
Annales Univ. Sci. Budapest., Sect. Comp. 36 (2012) 75–98

IMPROVING EFFICIENCY OF AUTOMATED

FUNCTIONAL TESTING IN AGILE PROJECTS

Gáspár Nagy (Budapest, Hungary)

Communicated by László Kozma

(Received November 30, 2011; revised January 16, 2012;
accepted February 10, 2012)

Abstract. Test-Driven Development (TDD) is probably the most impor-
tant agile engineering practice. Since it was first described in detail in [1],
this development practice has been adopted widely. This adoption has been
also well supported with tools that provide a framework for defining and
executing unit tests on the different development platforms. Test-Driven
Development provides a guideline how to develop applications unit by unit,
resulting in well-designed, well maintainable quality software. TDD focuses
on units and it ensures that the atomic building blocks and their interac-
tions are specified and implemented correctly. There is certainly a need
for automating other tests as well in order to ensure a working integration
environment, to validate performance or to ensure that the application fi-
nally behaves as it was specified by the customer. Usually for automating
these non-unit tests, developers (mis-)use the unit test frameworks and
the unit test execution tools. This paper investigates the potential prob-
lems caused by misusing unit test tools for automated functional tests in
cases when these functional tests are defined through the development tech-
nique called Acceptance Test Driven Development (ATDD). The misuse of
the unit testing tools may have direct impact on the testing efficiency and
it may also “close the doors” for features specialized for automated func-
tional tests. Some results of this investigation have been prototyped in a
tool called SpecRun, which aims to provide better automated functional
testing efficiency.

Key words and phrases: Test-Driven Development, Acceptance Test Driven Development,
Behavior-Driven Development, Acceptance Criteria.
The Research is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).
This paper was supported by TechTalk Software Support Handelsgesellschaft m.b.H.

https://doi.org/10.71352/ac.36.075

https://doi.org/10.71352/ac.36.075


76 G. Nagy

1. Introduction

Behavior-Driven Development (BDD) [2] is a way of building software focus-
ing on application behavior. It describes a cycle of interactions with well-defined
outputs, resulting in the delivery of working, tested software that matters [3].
This is achieved by enabling a better communication between the customers
and the development team and by using automated acceptance tests to describe
the required functionality, using the technique called Acceptance Test Driven
Development (ATDD) [4]. BDD is an outside-in methodology that uses Test-
Driven Development (TDD) [1] to ensure a robust design for the application.
In this paper – for the sake of simplicity – I will refer the automated functional
tests that have been defined through the ATDD technique as “ATDD tests”.
Many of the statements or conclusions can be generalized to other automated
functional tests or to integration tests. Only a few of them can be applied to
automated performance tests though.

At TechTalk [5] we have developed the open-source tool SpecFlow [6] for the
sake of a better support of the BDD process on the Microsoft .NET platform.
SpecFlow is primarily a tool for automated acceptance testing, but – following
the common practice – it uses unit test frameworks (NUnit [7], MsTest [8], etc.)
for executing the ATDD tests.

In the last years I have been practicing the BDD/ATDD technique and
have helped introduce SpecFlow to several projects. In almost all of these
projects, as soon as the number of tests reached a certain limit, the problems
with continuously executing these tests became more and more visible. By
trying to find the root cause of these problems, we have found that in many
cases these are somehow related to the misuse of the unit test tools.

During the problem analysis and the search for solution, I have tried to
implement a holistic approach. For example, when improving the efficiency of
the local test execution on the developer machine, I did not only consider the
technical solutions achieve faster test execution by the machine, but also how
the delay, caused by switching from the development environment to the test
tool can be shortened; or how the number of tests executed in one round can
be limited with a better test management process.

Several research studies have shown that testing efforts make up a consid-
erable part (at least 50% [9, 10]) of the total software development costs. The
long term maintanance costs can be as high as two-thirds of the total costs
[11, 12]. Therefore, testing efficiency is a vivid topic in the reserach area both
in the academic and in the industrial fields. These results provide sound re-
sults for areas like test-case generation [13], specification-based testing [14],
test prioritization [15] or random testing [16]. The target of my research is



Improving efficiency of testing 77

to improve testing efficency in the agile development process of medium-size
(300 to 1000-person-day development effort) business applications that are not
specified formally. Though the mentioned results can partly be used to improve
the quality of these applications, they do not give any proper answer for im-
proving the test-driven development process, where the human aspect plays an
important role. This aspect is quite new and has not been thoroughly covered
in literature.

In this paper, I am trying to address a small aspect of the improvements,
the problem of test execution efficiency of automated functional tests in the
test-driven development process. Though some parts of this improvement can
be exactly measured, the majority of the results can only be seen from the
content of the team members and stakeholders. My results are based on the
feedback of several project teams at TechTalk. These developers and other
stakeholders were heavily interested in improving the efficiency for the given
conditions, hence their judgement is authentic.

The rest of this paper is organized as follows. After a short overview of the
terminology (Section 2), TDD (Section 3) and ATDD (Section 4), Section 5
compares these two development processes. Section 6 categorizes the efficiency
issues I have encountered in four main groups: execution time, feedback about
the execution, execution history and test setup.

As we have learned more about these problems, TechTalk has decided to
create a tool specialized for more efficient integration test execution, where the
findings have been partly implemented. Section 7 provides a quick summary
about SpecRun [17].

Section 8 lists possible improvements for these problems that are imple-
mented or planned for SpecRun.

The paper finally provides a summary and an outlook for further improving
testing efficiency (Section 9).

2. Terminology

The Test-Driven Development term is well established in the development
community as well as in academic papers. This means that more or less they
agree on the basic principles of TDD.

Unfortunately, the picture is not so clear when one enters the area of ex-
ecutable specification practices. The concept of driving the application deve-
lopment through automated functional tests has been established in the agile
software engineering community under various names, like specification by ex-



78 G. Nagy

ample [18, 19], story test driven development [20], executable acceptance tests
[4, 21], or acceptance test driven development [4]. A good overview of the liter-
ature of this idea has been done by Shelly Park, Frank Maurer at the University
of Calgary [20].

In this paper, I use the term Acceptance Test Driven Development (ATDD)
to describe the technique of developing the application through automated
acceptance test. I use the term Specification by Examples to denote the tech-
nique of describing acceptance criteria using illustrative examples, and finally
the Behavior-Driven Development (BDD) that describes the holistic methodo-
logy of the application development that uses all these techniques in application
development.

The terms acceptance criteria and acceptance test have similar meanings in
the referenced literature. Neither of these terms is perfect, as both of them are
easy to mix with user acceptance tests [22]. The term acceptance test has an
additional disadvantage: the word “test” gives the wrong impression of referring
to quality assurance and not to the requirements. In this paper (except for
quotes), I use the term acceptance criteria to denote the specification element,
and by acceptance test I mean the automated executable acceptance criteria.

3. Test-Driven Development

It is not the goal of this paper to describe TDD in details (as it is better
described in detail in [1] and [4]). I would like to provide a short summary,
though, focusing on the aspects that are the most relevant for a comparison
with ATDD. This will cover the basic workflow recommended by TDD and a
brief overview of the supporting techniques. Some detail aspects of TDD will
be also briefly described in Section 5.

Test-Driven Development is based on a cyclic workflow that can be used to
develop the small, atomic components (units) of the application. This workflow,
which is often mentioned as red-green-refactor (Figure 1), is composed of three
main steps.

Step 1: Write a Unit Test that fails. The failing unit test ensures that the
unit test is able to indicate malfunctioning code. As the unit test execution
environments display failing unit tests as red bars, this step is also referred as
”red”.

Step 2: Make the failing unit test pass. Implement the unit being tested
(aka. unit under test - UUT) focusing on making the test pass in the simplest
way possible. It is essential that the implementation goes only so far that the



Improving efficiency of testing 79

test passes and not further. As with Step 1, this step is often referred as ”green”
because of the usual indication of the unit test execution environments.

Figure 1. Red, green, refactor cycle

Step 3: Make the implementation
”right” with refactoring. The imple-
mentation provided in Step 2 might
contain a code that is not ”right”
(maintainable, clean, elegant) due to
the goal of ”the simplest way”. In
this step, this code has to be changed
to shape it into a better form. Refac-
toring denotes here code changes that
do not alter the behavior [23], so the
test(s) that have been passing so far
should still pass.

The unit tests used in the TDD
process should follow a simple three-
part structure, which is denoted with
the acronym AAA, where the ele-
ments stand for the following (as described at [24]).

Arrange all necessary preconditions and inputs. This part of the unit test
should set up all prerequisites that are necessary to execute the unit being
tested.

Act on the object or method under test. This part is the actual execution
of the method that should provide the expected behavior.

Assert that the expected results have occurred. In this part, different kinds
of verification steps can take place.

Test-Driven Development focuses on small steps where the small parts of the
code (units) are built up in a test-driven manner. The units are small and focus
on solving one particular concern, furthermore, they should be isolated from
other parts of the applications. This rule ensures that the unit tests driving
the implementation of the unit can be kept within limits and they do not suffer
from the test case explosion [25] problem. This rule is also very important in
decreasing the dependencies between the parts of the code, which generally has
a bad influence on the maintainability and the development process.



80 G. Nagy

4. Acceptance Test Driven Development

Acceptance Test Driven Development (ATDD) is a technique to develop
applications through automated acceptance tests. As a supporting technique,
ATDD fits Behavior-Driven Development (BDD) [2].

The basic principles of ATDD are described by Koskela [4]. He defines
acceptance tests as specifications for the desired behavior and functionality of
a system. They tell us, for a given user story, how the system handles certain
conditions and inputs and with what kinds of outcomes. He also enumerates
the key properties of acceptance tests as:

1. Owned by the customer

2. Written together with the customer, developer, and tester

3. About the what and not the how

4. Expressed in the language of the problem domain

5. Concise, precise, and unambiguous

Finally, he describes the workflow of ATDD. Generally, ATDD also uses a
cyclic workflow to implement functionality like in TDD. The workflow of ATDD
consists of four steps:

1. Pick a piece of functionality to be implemented (e.g. user story [26] or
acceptance criterion [27])

2. Write acceptance tests that fail

3. Automate the acceptance tests

4. Implement the application to make the acceptance tests pass

Figure 2 shows the ATDD workflow by Koskela, extended with the a refac-
toring step. In practice, the refactoring of the implemented functionality is as
useful as for TDD.

ATDD is driven by the expected functionality of the application. Agile
development processes focus on delivering business value in every step, so the
expected functionality has to be exposed in a facade where the stakeholders
can realize the business value. A new database table or an application layer
very rarely has a measurable business value. In agile projects, the application
functionality is usually defined on the basis of what can be observed on the
external interfaces (e.g. the user interface) of the application. Because of
this, it is obvious that the acceptance tests should also target these external
interfaces.



Improving efficiency of testing 81

Figure 2. Extended ATDD workflow

The implementation of even a
small aspect of the functionality (ac-
ceptance criteria) is usually too com-
plex to fit into a simple unit (e.g. it
exercises the different layers of the
application). Usually a cooperation
of several units is necessary. There-
fore ATDD does not replace the con-
cept of implementing the units in a
test-driven manner, on the contrary,
it embeds this process for develop-
ing the units [4]. As this collab-
oration of techniques is a key part
of ATDD, the ATDD workflow (out-
lined by Koskela) is usually represented as a two-level nested cyclic workflow.

5. Key differences in the application of TDD and ATDD

As I described before, the ATDD workflow has inherited a lot from TDD,
so the similarities are conspicuous. At the same time, the deeper investigation
of the methodologies shows also some differences. This section briefly enumer-
ates through these differences in order to explain some efficiency problem in
Section 6.

1. ATDD tests are integration tests
The most obvious difference is that acceptance tests ideally test the func-
tionality end-to-end, integrated with all layers and dependencies.

2. The definition and the implementation of the acceptance crite-
ria are accomplished in different phases
In ATDD, the acceptance criteria (that are the bases of the acceptance
tests) are defined at a different (slightly earlier) stage of the development
process (e.g. in the sprint planning), so the implementation of one accep-
tance criterion cannot influence the definition of the next criterion, like
in TDD.

3. People who define acceptance criteria are usually different from
the people who implement the application fulfilling these criteria
The specification is mainly done by the business, the developers can only
influence them by giving feedback about the feasibility.



82 G. Nagy

4. In ATDD an early feedback for the “happy path” is required
When implementing functionality, it is a good practice to focus on the
most common scenario (“happy path” [28]) first. This is the best way to
receive quick and valuable feedback from the business.

5. ATDD tests do not provide a complete specification of the ap-
plication
In business applications, where ATDD is commonly used, the written
specification is not complete and the part of the specification that is for-
malized into acceptance tests is even less so. To be able to implement
the application based on these, everything that was not specified should
be “common sense” behavior.

6. ATDD acceptance tests are black box tests, while TDD unit tests
can be white box tests
As the acceptance tests are driven by the required functionality, they are
more like black box tests.

7. Acceptance tests should be understood by the business and testers
The acceptance tests are about the functionality; in order to verify whether
the formalized acceptance test really describes the intended application
behavior, the business representatives should be able to read and under-
stand the tests.

8. The implementation of an ATDD cycle might take several days
and several developers
The implementation of even a small aspect of the functionality (accep-
tance criteria) is usually complex (e.g. it exercises the different layers of
the application). Therefore, it can happen that it takes several days and
several developers to complete.

9. The execution of the ATDD tests might take a long time
As mentioned before, the ATDD tests are integration tests and the exe-
cution time of the integration tests is usually much longer than that of
a unit test. This is mainly because these tests have to initialize and use
external systems (typically a database system).

10. The analysis of a failing ATDD test might be accomplished
much later than the development
Since the execution of the tests takes a long time and the developers have
probably started to work on another task in the meanwhile, the failing
ATDD tests are not investigated and fixed promptly.

11. ATDD tests might be changed by non-developers
Though in most of the environments this is not common, in some cases



Improving efficiency of testing 83

even the business analysts and testers change the acceptance tests. Usu-
ally these changes concern the expected result values or the adding of
further test variants (input / expected output pairs) to an existing test.

These differences can be observed in almost every team using ATDD tests.
From these differences it is visible that, although the base concept of TDD
and ATDD is similar, there are also many differences. Using unit testing tools
for ATDD tests is typical, but due to these differences, it can lead to testing
efficiency issues. The following sections describe these problems and give ideas
for solutions.

6. Efficiency problems of executing functional tests

As mentioned earlier, in the projects in which I participated the problems
of the continuous test executions became more visible once the number of tests
reached a certain limit. Of course, this limit cannot be exactly defined, but
generally the problems become more visible when

1. the tests execution time on the continuous integration server exceeds 30
minutes

2. at least half of the test execution on the server fails due to a transient
error

3. effort spent on analysis of test failures on the server becomes significant

4. test execution time of the work-in-progress tests on the development ma-
chine exceeds 10 minutes

By trying to find the root cause of these problems, we have found that
in many cases these are somehow related to the misuse of the unit test tools.
These tools are specialized for executing unit tests that are fast, isolated, stable
and predictable. In the case of ATDD tests, these conditions are usually not
fulfilled.

When planning for addressing these issues with a specialized tool, we have
made a questionnaire to collect feedback about the functional test execution
problems. The questionnaire was filled by a dozen of software development com-
panies that use ATDD extensively. While the result is certainly not representa-
tive, it gives a good external overview about the problems. In the questionnaire
we have listed eight potential issues. The customers rated these problems on



84 G. Nagy

Problem Average rate
Test execution is slow on the developers machine 4.2
Hard to detect random failures 3.7
Hard to detect the cause of the failed tests 3.5
Hard to detect failures caused by a not-available or
improperly working dependency

3.5

Test execution is slow on the build server 3.3
Hard to detect performance implications (speed,
memory) of the changes

3.3

Hard to stop the integration test process in case of
obvious general failures

3.2

Hard to integrate test execution (incl. reports) to
the build server

2.9

Table 1. Questionnaire responses on test execution problems

a 1-5 scale, where 1 represented “not a problem” and 5 was “very painful”.
Table 1 shows the cumulated response sorted by the problem rating.

These responses showed two important facts:

1) It seems that all of the mentioned problems are valid issues at many
companies (the lowest rate is around 3; 5% of the all individual rating was
“1”).

2) The top rated issues are the ones where the individual developer per-
formance is directly impacted. With other words, these are the problems that
force the developers to actively wait or spend time on issues that are not directly
productive. This is probably due to the high cost factor of the development
efforts in comparison to environmental costs (faster machine) or IT operational
costs (expert who configures the build server).

In the following subsections, I will provide a more detailed list of problems
categorized into four different groups.

6.1. Execution time

This is the most obvious problem encountered by the teams performing ex-
tensive automated functional/integration testing. These tests are much slower
than unit tests. While a unit test can be executed in 50-100 milliseconds, in-
tegration tests run several seconds. Table 2 shows the execution statistics of
three (anonymized) projects at TechTalk.

We have investigated the reasons behind the slow execution in different
projects. In almost all of the projects, it turned out that the slow execution
shared the same characteristics:



Improving efficiency of testing 85

Project Test count Execution time Avg. time per test
Project “T” 552 24 mins 2.6 secs
Project “L” 549 40 mins 4.4 secs
Project “R” 95 8 mins 5.1 secs

Table 2. Test execution times

1. The tests are not CPU intensive – the CPU on an average development
machine runs on around 10% load

2. The preparation time (the “arrange” part) is usually bigger or similar
to the execution time of the main testing action (the “act” part). The
execution time of the verification (“assert”) part was not significant.

3. Almost all of the tests communicated with at least one external compo-
nent (the database), and in projects with UI automation, all tests also
communicated with the web browser.

4. Only a few (<10%) of the tests used special external services (e.g. other
than database, file system or web browser).

5. The external services (both common and special) were used exclusively by
the test, i.e. the test was not prepared for sharing the service with other
tests. For example, the test re-created the database before executing the
action.

6. A lot of tests verified asynchronous components of the applications. These
tests used mutexes, polling or timers to synchronize the verification.

Generally we can say that these tests are slow, because they are commu-
nicating with common external services, such as database, file system or web
browser.

We have also investigated the behavior of the developers when interacting
with such tests. This investigation was done through review discussions and
pair programming. With this, we have identified the following behaviors:

1. The developers did not stop the test execution, even though it was obvious
that there was an error. As a reason, they often stated that stopping the
execution might leave the external systems in an inconsistent state, so the
next execution would more likely provide false failures. This behavior can
be observed on the developer machine (testing locally), but also on the
build server, when there is a general error (e.g. connection to the database
lost, all tests will fail).



86 G. Nagy

2. The developers usually execute a larger set of tests than required for per-
forming the verification of the component being developed. The common
reason was that it was hard to overview the affected tests and select them
by the testing tool.

Summarizing the dilemmas related to the slow test execution, the problem
can be split into the following sub-problems:

1. Execution of a single tests is slow, because they communicate with com-
mon external services

2. More tests are executed than required because it is hard to define the
tests to be executed

3. More tests are executed than required because the test execution cannot
be stopped safely

6.2. Feedback about the execution

In the TDD-ATDD comparison (Section 5), I have outlined several differ-
ences (2, 3, 6, 7, 10 and 11) that are related to the necessity of the detailed
feedback about the test execution. Because of the isolated and predictable
nature of the unit tests, this feedback is not so important in TDD, hence the
typical unit testing tools have no rich set of functionality in this area.

In many of the investigated projects, it was quite common to have transient
or random test failures on the build server. This was usually caused by a
temporarily unavailable external service or by a special defect in the application
that causes the unpredictable error. Since the unit test tools execute every test
once, the common practice was to re-run the entire test suite (even multiple
times) in case of the suspicion of such transient error. Re-running the entire
suite caused a significant delay in the investigation and fixing of the issue found.

In one project, the availability of some external dependencies was so low that
it was very hard to achieve any test suite execution when all the tests passed
(even if the application had no defect). The situation was hard enough itself,
but it caused even more troubles as real test failures were frequently overseen
because of the random defects. As a solution, the project team started to
change the existing tests to fail with a special error when the problem was in
the preparation (“arrange”) phase. This change needed significant development
efforts.

Another common problem was that tests reported trace information into
different channels (console output and error, debug trace, etc.). The business



Improving efficiency of testing 87

intentions (test steps) were also reported to the same channels. When inves-
tigating a test failure, it was a problem to see the merged trace information
from the different sources on the one hand and separate them from the business
intentions on the other hand.

As mentioned in the comparison, the tests may be verified and in some
cases modified by the business and the testers. Also the project managers can
use the test execution results for tracking the progress. Because the unit test
tools were focused on providing feedback for the developers, the investigated
projects applied additional reporting facilities to provide a “business-readable”
report. This was some kind of HTML report published by the build server
among other build artifacts. This configuration needed a fine-tuning of the
build process for every new project.

Summarizing the difficulties related to the test execution feedback, the prob-
lem can be split into the following sub-problems:

1. Classification of failing tests to transient (“random”) failure, precondition
failure and test failure.

2. Providing aggregated trace for the executed tests.

3. Presenting the execution log in a business-readable way.

6.3. Execution history

In fact the problems related to execution history are the sub-problems of
the test execution feedback problem group. Since this is a bigger topic and
there are a lot of possible ideas for improvements, I have decided to discuss it
in a separate subsection.

For unit tests, the history of the test executions in the past is not too
significant. Therefore the most common unit testing tools have no such feature.
The TeamCity [30] build server product can collect and display a history about
the test executions, but it is limited to the test result changes over the time.
Many of the build server tools keep the previous execution to be able to run the
previously failing tests first, but they cannot provide detailed statistics about
the full execution history.

The problems or the possible improvements in this category are less con-
crete. This is mainly because there are no well-established practices what test
execution based statistics are really useful for. In this subsection, I list some
problems that can be addressed by collecting execution statistics.

The most common problem in this category is related to performance. Per-
formance tests are costly to apply and it is hard to automate them in a way



88 G. Nagy

that they can be regularly re-executed and the results can be compared. It
is typical in software projects to perform performance tests and performance
improvements in short campaigns. Such campaign can be regularly scheduled
or triggered by a performance issue that appeared at the end users. To opti-
mize this process, it is generally required to have some simple validation that
can be regularly performed and can ensure that the changes in the code has no
significant performance (execution time, memory usage, etc.) impact. In this
regard, the automated functional tests could be used as a benchmark for the
application’s performance.

The test classification problem mentioned in the previous subsection has
also an aspect for the execution history. For identifying some issue categories,
the execution history gives good input. For example, the difference between
the transient errors caused by a temporarily unavailable dependency can be
better distinguished from a “random failure” based on the execution history.
In some cases, the history can help to identify and solve the issues as well (e.g.
at 2 am some tests usually fail – maybe they interfere with the daily backup
process).

The test execution history can be also used for giving earlier feedback about
the more risky tests (recently failed or newly added).

Finally, collecting execution statistics can help the developers to identify
the unstable areas of the application that frequently fail after changes in the
code.

Summarizing the problems related to the test execution history, the problem
can be split into the following sub-problems:

1. Using the automated functional tests as performance benchmarks

2. Classification of tests based on the execution history

3. Give earlier feedback about the more risky tests (recently failed or newly
added)

6.4. Test setup

Unit tests are isolated and there is no need for any external dependencies to
be setup. As opposed to them, in the case of ATDD tests, it is quite common
that some test set up tasks have to be performed in prior to the test execution.

In all of the investigated projects there were special test setup tasks required
for running ATDD tests: deploying a test instance of the application, copy
file resources, start web server, create database. This setup tasks were either
performed by the build process or they were done in the “setup” phase of the
unit test execution.



Improving efficiency of testing 89

In projects, where the setup tasks were fulfilled in the build process, the
developers had to do extra work for performing ad-hoc tests (i.e. pick and run
an individual test or a few tests), because the ad-hoc testing facilities bypassed
the standard build process.

However, in projects where the setup tasks were built up from code in
the “setup” phase, the configuration and maintenance costs of this code were
difficult, because the general-purpose programming languages (in our case C#)
were not suitable for setup tasks.

The analysis has shown that the root causes in these scenarios are the
following:

1. Test setup tasks are not bound to the test execution.

2. Test setup tasks have to be described in general-purpose language.

3. Different configuration sets for executing tests (e.g locally or on the
server) cannot be defined in one place.

7. SpecRun

As mentioned earlier, we saw that many of the testing efficiency issues
are caused by the tool support. Therefore in June 2011 TechTalk decided to
launch a new tool, called SpecRun [17] to provide solutions for some of these
problems. In November 2011, SpecRun was in beta phase and we have been
collecting feedback about it. The final release will be announced soon as a
commercial product, but with free license for open source and non-commercial
projects.

8. Improving execution efficiency

We have investigated several ideas to address the test execution efficiency
issues outlined in Section 6. In some areas we were able to prototype and
measure the result of these ideas. In other cases the idea was only described
but not implemented and verified yet. This section provides a summary of
these improvements, categorized by the problem groups described in Section 6.

When we considered improvements in testing efficiency, we wanted to find
solutions that need no or minimal change in the existing tests. Obviously, if



90 G. Nagy

these improvements are used in combination with good test automation prac-
tices, the benefits can be even more improved. In the investigated projects,
however, the design and coding quality of the tests were fairly good and it was
not possible to improve it significantly with reasonable efforts.

8.1. Execution time

With regard to the execution time we have identified three different solution
areas: parallel execution, gentle test execution termination and the execution of
impacted tests. This subsection describes these areas and their impact wherever
possible.

Parallel execution. Parallel execution is an obvious solution for faster
test execution. The key point in this area was to realize that the test execution
time is mainly caused by the communication with external services. I have
investigated and proven that the execution time of these tests can be signifi-
cantly decreased even on a single machine. Though the development machines
we tested were all multi-core, the analysis of the CPU utilization showed that
the performance improvement was caused by the test characteristics mentioned
in Section 6.1. Just to understand the improvement, we can imagine the paral-
lel execution in a way that one test-thread is waiting for the external service to
respond (e.g. I/O), while the other could perform the CPU intensive calcula-
tions and vica versa. This way the resources can be utilized in a more balanced
way.

On the bases of the measurements, the optimal degree of parallelism in the
investigated applications was around 3 test execution threads, where about
50-60% performance improvement was measurable. The execution times with
different thread count for project “R” is shown in Table 3.

Thread count Avg. CPU load Execution time Change
1 30% 4:27 mins 0%
2 50% 2:34 mins 42%
3 80% 2:05 mins 53%
4 100% 1:47 mins 60%
5 100% 2:01 mins 55%

Table 3. Test execution times of project “R” on different thread count

As our goal was to keep the test unchanged, we had to solve the problem
of exclusive access of the external services, when the parallel execution was
introduced. For example, if a test exclusively used the database, we had to make
“clones” of the database and ensure that the tests in the different threads use



Improving efficiency of testing 91

different instances. This has been achieved with the help of special test setup
configurations that could refer to a variable “TestThreadId”. This variable
contains the zero-based index of the current test-thread.

For the common external services, like database or file system, it was pos-
sible to create two or three clones. However, for some special services this was
sometimes impossible. In project “R”, there was a server component that could
only work in a one-instance-per-machine style. The project “L” ran tests that
connected to a Microsoft Team Foundation Server [31], where creating many
test projects was not convenient. In the investigated projects, the number of
tests using such special service was below 10%, so instead of making them
parallelizable we simply provided an option to exclude them from parallel ex-
ecution, meaning that they were always “bound” to a specific test execution
thread.

For the parallel execution the isolation level of the different test execution
threads was another issue. In the .NET environment, where the tool runs, there
are basically two options for isolation. The test threads can be executed in dif-
ferent Application Domains [32] or in different processes. The first provides a
better performance (less overhead), the other provides better isolation. Finally,
we decided to implement the AppDomain isolation first, which seemed to be
sufficient for the majority of the applications. We saw an application however,
where the external service was a native component that allocated per-process
resources (a notification message broker). For this project the AppDomain iso-
lation did not provide the expected result: the execution time did not increase
by increasing the thread count as shown in Table 4. Such projects need to be
supported by providing process-level isolation in the future.

Test thread count Total execution time (secs)
1 134
2 113
3 179

Table 4. Test execution times of a project that cannot be parallelized with
AppDomain isolation

We have also investigated the parallel execution on different machines.
While in some special cases this would be also beneficent, in the majority
of the projects we saw the costs of setting up and maintaining extra machines
were too high.

Another challenge was to keep the overhead of parallel execution at mini-
mum. Based on the measurements, the final solution built into SpecRun has
less than 5% overhead at 3 parallel threads.



92 G. Nagy

Gentle test execution termination. As mentioned in Section 6.1, it was
problematic to stop the test execution in such a gentle way that no external
services were left in an inconsistent state. This problem was observable on the
developer machine and also on the build server.

On the developer machine we implemented a simple solution that responded
to the Ctrl+C keystroke and stopped the execution after the currently running
test(s) had been finished. This simple feature became very popular among the
developers, especially together with the adaptive test order (see Section 8.3).

On the build server, we aimed to find a solution that works without any
user interaction. After investigating several possibilities, we decided to test
another simple solution. The test execution can be configured to stop after
a specific number (e.g. 10) of failed tests. We verified the usefulness of this
feature by letting the individual project teams consider whether they use it or
not. After a few months of test period, all the teams still used this feature
and reported on occasions when it saved significant time. This is typical when
a long-running build process starts, but some general and obvious errors (e.g.
external service has not been started) would cause the majority of the tests to
fail.

Execution of impacted tests. Deciding efficiently what tests are im-
pacted by a code change is a complex problem. There are ways to gather such
information. These are either done by static code analysis or by test impact
analysis of the previous execution. The problem with the static code analysis
is that it cannot handle dynamic invocations (quite common in .NET), so it
cannot provide a trustful result. The execution analysis can be done through
the .NET profiling API (see also [29]), but this leads to a significant perfor-
mance decrease (almost doubles the execution time), so it cannot be efficiently
used in our target domain (developer machines). Defining better solutions for
this area is one of the most interesting topics of further research.

Currently, we have solved this problem by improving the internal project
development guidelines. First of all, we emphasized that by the nature of these
tests, it is a valid scenario if an integration error is only caught by the build
server (i.e. someone “breaks the build”) (see difference 8 in Section 5). We
asked the developers to perform a reasonable set of checks before committing
their code to the source control system. We defined the “reasonable set” by
tests that belong to the current iteration. These tests were specially tagged
(e.g. “current iteration”) for an easier execution.

8.2. Feedback about the execution

In this problem group, we were able to provide well usable solutions for
many of the mentioned problems. Therefore, this subsection contains only a
brief summary about these.



Improving efficiency of testing 93

In order to be able to present the execution log in a business-readable way,
we have integrated the HTML report generation as a first class citizen into
SpecRun. The generated HTML reports contain the detailed test execution
traces, but also summary sections (e.g. about failing tests) and a graph for
visualizing parallel test execution and performance indicators. Figure 3 shows
a generated HTML report.

Figure 3. Test execution HTML report

In order to provide aggregated trace, we introduced two trace channels:
the business trace and the technical trace. The trace information provided by
the tests were redirected to one of these two traces depending on the fact if
it was about describing the business intention (test steps) or something else.
To capture the business intention messages, a special Listener extension was
made for SpecFlow. Both of these channels are displayed in the report split
by the test steps. Additional timing and result information were provided for
each individual step.

The most complex solution was to address the transient or random failures.
For this purpose a special retry mechanism was implemented. For the retry, it



94 G. Nagy

has to be specified what should trigger the retry (failing tests, always, never,
history-based heuristic) and the retry count. (The history-based triggering is
not implemented yet.) Regarding the efficiency of the retry mechanism, the
feedback is not so clear. None of the projects used the “always” option for
retry. With the “failing test” triggering option, the transient errors (external
service temporarily unavailable) can be certainly caught, however, the random
failures can be detected only randomly (when the first execution fails). In
addition to this, the retry function was sometimes annoying when executed
locally, therefore, it was usually turned off for the local execution profile.

8.3. Execution history

Since this problem group provides the most long-term potential for efficiency
improvements, we have decided to establish the collection of test execution
statistics right from the beginning.

There are a lot of interesting techniques for test case prioritization based
on source code analysis and/or execution history (e.g. [15, 33, 34, 35]). This
topic itself is a big research field on its own. My initial goal was to set up an
infrastructure that allows implementing such ideas later.

SpecRun has a server component (optional) that can collect test execu-
tion results and can provide statistics for other tools. The SpecRun server
uses the CQRS [36] architecture that enables to process incoming test results
asynchronously with minimal overhead on the caller side.

To be able to provide execution statistics to many different (even 3rd party)
tools, the server uses REST-based OData [37] interface over HTTP protocol.

Currently, the server collects the following information about the test exe-
cutions:

1. Test result

2. Test execution time

3. Execution time of the “act” part of the test

4. Environment information (machine, testing profile)

The server can calculate a cumulated test status value from the last 10
executions. This cumulated status provides more information than the simple
pass/fail pair; for instance, “recovering” denotes a test that has failed in the
past but there have been a few successful executions since the last failure.

SpecRun, as a client for the SpecRun server, can use the execution statistics
for deciding the test execution order. It starts the recently failing and new



Improving efficiency of testing 95

tests first. This simple heuristic can be later replaced by a more sophisticated
solution based on the studies referred before.

Although the server already collects the information for execution time
benchmarking, this has not been implemented yet. For a useful benchmarking
result, the data have to be cleaned from extreme deviations (e.g. test exe-
cuted in the test suite first is usually much slower) and have to be normalized
(different execution machines might have different performance). This area is
another important topic of further research.

8.4. Test setup

To address the problems mentioned in the test setup category, we have
introduced two concepts in SpecRun.

All configurations related to the test execution are grouped into one XML
file, called test profile. Different test profiles can be specified for the different
testing scenarios (e.g. running test of the current iteration locally; running a
full regression test on the build server).

The second concept is the test deployment step. In the testing profiles, one
or more test deployment steps can be defined. These steps can be either global
or local to a test execution thread. The set of possible steps is extensible,
however, some common steps (relocate, copy folder, start IIS express, change
configuration) have been built-in.

Both of these concepts were received well in the projects.

9. Conclusion and future work

The goal of this paper was to collect possibilities for improving testing effi-
ciency by providing specialized execution environment for automated functional
tests developed through the ATDD technique.

First, Sections 2-5 described the current testing practices for TDD and
ATDD, furthermore their key differences. These differences lead us to a deeper
investigation of the potential problems caused by using TDD tools for executing
ATDD tests. These problems are described and categorised into four groups in
Section 6.

To address these problems and prototype potential solutions, TechTalk has
started a new product called SpecRun. Section 7 briefly summarizes the current
status of the tool.



96 G. Nagy

Finally, Section 8 describes concrete ideas and implemented solutions that
address the outlined problems.

As a conclusion, we can say that with a specialized test execution envi-
ronment, testing efficiency can be significantly improved without changing the
existing test automation practices. Regularly executed tests that are bound to
functional elements of the applications provide a very good source of informa-
tion that can be used to further improve the efficiency. I described performance
benchmarking as one of such, which is currently being researched.

Providing an efficient way of deciding which tests should be executed for a
concrete code change is another area of further research.

Acknowledgment. I would like to thank to my colleagues at TechTalk
(especially Jonas Bandi and Christian Hassa) for collecting these experiences.
The results are partly based on the discussions I had with them and with others.
These discussions were partly published in [38] and [39]. Many thanks to my
wife, Adrienn Kolláth for the support and splitting up the long sentences. For
the encouragement, I would like to thank to Dr. László Kozma and Dr. Sándor
Sike from Eötvös Loránd University, Budapest, Faculty of Informatics.

References

[1] Beck, K., Test-Driven Development by Example, Addison Wesley, 2003.

[2] Behavior Driven Development, Wikipedia.
http://en.wikipedia.org/wiki/Behavior Driven Development

[3] North, D., How to sell BDD to the business, Agile Specifications, BDD
and Testing eXchange, 2009. http://bit.ly/4wWuQh

[4] Koskela, L., Test Driven: Practical TDD and Acceptance TDD for Java
Developers, Manning, 2007.

[5] TechTalk. http://www.techtalk.at

[6] SpecFlow. http://www.specflow.org

[7] NUnit. http://nunit.org/

[8] Verifying Code by Using Unit Tests, MSDN.
http://msdn.microsoft.com/en-us/library/dd264975.aspx

[9] Bertolino, A., Software testing research: achievements, challenges,
dreams, in: Proceedings of the 2007 Future of Software Engineering IEEE
Computer Society, 2007, pp. 85–103.



Improving efficiency of testing 97

[10] Harrold, M., Testing: A Roadmap, International Conference on Soft-
ware Engineering, Limerick, Ireland, 2000, pp. 61–72.

[11] Jones, W.D., J.P. Hudepohl, T.M. Khoshgoftaar and E.B. Allen,
Application of a usage profile in software quality models, in: Proceedings of
the Third European Conference on Software Maintenance and Reengineer-
ing, IEEE Computer Society, Amsterdam, Netherlands, 1999, pp. 148–157.

[12] Khoshgoftaar, T.M., E.B. Allen, W.D. Jones and J.P. Hudepohl,
Accuracy of software quality models over multiple releases, Annals of Soft-
ware Engineering, 9 (2000), 103–116.

[13] Kouchakdjian, A. and R. Fietkiewicz, Improving a product with
usage-based testing, Information and Software Technology, 42(12) (2000),
809–814.

[14] Kuhn, D.R., Fault classes and error detection capability of specification-
based testing, ACM Trans. Softw. Eng. Methodol., 8(4) (1999), 411–424.

[15] Rothermel, G., R.H. Untch, Chengyun Chu and M.J. Harrold,
Prioritizing test cases for regression testing, Software Engineering, IEEE
Transactions on, 27(10) (2001), 929–948.

[16] Chen, T., H. Leung and I. Mak, Adaptive Random Testing, Lecture
Notes in Computer Science, 3321 (2005), 3156–3157.

[17] SpecRun. http://www.specrun.com

[18] Fowler, M., Specification by Example, Martin Fowler’s Bliki,
http://www.martinfowler.com/bliki/SpecificationByExample.html

[19] Adzic, G., Specification by Example: How Successful Teams Deliver the
Right Software, Manning, 2011.

[20] Park, S. and F. Maurer, A Literature Review on Story Test Driven
Development, in: XP’2010, Trondheim, Norway, 2010, 208–213.

[21] Melnik, G., Empirical Analyses of Executable Acceptance Test Driven
Development, University of Calgary, PhD Thesis, 2007.

[22] User Acceptance Testing, Wikipedia. http://bit.ly/t3lZ8N

[23] Fowler, M., Refactoring Home Page, http://www.refactoring.com/

[24] Arrange Act Assert, http://c2.com/cgi-bin/wiki?ArrangeActAssert

[25] Test Case Explosion, Software Test Glossary,
http://www.zeta-test.com/glossary-t.html#a2032

[26] Beck, K., Extreme Programming Explained: Embrace Change, Addison-
Wesley, 1999.

[27] Scrum Acceptance Criteria, Scrum Methodology,
http://scrummethodology.com/scrum-acceptance-criteria/

[28] Happy Path, Wikipedia. http://en.wikipedia.org/wiki/Happy path

[29] Gousset, M., Test impact analysis in Visual Studio 2010, Visual Studio
Magazine, 2011, http://bit.ly/vQ7sUd

[30] TeamCity, http://www.jetbrains.com/teamcity/



98 G. Nagy

[31] Microsoft Team Foundation Server 2010,
http://msdn.microsoft.com/en-us/vstudio/ff637362

[32] Application Domains, MSDN,
http://msdn.microsoft.com/en-us/library/2bh4z9hs.aspx

[33] Elbaum, S., A.G. Malishevsky and G. Rothermel, Test case pri-
oritization: a family of empirical studies, IEEE Transactions on Software
Engineering, 28(2) (2002), 159–182.

[34] Park, H., H. Ryu and J. Baik, Historical value-based approach for
cost-cognizant test case prioritization to improve the effectiveness of re-
gression testing, in: Proceedings of the 2nd International Conference
on Secure System Integration and Reliability Improvement (SSIRI 2008),
Yokohama, Japan, 2008, pp. 39–46.

[35] Zengkai, M. and Z. Jianjun, Test case prioritization based on analysis
of program structure, in: Proceeding of 15th IEEE Asia-Pacific Software
Engineering Confer-ence (APSEC 2008), Beijing, China, 2008, pp. 471–
478.

[36] Fowler, M., CQRS, Martin Fowler’s Bliki, July 2011,
http://martinfowler.com/bliki/CQRS.html

[37] Open Data Protocol, http://www.odata.org/

[38] Bandi, J., C. Hassa and G. Nagy, Using SpecFlow for BDD ATDD
and (U)TDD?, SpecFlow Forum, 2010, http://bit.ly/vT0scw

[39] Bandi, J., Classifying BDD Tools (Unit-Test-Driven vs. Acceptance Test
Driven) and a bit of BDD history, 2010, http://bit.ly/ajT9m5

G. Nagy
Department of Software Technology and Methodology
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány P. sétány 1/C
Hungary
gaspar.nagy@gmail.com


