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Abstract. In this note we consider the kth level of the uniform random
recursive tree after n steps, and prove that the proportion of nodes with
degree greater than t log n converges to (1− t)k almost surely, as n→∞,
for every t ∈ (0, 1). In addition, we show that the number of degree d
nodes in the first level is asymptotically Poisson distributed with mean 1;
moreover, they are asymptotically independent for d = 1, 2, . . . .

1. Introduction

Let us consider the following random graph model. We start from a single
node labelled with 0. At the nth step we choose a vertex at random, with
equal probability, and independently of the past. Then a new node, vertex n,
is added to the graph, and it is connected to the chosen vertex. In this way a
random tree, the so called uniform recursive tree, is built.
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54 Á. Backhausz and T.F. Móri

This model has a long and rich history. Apparently, the first publication
where the uniform recursive tree appeared was [11]. Since then a huge number
of papers have explored the properties of this simple combinatorial structure.

Recursive trees serve as probabilistic models for system generation, spread
of contamination of organisms, pyramid scheme, stemma construction of philol-
ogy, Internet interface map, stochastic growth of networks, and many other ar-
eas of application, see [6] for references. For a survey of probabilistic properties
of uniform recursive trees see [5] or [9]. Among others, it is known that this
random tree has an asymptotic degree distribution, namely, the proportion of
nodes with degree d converges, as n → ∞, to 2−d almost surely. Another im-
portant quantity is the maximal degree, which is known to be asymptotically
equal to log

2
n [4]. Considering our graph a rooted tree, we can define the levels

of the tree in the usual way: level k is the set Ln(k) of the vertices that are of
distance k from vertex 0, the root. It is not hard to find the a.s. asymptotics
of the size of level k after step n; it is

|Ln(k)| ∼ E|Ln(k)| ∼
(log n)k

k!
, k = 1, 2, . . . .

Recursive trees on nodes 0, 1, . . . , n− 1 can be transformed into permuta-
tions σ = (σ1, σ2, . . . , σn) in the following recursive way. Start from the identity
permutation σ = (1, 2, . . . , n). Then, taking the nodes 1, 2, . . . , n−1 one after
another, update the permutation by swapping σi+1 and σi+1−j if node i was
connected to node j < i at the time it was added to the tree. It is easy to see
that in this way a one-to-one correspondence is set between trees and permu-
tations, and the uniform recursive tree is transformed into a uniform random
permutation.

Another popular recursive tree model is the so called plane oriented recur-
sive tree. It was originally proposed by Szymański [10], but it got in the focus
of research after the seminal paper of Barabási and Albert [3]. A non-oriented
version of it starts from a single edge, and at each step a new vertex is added to
the graph. The new vertex is then connected to one of the old nodes at random;
the other endpoint of the new edge is chosen from the existing vertices with
probability proportional to the instanteneous degree of the node (preferential
attachment). This can also be done in such a way that we select an edge at
random with equal probability, then choose one of its endpoints. In this tree
the proportion of degree d nodes converges to 4

d(d+1)(d+2)
with probability 1.

Katona has shown [7] that the same degree distribution can be observed
if one is confined to any of the largest levels. On the other hand, if we only
consider a fixed level, the asymptotic degree distribution still exists, but it
becomes different [8]. This phenomenon has been observed in other random
graphs, too. A general result of that kind has been published recently [2].
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In the present note we will investigate the lower levels of the uniform recur-
sive tree. We will show that, unlike in many scale free recursive tree models,
no asymptotic degree distribution emerges. Instead, for almost all nodes in the
lower levels the degree sequence grows to infinity at the same rate as the overall
maximum of degrees does. We also investigate the number of degree d vertices
in the first level for d = 1, 2, . . . , and show that they are asymptotically i.i.d.
Poisson with mean 1.

2. Nodes of high degree in the lower levels

Let degn(i) denote the degree of node i after step n (i ≤ n). Further,
let Zn,k(t) denote the proportion of nodes in level k with degree greater than
t log n. Formally,

Zn,k(t) =
1

|Ln(k)|
∣∣{i ≤ n : i ∈ Ln(k), degn(i) > t log n}

∣∣.
The main result of this section is the following theorem.

Theorem 2.1. For k = 1, 2, . . . and 0 < t < 1

lim
n→∞Zn,k(t) = (1− t)k a.s.

For the proof we need some auxiliary lemmas, interesting in their own right.

Let the number n of steps be fixed, and 1 < i < n. Firstly, we are interested
in X = degn(i)− 1.

Lemma 2.1. Let 0 < ε < t < 1. Then for every i > n1−t+ε we have

P(X > t log n) ≤ exp

(
−ε2

2t
log n

)
.

Proof. X = Ii+1 + Ii+2 + · · · + In, where Ij = 1, if vertex i gets a new
edge at step n, and 0 otherwise. These indicators are clearly independent and
EIj = 1/j, hence

EX =
1

i+ 1
+ · · ·+ 1

n
.

Let us abbreviate it by s. Clearly,

log
n

i+ 1
≤ s ≤ log

n

i
.
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Let a > s, then by [1, Theorem A.1.12] we have

P(X ≥ a) ≤
(
eβ−1β−β

)s
,

where β = a/s. Hence

P(X ≥ a) ≤ ea−s
( s
a

)a
= ea−s

(
1− a− s

a

)a
=

= exp

(
a− s− a

(a− s

a
+

1

2

(a− s

a

)2
+ . . .

))
≤ exp

(
− (a− s)2

2a

)
.

Now, set a = t log n. Then s ≤ (t− ε) log n, and

P(X ≥ t log n) ≤ exp

(
− (t log n− s)2

2t log n

)
≤ exp

(
−ε2

2t
log n

)
.

�
Lemma 2.2. Let 0 < t < 1, and 0 < ε < 1 − t. Then for every i ≤

≤ n1−t−ε − 1 we have

P(X ≤ t log n) ≤ exp

(
− ε2

2(t+ ε)
log n

)
.

Proof. This time s > log n
i+1

≥ (t + ε) log n, thus [1, Theorem A.1.13]
implies that

P(X ≤ t log n) ≤ exp

(
− (s− t log n)2

2s

)
.

Notice that the exponent in the right-hand side, as a function of s, is decreasing
for s > t log n. Therefore s can be replaced by (t + ε) log n, and the proof is
complete. �

Proof of Theorem 2.1. Since degn(i) is approximately equal to log n
i , it

follows that degn(i) ≥ t log n is approximately equivalent to i ≤ n1−t. Based
on Lemmas 2.1 and 2.2 we can quantify this heuristic reasoning.

Let 0 < ε < min{t, 1 − t}, and a = a(n) =
⌊
n1−t−ε

⌋
− 1, b = b(n) =

=
⌈
n1−t+ε

⌉
. Then by Lemma 2.2

P
(
∃i ∈ Ln(k) such that i ≤ a, degn(i) ≤ 1 + t log n

)
≤

≤
a∑

i=1

P
(
i ∈ Ln(k), degn(i) ≤ 1 + t log n

)
=

=

a∑
i=1

P
(
i ∈ Ln(k)

)
P
(
degn(i) ≤ 1 + t log n

)
≤

≤ ELn(k) · exp
(
− ε2

2(t+ ε)
log n

)
.
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Similarly, by Lemma 2.1,

P
(
∃i ∈ Ln(k) such that i > b, degn(i) > 1 + t log n

)
≤

≤
n∑

i=b+1

P
(
i ∈ Ln(k), degn(i) > 1 + t log n

)
=

=

n∑
i=b+1

P
(
i ∈ Ln(k)

)
P
(
degn(i) > 1 + t log n

)
≤

≤ ELn(k) · exp
(
−ε2

2t
log n

)
.

Introduce the events

A(n) =
{
La(k) ⊂ {i ∈ Ln(k) : degn(i) > 1 + t log n} ⊂ Lb(k)

}
.

Then the probability of their complements can be estimated as follows.

P

(
A(n)

)
≤ 2E|Ln(k)| exp

(
−ε2

2t
log n

)
.

Note that |La(k)| ∼ (1− t− ε)k|Ln(k)|, and |Lb(k)| ∼ (1− t+ ε)k|Ln(k)|, a.s.
Let c > 2(t + ε)ε−2, then

∑∞
n=1

P

(
A(nc)

)
< ∞, hence by the Borel–

Cantelli lemma it follows almost surely that A(nc) occurs for every n large
enough. Consequently,

(1− t− ε)k |Lnc(k)|
(
1 + o(1)

)
≤

≤ |{i ∈ Lnc(k) : degnc(i) > 1 + t log(nc)}| ≤

≤ (1− t+ ε)k |Lnc(k)|
(
1 + o(1)

)
.

This implies

lim inf
n→∞ Znc,k(t) ≥ (1− t− ε)k and lim sup

n→∞
Znc,k(t) ≤ (1− t+ ε)k

for every positive ε, hence Theorem 2.1 is proven along the subsequence (nc).

To the indices in between we can apply the following esimation. For nc ≤
≤ N ≤ (n+ 1)c with sufficiently large n we have

ZN,k(t) ≤
1

|Lnc(k)|

∣∣∣{i ∈ L(n+1)c(k) : deg(n+1)c(i) ≥ t log(nc)
}∣∣∣

=

∣∣L(n+1)c(k)
∣∣

|Lnc(k)| Z(n+1)c,k

(
t

log n

log(n+ 1)

)
.
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Here the first term tends to 1, while the second term’s asymptotic behaviour
is just the same as that of Z(n+1)c,k(t). Hence ZN,k(t) ≤

(
1 + o(1)

)
(1− t)k.

Similarly,

ZN,k(t) ≥
|Lnc(k)|∣∣L(n+1)c(k)

∣∣ Znc,k

(
t
log(n+ 1)

log n

)
=

=
(
1 + o(1)

)
Znc,k(t) =

=
(
1 + o(1)

)
(1− t)k.

This completes the proof. �

3. Nodes of small degree in the first level

Looking at the picture Theorem 2.1 shows us on the degree distribution one
can naturally ask how many points of fixed degree remain in the lower levels
at all. In this respect the first level and the other ones behave differently. It is
easy to see that degree 1 nodes in level 1 correspond to the fixed points of the
random permutation described in the Introduction. Hence their number has a
Poisson limit distribution with parameter 1 without any normalization. More
generally, let

X[n, d] =
∣∣{i ∈ Ln(1) : degn(i) = d}

∣∣;
this is the number of nodes with degree d in the first level after n steps.

The main result of this section is the following limit theorem.

Theorem 3.1. X[n, 1], X[n, 2], . . . are asymptotically i.i.d. Poisson with
mean 1, as n→∞.

Proof. We will apply the method of moments in the following form.

For any real number a and nonnegative integer k let us define (a)0 = 1, and
(a)k = a(a−1) · · · (a−k+1), k = 1, 2, . . . . In order to verify the limiting joint
distribution in Theorem 3.1 it suffices to show that

(3.1) lim
n→∞E

(
d∏

i=1

(
X[n, i]

)
ki

)
= 1

holds for every d = 1, 2, . . . , and nonnegative integers k1, . . . , kd. This can
easily be seen from the following expansion of the joint probability generating
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function of the random variables X[n, 1], . . . , X[n, d].

E

(
d∏

i=1

z
X[n,i]
i

)
=

∞∑
k1=0

· · ·
∞∑

kd=0

E

(
d∏

i=1

(
X[n, i]

)
ki

)
d∏

i=1

(zi − 1)ki

ki!
.

In the proof we shall rely on the following obvious identities.

(a+ 1)k − (a)k = k (a)k−1,(3.2)

a
[
(a− 1)k(b+ 1)� − (a)k(b)�

]
= � (a)k+1(b)�−1 − k (a)k(b)�,(3.3)

n∑
a=k

(a)k =
1

k + 1
(n+ 1)k+1.(3.4)

Let us start from the conditional expectation of the quantity under consid-
eration with respect to the sigma-field generated by the past of the process.

(3.5) E

(
d∏

i=1

(
X[n+ 1, i]

)
ki

∣∣∣∣∣ Fn

)
=

d∏
i=1

(
X[n, i]

)
ki

+

d∑
j=0

Sj ,

where in the rightmost sum j equals 0, 1, . . . , d, according to whether the new
vertex at step n+ 1 is connected to the root (j = 0), or to a degree j node in

level 1. This happens with (conditional) probability
1

n
,
X[n, 1]

n
, . . . ,

X[n, d]

n
,

respectively. That is,

S0 =
1

n

d∏
i=2

(
X[n, i]

)
ki

[(
X[n, 1] + 1

)
k1

−
(
X[n, 1]

)
k1

]
,

and for 1 ≤ j ≤ d− 1

Sj =
X[n, j]

n

∏
i �={j,j+1}

(
X[n, i]

)
ki
×

×
[(
X[n, j]− 1

)
kj

(
X[n, j + 1] + 1

)
kj+1

−
(
X[n, j]

)
kj

(
X[n, j + 1]

)
kj+1

]
.

Finally,

Sd =
X[n, d]

n

d−1∏
i=1

(
X[n, i]

)
ki

[(
X[n, d]− 1

)
kd
−
(
X[n, d]

)
kd

]
.

Let us apply (3.2) to S0 with k = k1, (3.3) to Sj with k = kj , � = kj+1
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(1 ≤ j ≤ d− 1), and (3.3) to Sd with k = kd, � = 0, to obtain

S0 =
k1
n

d∏
i=2

(
X[n, i]

)
ki

(
X[n, 1]

)
k1−1

,(3.6)

Sj =
kj+1

n

∏
i �={j,j+1}

(
X[n, i]

)
ki

(
X[n, j]

)
kj+1

(
X[n, j + 1]

)
kj+1−1

−

−kj
n

d∏
i=1

(
X[n, i]

)
ki
,

(3.7)

Sd = −kd
n

d∏
i=1

(
X[n, i]

)
ki
.(3.8)

In (3.6)–(3.7) it can happen that some of the kj ’s are zero, and, though (a)−1

has not been defined, it always gets a zero multiplier, thus the expressions do
have sense. Let us plug (3.6)–(3.8) into (3.5).

E

(
d∏

i=1

(
X[n+ 1, i]

)
ki

∣∣∣∣∣ Fn

)
=

=

d∏
i=1

(
X[n, i]

)
ki

(
1− 1

n

d∑
j=1

kj

)
+

k1
n

d∏
i=2

(
X[n, i]

)
ki

(
X[n, 1]

)
k1−1

+

+

d−1∑
j=1

kj+1

n

∏
i �={j,j+1}

(
X[n, i]

)
ki

(
X[n, j]

)
kj+1

(
X[n, j + 1]

)
kj+1−1

.

Introducing

E(n, k1, . . . , kd) = E

(
d∏

i=1

(
X[n, i]

)
ki

)
, K = k1 + · · ·+ kd,

we have the following recursion.

E(n+ 1, k1, . . . , kd) =

(
1− K

n

)
E(n, k1, . . . , kd) +

k1
n

E(n, k1 − 1, k2, . . . , kd)+

+

d−1∑
j=1

kj+1

n
E(n, k1, . . . , kj + 1, kj+1 − 1, . . . , kd),
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or equivalently,

(3.9) (n)KE(n+ 1, k1, . . . , kd) = (n− 1)KE(n, k1, . . . , kd)+

+ (n− 1)K−1

d∑
j=1

kjE(k1, . . . , kj−1 + 1, kj − 1, . . . , kd).

Based on (3.9), the proof can be completed by induction on the exponent
vectors (k1, . . . , kn). We say that k = (k1, k2, . . . , kd) is majorized by � =
= (�1, �2, . . . , �d), if kd ≤ �d, kd−1+kd ≤ �d−1+�d, . . . , k1+· · ·+kd ≤ �1+· · ·+�d.
This is a total order on N

d.

Now, (3.1) clearly holds for k = (1, 0, . . . , 0), since EX[n, 1] = 1 for ev-
ery n = 1, 2, . . . , which is obvious considering the fixed points of a random
permutation.

In every term of the sum on the right hand side of (3.9) the argument of
E( · ) is majorized by k = (k1, . . . , kd), hence the induction hypothesis can be
applied to them. We get that

(n)KE(n+ 1, k) = (n− 1)KE(n, k) + (n− 1)K−1K
(
1 + o(1)

)
,

from which (3.4) gives that (n− 1)KE(n, k) ∼ (n− 1)K , that is,

lim
n→∞E(n, k1, . . . , kd) = 1,

as needed. �
Turning to higher levels one finds the situation changed. Fixing a degree d

we find, roughly speaking, that each node in level k−1 has a Poisson number of
degree d children in level k (a freshly added node is considered as the child of the
old node it is connected to). Now, strong-law-of-large-numbers-type heuristics
imply that the number of nodes with degree d in level k ≥ 2 is approximately
equal to |Ln(k − 1)|, that is, their proportion is

≈ |Ln(k − 1)|
|Ln(k)|

∼ 1

k log n
.

Another interesting problem worth of dealing with is the number of nodes
with unusually high degree. In every fixed level Theorem 2.1 implies that the
proportion of nodes with degree higher than log n is asymptotically negligi-
ble, but they must exist, since the maximal degree is approximately log

2
n =

= (log
2
e) · log n. How many of them are there? We are planning to return to

this issue in a separate paper.
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