if p ∈ [1,+∞), then the Tgp-sum of Ā
and B̄ is

μĀ+B̄ (z) = sup
x+y=z

[
g[−1]

(
[gp (μĀ (x)) + gp (μB̄ (y))]

1

p

)]
,
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and if p = +∞, then the Tgp-sum of Ā and B̄ is

μĀ+B̄ (z) = sup
x+y=z

min {μĀ (x) , μB̄ (y)} ,

for all z ∈ R.

Keresztfalvi and Kovács (1992) proved the formula (3.3) for the Tgp-sum of
quasi-triangular fuzzy numbers.

Theorem 3.1. Let p ∈ [1,+∞]. If Ā = 〈a, d〉 and B̄ = 〈b, e〉 are quasi-
triangular fuzzy numbers, then also Ā+ B̄ is a quasi-triangular fuzzy number,
and

(3.3) Ā+ B̄ =
〈
a+ b, (dq + eq)

1

q

〉
,

where 1

p
+ 1

q
= 1.

Proposition 3.2 (Makó, 2006 (2)). Let p ∈ [1,+∞]. If Ā = 〈a, d〉 and
B̄ = 〈b, e〉 are quasi-triangular fuzzy numbers, then

(3.4) Pos (〈a, d〉 ≤ 〈b, e〉) =

{
1 if a ≤ b,

g[−1]

(
a−b

(dq+eq)1/q

)
if a > b.

We know that 〈a, d〉+ 〈a, d〉 =< 2a, 2
1

q d > . We generalize this property as
follows.

Definition 3.2. For all 〈a, d〉 ∈ Ng and for all λ ∈ R+ the scalar multipli-
cation λ 〈a, d〉 is defined by

λ 〈a, d〉 =
〈
λa, λ1/qd

〉
.

The shortage that not every quasi-triangular fuzzy number has an additive
inverse related to the t-norm-based addition, only the ones with spreads zero,
can be solved if the set Ng is included isomorphically in an extended set. Makó
(2006 (2)) proves that this extended set forms a vector space with respect to
t-norm-based addition and scalar multiplication.

Remark 3.1 (Makó, 2006 (2)). 1. If 〈a, d〉 ∈ Ng and d > 0, then

[〈a, d〉]α = [λa− dg (α) , a+ dg (α)]

and if d = 0, then [〈a, d〉]α = {a}, for all α ∈ [0, 1] .
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2. If 〈ai, di〉 , 〈m, p〉 ∈ Ng and λi ≥ 0 for all i = 1, ..., n then

Pos

(
n∑

i=1

λi 〈ai, di〉 ≤ 〈m, p〉

)
≥ α ⇐⇒(3.5)

⇐⇒
n∑

i=1

λiai ≤ m+ g (α)

(
pq +

n∑
i=1

d
q
iλi

)1/q

and

Pos

(
n∑

i=1

λi 〈ai, di〉 ≥ 〈m, p〉

)
≥ α ⇐⇒(3.6)

⇐⇒
n∑

i=1

λiai ≥ m− g (α)

(
pq +

n∑
i=1

d
q
iλi

)1/q

for all α ∈ [0, 1] .

4. The modified joint optimal solution of fuzzy linear programming
problem

The fuzzy linear programming problem (FLP problem) is

(4.1)

⎧⎨⎩ Z = c̄x → max,

Āix �
Pos

b̄i i ∈ I, x ≥ 0,

where c̄ = (c̄1, c̄2, ..., c̄n) is a 1×n vector of fuzzy numbers, b̄i are fuzzy numbers
for all i ∈ I = {1, 2, ...,m}, Āi = (āi,1, āi,2, ..., āi,n) is an 1× n vector of fuzzy
numbers for any i ∈ I.

Definition 4.1 (Makó, 2006). Let α ∈ [0, 1] . The α-feasible set of problem
(4.1) is defined as

Hα

(
Ā, b̄

)
=
{
x ≥ 0 : Pos

(
Āix ≤ b̄i

)
≥ α, ∀i ∈ I

}
.

The α−optimal solution set of problem (4.1) is denoted by Sα

(
Ā, b̄, c̄

)
. If we

look for the maximum of the objective function in (4.1), then
Sα

(
Ā, b̄, c̄

)
is defined as

Sα

(
Ā, b̄, c̄

)
=
{
x ∈ Hα

(
Ā, b̄

)
: Pos (c̄y ≤ c̄x) ≥ α, ∀y ∈ Hα

(
Ā, b̄

)}
.
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The fuzzy subset of Rn defined by its membership function

μX̄ (x) = sup
{
α ∈ [0, 1] : x ∈ Sα

(
Ā, b̄, c̄

)}
is called the modified joint solution of the problem (4.1) and is denoted by X̄.

Let

Γα =
{
cx : x ∈ Sα

(
Ā, b̄, c̄

)
and c = (c1, c2, ..., cn) ,

where cj ∈ [c̄j ]
α
, ∀j = 1, ..., n} ,

with 0 ≤ α ≤ 1.

The fuzzy optimal value of the objective function in the problem (4.1) is a
fuzzy set on R, defined by its membership function
(4.2)

μZ̄ (t) =

{
sup {α ∈ [0, 1] : t ∈ Γα} if ∃α ∈ (0, 1] such that t ∈ Γα,

0 else.

Remark 4.1. The determination of the modified joint solution of problem
(4.1) means that we determine the fuzzy optimal value of the objective function
and at least one element of Sα

(
Ā, b̄, c̄

)
for all α ∈ [0, 1] if Sα

(
Ā, b̄, c̄

)
is not

empty.

5. Zero-sum fuzzy matrix games

We begin this section with describing a crisp game. Let A ∈ R
m×n be an

m× n real matrix and

Sm =

{
x ∈ R

m
+

:

m∑
i=1

xi = 1

}
, Sn =

⎧⎨⎩y ∈ R
n
+
:

n∑
j=1

yj = 1

⎫⎬⎭ .

By a crisp two person zero-sum matrix game G we mean the triplet G =
= (Sm, Sn, A) where Sm and Sn are called the strategy space for Player I and
Player II, respectively.

The matrix A is called the payoff matrix. For x ∈ Sm, y ∈ Sn, the scalar
xtAy is the payoff to Player I, and as the game G is zero-sum, the payoff to
Player II is −xtAy.

Definition 5.1. The triplet (x∗, y∗, λ) ∈ Sm × Sn ×R is called a solution
of the game G if

x∗tAy ≥ λ (∀) y ∈ Sn and xtAy∗ ≤ λ (∀)x ∈ Sm.
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Here x∗ and y∗ are called the optimal strategy for Player I and Player II,
respectively and λ is called the value of the game G.

Given a two person zero-sum matrix game G with max
i=1,m

min
j=1,n

(aij) > 0, it

is customary to associate the following pair of primal-dual linear programming
problems (LP) and (LD) with Player I and Player II, respectively:

LP :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z =

m∑
i=1

ui → min,

m∑
i=1

aijui ≥ 1, j = 1, ..., n,

u ≥ 0.

LD :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w =

n∑
j=1

vj → max,

n∑
j=1

aijvj ≤ 1, i = 1, ...,m,

v ≥ 0.

In this context the following theorems are well known (see for example Owen
(1995)).

Theorem 5.1. Every zero-sum matrix game G has a solution.

Theorem 5.2. If max
i=1,m

min
j=1,n

(aij) > 0 then (x∗, y∗, λ) ∈ Sm × Sn ×R is a

solution of the game G if and only if

x∗ = (u∗
1
/zmin, u

∗
2
/zmin, ..., u

∗
m/zmin),(5.1)

y∗ = (v∗
1
/wmax, v

∗
2
/wmax, ..., v

∗
n/wmax),

λ = 1/zmin = 1/wmax,

where (u∗
1
, u∗

2
, ..., u∗

m) is an optimal solution and zmin is optimal value of the
problem LP, and (v∗

1
, v∗

2
, ..., v∗n) is an optimal solution and wmax is optimal

value of the problem LD.

Using the possibility distributions approach, we now propose a new model
of a fuzzy matrix game. Let the payoff matrix be Ā = [〈aij , dij〉]i=1,m;j=1,n

with entries as quasi-triangular fuzzy numbers. In the discussion to follow,
we assume that the numbers 1̄ in FP and FD are vectors of quasi-triangular
fuzzy numbers with spreads (bj)j=1,n

and (ci)i=1,m. A zero-sum fuzzy matrix
game is a generalization of a zero-sum crisp matrix game G associated with the
fuzzified version of problems LP and LD to Player I and Player II, respectively:

FP :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z =

m∑
i=1

ui → min,

m∑
i=1

ui 〈aij , dij〉 �
Pos

〈1, bj〉 ,

j = 1, ..., n,
u ≥ 0.

FD :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w =

n∑
j=1

vj → max,

n∑
j=1

vj 〈aij , dij〉 �
Pos

〈1, ci〉 ,

i = 1, ...,m,

v ≥ 0.
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By formulas (3.5) and (3.6)we have that for any α ∈ (0, 1] the α-feasible set,
α-optimal solution set of problem FP and the α-optimal strategy set for Player
I are:

(5.2)

H1α
(
Ā, 1̄

)
=

{
u ≥ 0 :

m∑
i=1

aijui ≥ 1− g (α)

(
b
q
j +

m∑
i=1

d
q
ijui

)1/q

, j = 1, ..., n

}
,

(5.3) S1α
(
Ā, 1̄, 1

)
=

{
u ∈ H1α

(
Ā, 1̄

)
:

m∑
i=1

ui ≤
m∑
i=1

u′
i, ∀u′ ∈ H1α

(
Ā, 1̄

)}
,

(5.4) P1α =

{
x = u/

m∑
i=1

ui : u ∈ S1α
(
Ā, 1̄, 1

)}
.

The membership functions of modified joint optimal strategy and optimal
solution of fuzzy matrix game for Player I are:

μP̄1
(x) = sup {α ∈ [0, 1] : x ∈ P1α} ,(5.5)

μz̄ (t) = sup {α ∈ [0, 1] : t ∈ Γ1α} ,

where

Γ1α =

{
1/

m∑
i=1

ui : u ∈ S1α
(
Ā, 1̄, 1

)}
.

Similarly, for any α ∈ (0, 1] the α-feasible set, α-optimal solution set of problem
FD and the α-optimal strategy set for Player II are:
(5.6)

H2α
(
Ā, 1̄

)
=

{
v ≥ 0 :

n∑
j=1

aijvj ≤ 1+g (α)

⎛⎝c
q
i +

n∑
j=1

d
q
ijvj

⎞⎠1/q

, i = 1, ...,m

}
,

(5.7) S2α
(
Ā, 1̄, 1

)
=

⎧⎨⎩v ∈ H2α
(
Ā, 1̄

)
:

n∑
j=1

vj ≥
n∑

j=1

v′j , ∀v′ ∈ H2α
(
Ā, 1̄

)⎫⎬⎭ ,

(5.8) P2α =

{
y = v/

n∑
j=1

vj : v ∈ S2α
(
Ā, 1̄, 1

)}
.
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The membership functions of modified joint optimal strategy and optimal
solution of fuzzy matrix game for Player II are:

μP̄2
(y) = sup {α ∈ [0, 1] : y ∈ P2α} ,(5.9)

μw̄ (t) = sup {α ∈ [0, 1] : t ∈ Γ2α} ,

where

Γ2α =

{
1/

n∑
j=1

vj : v ∈ S2α
(
Ā, 1̄, 1

)}
.

Let q = 1 (or p = ∞). According to formulas (5.2) and (5.7), for the determina-
tion of the α-optimal solution sets for a given α, we have to solve the following
linear programming problems (FLP) and (FLD) for Player I and Player II,
respectively.

(5.10) FLP (α) :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
z =

m∑
i=1

ui → min,

m∑
i=1

(aij + g (α) dij)ui ≥ 1− g (α) bj, j = 1, ..., n,

u ≥ 0,

(5.11) FLD (α) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w =

n∑
j=1

vj → max,

n∑
j=1

(aij − g (α) dij) vj ≤ 1 + g (α) ci, i = 1, ...,m,

v ≥ 0,

6. Application

Two television networks are battling for viewer shares (approximately 100
million viewers). They make their programming decisions independently and
simultaneously. Each network can show sports, comedy or western. Network 2
has a programming advantage in sports and Network 1 has it in comedy and
western. The possible outcomes of Network 1 are represented in a table, where
the numbers are the approximate values of viewers in millions:
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Network 2
Network 1 sports comedy western
sports 35 15 60
comedy 32 58 50
western 38 14 70

In this application we consider that q = 1, and g : (0, 1] → [0,∞) is a
function given by g (t) =

√
−2 ln t. Then the membership function of quasi-

triangular fuzzy numbers 〈a, d〉 is

μ (t) = e−
(t−a)

2

2d2 if d > 0, and

μ (t) =

{
1 if t = a,

0 if t �= a,
if d = 0.

In many situations people are not able to characterize numerical data pre-
cisely. For example, people use terms like: ”approximately 35” or ”nearly 35”.
These examples may be characterized by fuzzy numbers. Here we consider that
the quasi-triangular fuzzy number is 1̄ = 〈1, 1/100〉 and all elements of payoff
matrix are

Ā =

⎡⎣ 〈35, 5〉 〈15, 5〉 〈60, 10〉
〈32, 5〉 〈58, 5〉 〈50, 5〉
〈38, 7〉 〈14, 3〉 〈70, 5〉

⎤⎦ .

We determine the α-optimal solution sets for a given α by using the linear
programming problems (5.10) and (5.11):

FLP (α) :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z = u1 + u2 + u3 → min,

(35 + 5g (α))u1 + (32 + 5g (α))u2 + (38 + 7g (α))u3 ≥ 1− 1

100
g (α)

(15 + 5g (α))u1 + (58 + 5g (α))u2 + (14 + 3g (α))u3 ≥ 1− 1

100
g (α)

(60 + 10g (α)) u1 + (50 + 5g (α)) u2 + (70 + 5g (α))u3 ≥ 1− 1

100
g (α)

u1, u2, u3 ≥ 0.

FLD (α) :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w = v1 + v2 + v3 → max,

(35− 5g (α)) v1 + (15− 5g (α)) v2 + (60− 10g (α)) v3 ≤ 1 + 1

100
g (α)

(32− 5g (α)) v1 + (58− 5g (α)) v2 + (50− 5g (α)) v3 ≤ 1 + 1

100
g (α)

(38− 7g (α)) v1 + (14− 3g (α)) v2 + (70− 5g (α)) v3 ≤ 1 + 1

100
g (α)

v1, v2, v3 ≥ 0.
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The α-optimal strategies and optimal solutions are shown in Figure 1 and
Figure 2.

Figure 1. The membership functions of optimal strategies and
optimal solution for Player I.

Figure 2. The membership functions of optimal strategies and
optimal solution for Player II.

In the following table we provide the α-optimal strategies and α-optimal
solutions for certain sample values of α.

Player I Player II
α x∗ (α) z̄ (α) y∗ (α) w̄ (α)
0.1 (0, 0.55, 0.44) 60.22 (0.935, 0.065, 0) 81.0918
0.2 (0, 0.54, 0.46) 55.24 (0.934, 0.066, 0) 79.0361
0.3 (0, 0.54, 0.46) 52.04 (0.934, 0.066, 0) 77.5265
0.4 (0, 0.53, 0.47) 49.56 (0.926, 0.073, 0) 76.0859
0.5 (0, 0.52, 0.48) 47.44 (0.919, 0.081, 0) 74.7656
0.6 (0, 0.51, 0.49) 45.51 (0.913, 0.087, 0) 73.4833
0.7 (0, 0.51, 0.49) 43.65 (0.907, 0.093, 0) 72.1695
0.8 (0, 0.50, 0.50) 41.75 (0.901, 0.099, 0) 70.7332
0.9 (0, 0.49, 0.51) 39.58 (0.894, 0.106, 0) 68.9760
1 (0, 0.48, 0.52) 35.12 (0.880, 0.120, 0) 64.8800
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Let x ∈ Sm and y ∈ Sn. By using the formulas of modified joint optimal
strategies (5.5) and (5.9) we can determine the possibility that x and y are
optimal strategies for Player I and Player II, respectively. For example, if
x = (0, 0.52, 0.48) and y = (0.89, 0.11, 0) , then the possibility that x is an
optimal strategy for Player I is μP̄1

(x) = 0.5410 and that y is an optimal
strategy for Player II is μP̄2

(y) = 0.911. In this case 46.6365 is the optimal
solution of game for Player I with possibility μz̄ (46.6365) = 0.5410 and 68.7420
is the optimal solution of game for Player II with possibility μw̄ (68.7420) =
= 0.911.
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[11] Makó, Z., Quasi-Triangular Fuzzy Numbers. Theory and Applications,
Scientia Publishing House, Cluj-Napoca, 2006.

[12] Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942),
535–537.

[13] Owen, G., Game Theory, San Diego: Academic Press, 1995.
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