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Abstract. We consider a random graph model evolving in discrete time-
steps that is based on 3-interactions among vertices. Triangles, edges and
vertices have different weights; objects with larger weight are more likely to
participate in future interactions. We prove the scale free property of the
model by exploring the asymptotic behaviour of the weight distribution.
We also find the asympotics of the weight of a fixed vertex.

1. Introduction

Random graphs evolving by some “preferential attachment” rule are in-
evitable in modelling real-world networks. There is a vast number of publica-
tions inventing and studying different models of that kind, but in most of them
the dynamics is only driven by vertex-vertex interactions. However, one can
easily find networks (that is, objects equipped with links) in economy or other
areas where simultaneous interactions can take place among three or even more
vertices, and those interactions determine the evolution of the process.
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We consider a random graph model evolving in discrete time-steps. The
most important feature of the model is the presence of 3-interactions among
vertices. In our graph process vertices, edges and triangles get nonnegative,
integer valued random weights which grow with time. The dynamics is driven
by these weights.

The model we are going to deal with resembles those in [1], [3], and [4], but
there are essential differences. In [3] there is no interaction between more than
two vertices, and the weight of a vertex is simply equal to its degree. In [4]
and [1] interactions among groups of vertices do appear, but with completely
different dynamics. In all three papers the existence of a power law asymptotic
degree distribution is proved, and this is what we are also interested in.

Our goal is to prove that the ratio of vertices of weight w tends to some
positive constant xw almost surely, as the number of steps goes to infinity. We
will give a recursion for xw, from where it will be easy to see the polynomial
decay of xw as w → ∞. This is the so-called scale free property [2]. We will
also determine the asymptotics of the weight of any fixed vertex. In the proofs
martingale methods from [4] are used.

2. The model

We start with a single triangle. This has initial weight 1, and all its three
edges have weight 1. Later on, we will add vertices and edges to the graph
randomly. Vertices, edges, and triangles will have nonnegative integer-valued
weights, which increase according to the random evolution of the graph.

The graph evolves in discrete time-steps. The sum of the weights of triangles
will be increased by 1 at each step, while the total weight of edges will be
increased by 3 step by step.

At each step either a new vertex is added, which then interacts with two
already existing vertices, or 3 old vertices interact. This has to be decided at
the beginning of the step, independently of the past. The probability that a
new vertex is born is p at every step; this is a parameter of the model. We will
need 0 < p ≤ 1.

Assume that in the nth step a new vertex is added to the graph. We choose
two of the old vertices randomly; they will interact with the new vertex. With
probability r, independently of the past, the choice is done according to the
“preferential attachment” rule, and with probability 1−r it is done “uniformly”.
r is a fixed parameter of the model. More precisely, in the case of “preferential
attachment” we choose the endpoints of an already existing edge having weight
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w with probability w
3n . Note that the sum of the edge weights is equal to 3n at

this moment. In the case of “uniform” selection two vertices are chosen with
each pair having equal probability to be selected; that is, we perform sampling
without replacement. This allows us to generate edges between old vertices
that were not connected before.

Then the new vertex interacts with the two selected vertices. This means
that the triangle they form comes to existence with initial weight 1. The two
new edges connecting the new vertex to the other two get weight 1 each. We
connect the old vertices if they are not connected yet with an edge of weight 1.
This may only happen with uniform selection. If the two old vertices are already
connected, then we increase the weight of that edge by 1. To put it in another
way, we increase the weights of all three edges of the 3-interaction by 1. This
is the end of the step where a new vertex is generated.

With probability 1− p, 3 of the old vertices will interact. With probability
q they will be chosen according to the “preferential attachment” rule, and with
probability 1−q they will be chosen “uniformly”. The choice is also independent
of the past. This q is the third parameter of the model.

In the “preferential attachment” case we choose an already existing triangle
of weight w with probability proportional to its weight, that is, with probability
w
n . Note that there may exist triangles with zero weight in the graph. A triangle
has positive weight if and only if it has already appeared in a 3-interaction
before.

On the other hand, in the “uniform” case three distinct vertices are chosen
such that every triplet has the same probability to be selected. This is again
sampling without replacement from all the existing vertices.

In both cases, having selected the three vertices to interact, we draw the
edges of the triangle that are not present yet. Then the weight of the triangle
is increased by 1, as well as the weights of the three sides of the triangle. That
is, the initial weight of a newly generated edge is 1, while the old ones’ weights
are increased by 1.

Now we define the weights of vertices. The weight of a vertex is the sum of
the weights of the triangles that contain it. Note that this is just the half of
the sum of weights of edges from it, because whenever a vertex takes part in
a 3-interaction, the first sum is increased by 1, and the latter one is increased
by 2.

Similarly, the weight of an edge is simply the sum of the weights of the
triangles that contain it. In fact, it would not really be necessary to introduce
edge weights, for the only occurrence of edge weights is the case of a new
vertex combined with “preferential attachment” selection, where the following
rule would give the same result. Select a triangle with weight-proportional
probability, then choose one of its sides at random.
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Denote by Fn the σ-field generated by the first n steps, and by Vn the num-
ber of vertices after the nth step. Thus V0 = 3. Since we decide independently
at each step whether a new vertex is born, by the strong law of large numbers
we obtain that

(2.1) Vn = pn+ o
(
n1/2+ε

)
a.s.

for all ε > 0.

Throughout this paper, for two sequences (an) , (bn) of nonnegative num-
bers, an ∼ bn means that bn > 0 except finitely many terms, and an/bn → 1
as n→∞.

3. Asymptotic weight distribution

We are interested in the distribution of weights of vertices. As we mentioned
before, this is the half of the degree of a vertex counted with multiplicity.

Scale free property often emerges in models where preferential attachment
rules are applied. Therefore, throughout the paper we suppose that the pa-
rameters do not exclude preferential attachment; that is, either r > 0, or q > 0
and p < 1.

Let X [n,w] denote the number of vertices of weight w after n steps. Our

goal is to examine the asymptotic behaviour of X[n,w]

Vn
; more precisely, to prove

that the ratio of vertices of weight w is convergent almost surely. The limits
are deterministic constants, which form a polynomially decaying sequence as
w → ∞. We may refer to this fact as the scale free property of the model,
following the terminology of Albert and Barabási [2]. We also compute the
characteristic exponent.

Theorem 3.1. For w = 1, 2, . . . we have

X[n,w]

Vn
→ xw

almost surely, as n → ∞. The limits xw are positive constants satisfying the
following recursion

x1 =
1

α+ β + 1
, xw =

α(w − 1) + β

αw + β + 1
xw−1, w ≥ 2,

where

α =
2

3
pr + (1− p) q > 0, β =

1

p

[
2p(1− r) + 3(1− p)(1− q)

]
.
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Moreover,

xw ∼ Cw
−
(
1+

1

α

)
,

as w →∞, with some positive constant C.

Finally we remark that (xw) is a probability distribution, as its sum is equal
to 1.

Proof. First we compute the probability that a given vertex of actual
weight w takes part in the 3-interaction at the nth step.

If at the nth step a new vertex is generated and we follow the “preferential
attachment” rule, then this probability is equal to 2w

3n , since the total weight of
edges is 3n, and the sum of weights of edges from the given vertex is just the
double of its weight w.

On the other hand, there are
(
Vn−1

2

)
pairs of vertices, and every vertex is

contained in Vn−1−1 of them. Hence the probability of being chosen at uniform
selection is 2

Vn−1

.

Now let us examine the case when old vertices interact. A vertex of weight
w is contained in triangles of total weight w by definition, while the total sum
of triangles is equal to n after n − 1 steps. Hence the probability of being
chosen is w

n by the “preferential attachment” rule. With “uniform selection” it

is clearly
(
Vn−1−1

2

)
/
(
Vn−1

3

)
= 3

Vn−1

.

Putting these together we get that the probability that a vertex of weight
w takes part in the interaction of step n is given by

(3.1) p

[
r
2w

3n
+ (1− r)

2

Vn−1

]
+(1− p)

[
q
w

n
+ (1− q)

3

Vn−1

]
=

αw

n
+

βp

Vn−1

.

Now we determine the conditional expectation of X[n,w] with respect to
Fn−1. The weights can change at most by 1. After n − 1 steps we have
X [n− 1, w] vertices of weight w. Each of them increases its weight with the
probability given above; while vertices of weight w − 1 will count if they take
part in the 3-interaction at step n. Using the additive property of expectation
we obtain that for n ≥ 1, w ≥ 1 the following holds.

(3.2)

E(X[n,w] | Fn−1) = X[n− 1, w]−X[n− 1, w]

[
αw

n
+

βp

Vn−1

]
+

+X[n− 1, w − 1]

[
α(w − 1)

n
+

βp

Vn−1

]
+ pδw,1 =

= X[n− 1, w]

[
1− αw

n
− βp

Vn−1

]
+

+X[n− 1, w − 1]

[
α(w − 1)

n
+

βp

Vn−1

]
+ pδw,1,
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where X[n− 1, 0] is meant to be zero. The last term is only present for w = 1,
because the weight of the new vertex is 1.

We define the following normalizing constants.

c[n,w] =

n−1∏
i=1

(
1− αw

i
− βp

Vi−1

)−1

, n ≥ 1, w ≥ 1.

By equation (2.1), with any positive ε less than 1

2
we have

log c[n,w] =

n−1∑
i=1

− log

(
1− αw

i
− β

i+ o
(
i1/2+ε

)) =

=

n−1∑
i=1

(
αw

i
+

β

i
+ o

(
i−3/2+ε

))
= (αw + β)

n−1∑
i=1

1

i
+O(1)

almost surely, where the error term converges as n→∞. This implies

(3.3) c[n,w] ∼ awn
αw+β a.s.

as n→∞, where aw is a positive random variable.

Introduce Z[n,w] = c[n,w]X[n,w], n ≥ 1, w ≥ 1. From equation (3.2) it is
clear that

(
Z[n,w], Fn

)
is a nonnegative submartingale for every positive inte-

ger w. Consider the Doob–Meyer decomposition Z[n,w] = M [n,w] + A[n,w],
where M [n,w] is a martingale and A[n,w] is a predictable increasing process.
Based on equation (3.2) we have

(3.4) A[n,w] = EZ[1, w] +

n∑
i=2

(
E(Z[i, w] | Fi−1)− Z[i− 1, w]

)
=

= EZ[1, w] +

n∑
i=2

c[i, w]

(
X[i− 1, w − 1]

(
α(w − 1)

i
+

βp

Vi−1

)
+ pδw,1

)
.

We will also need a bound on the variation of the martingale part. By using
equation (3.3) we obtain

B[n,w] =

n∑
i=2

Var(Z[i, w] | Fi−1) =

n∑
i=2

c[i, w]2 Var(X[i, w] | Fi−1) =

=

n∑
i=2

c[i, w]2 Var
(
X[i, w]−X[i− 1, w]

∣∣ Fi−1

)
≤

≤
n∑

i=2

c[i, w]2 E
((

X[i, w]−X[i− 1, w]
)2∣∣∣Fi−1

)
≤

≤ 9

n∑
i=2

c [i, w]
2
= O

(
n2(αw+β)+1

)
.

(3.5)
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First we used the facts that c[i, w] is measurable with respect to Fi−1, and,
since there is exactly one 3-interaction at each step, the change of X is less
than or equal to 3. Note that B[n,w] is just the increasing process in the
Doob–Meyer decomposition of M [n,w]2.

The proof continues by induction on w. For w = 1 we obtain that

(3.6) A[n, 1] ∼ p

n∑
i=2

c[i, 1] ∼ p

n∑
i=2

a1i
α+β ∼ p · a1

α+ β + 1
· nα+β+1

almost surely, as n→∞.

On the other hand, B[n, 1] = O
(
n2(α+β)+1

)
, hence, by applying Proposition

VII-2-4 of Neveu [5] to M [n,w] we get

M [n,w] = o
(
B[n, 1]1/2 logB[n, 1]

)
= o

(
A[n, 1]

)
(see Section 6 of [4] for more details of this argument). Finally we obtain that

Z[n, 1] ∼ A[n, 1] a.s.

as n → ∞. Using the asymptotics of c [n, 1] and A [n, 1], that is, equations
(3.3) and (3.6), then equation (2.1) and the definition of Z [n, 1], we get that

X[n, 1]

Vn
=

Z[n, 1]

c[n, 1]Vn
∼

a1
α+ β + 1

pnα+β+1

a1nα+β pn
→ 1

α+ β + 1

almost surely, as n→∞.

Thus the theorem holds for w = 1 with x1 = 1

α+β+1
.

Suppose that the statement of Theorem 3.1 holds for w − 1 for some fixed
w ≥ 2; that is, the ratio of vertices of weight w− 1 converges to some constant
xw−1. By using this fact we can compute the asymptotics of A[n,w]. From
(3.4) we have

A[n,w] ∼
n∑

i=2

c[i, w]X[i− 1, w − 1]

(
α(w − 1)

i
+

βp

Vi−1

)
∼

∼
n∑

i=2

aw iαw+β xw−1 Vi−1

(
α(w − 1)

i
+

βp

Vi−1

)
∼

∼ awxw−1

n∑
i=2

p (α(w − 1) + β) iαw+β ∼

∼ awxw−1p (α(w − 1) + β)

αw + β + 1
nαw+β+1
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almost surely, as n→∞. Here we also used that α and β are both nonnegative,
which is clear from their definition.

From inequality (3.5) we know that B[n,w] = O
(
n2(αw+β)+1

)
, thus Propo-

sition VII-2-4 of [5] can be applied again to conclude that

M [n,w] = o
(
B[n,w]1/2 logB[n,w]

)
= o

(
A[n,w]

)
.

We end up with

X[n,w] ∼

awxw−1p(α(w − 1) + β)

αw + β + 1
nαw+β+1

aw nαw+β
= xw−1

α(w − 1) + β

αw + β + 1
np

almost surely, as n→∞. Hence

lim
n→∞

X[n,w]

Vn
= xw−1

α(w − 1) + β

αw + β + 1
a.s.

Thus the induction step is complete: xw exists, and it is positive and finite.

Furthermore, we have a recursion for xw, from where

(3.7) xw = x1

w∏
j=2

α(j − 1) + β

αj + β + 1
=

1

αw + β + 1

w−1∏
j=1

j + β
α

j + β+1

α

=
Γ
(
1 + β+1

α

)
Γ
(
w + β

α

)
αΓ

(
1 + β

α

)
Γ
(
w + β+1

α + 1
) ∼ Cw

−
(
1+

1

α

)

with some positive constant C, as w tends to infinity. The proof of the theorem
is complete. �

Remark. From (3.7) it follows that

xw =

∏w−1

j=1
(αj + β)∏w

j=1
(αj + β + 1)

= yw − yw−1,

where

yw =

w∏
j=1

αj + β

αj + β + 1
→ 0,

hence ∞∑
w=1

xw = y0 = 1.
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4. The weight of a fixed vertex

In this section our goal is to determine the asymptotics of the weight of a
fixed vertex. Since the weight of a vertex is just the half of its degree when
edges are counted with multiplicity, we could reformulate our result to obtain
the asymptotics of the degree.

It is clear that the weights of the vertices of the starting triangle are inter-
changeable, therefore it is not necessary to deal with all the three. Let only
one of them be labelled by 0, the other two will remain unlabelled. Moreover,
let the further vertices get labels 1, 2, etc, in the order they are added to the
graph. Let W [n, j] be the weight of vertex j after step n, provided it exists.
Otherwise let W [n, j] be equal to zero. Obviously, vertex j cannot exist before
step j. Let I[n, j] denote the indicator of the event {W [n, j] > 1}.

We introduce the sequences

bn =

n∏
i=1

(
1 +

α

i

)−1

, dn = βp

n∑
i=1

bi
Vi−1

,

with α, β defined in Theorem 3.1. Note that bn is deterministic, while dn is
random, but Fn−1-measurable.

Lemma 4.1. Let j and k be fixed integers, 0 ≤ j ≤ k, and let Z[n, j] =
= bnW [n, j]− dn. Then

(
Z[n, j]I[k, j], Fn

)
is a martingale for n ≥ k.

Proof. According to equation (3.1), the probability that vertex j gets new

edges at step n+ 1 is equal to
αW [n, j]

n+ 1
+

βp

Vn
, provided that it already exists,

which surely holds if the indicator I[k, j] differs from 0. This implies that

E
(
I[k, j]W [n+ 1, j]

∣∣ Fn

)
= I[k, j]W [n, j] + I[k, j]

(
αW [n, j]

n+ 1
+

βp

Vn

)
=

= I[k, j]W [n, j]

(
1 +

α

n+ 1

)
+ I[k, j]

βp

Vn
.

Multiplying both sides by bn+1, we get by definition that

E
(
bn+1W [n+ 1, j]I[k, j]

∣∣ Fn

)
= I[k, j]

(
bnW [n, j] + bn+1

βp

Vn

)
=

= I[k, j]
(
bnW [n, j]− dn + dn+1

)
,

which completes the proof of the lemma, since dn+1 is Fn-measurable. �
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Theorem 4.1. Fix j ≥ 0. Then W [n, j] ∼ ζjn
α almost surely as n → ∞,

where ζj is a positive random variable.

Proof. First we show that this holds with a nonnegative ζj .

Almost surely on the event that vertex j exists after step n we have

P
(
W [n+ 1, j] = W [n, j] + 1

∣∣ Fn

)
≥ α

n+ 1
.

Using the Lévy-type generalization of Borel–Cantelli-lemma [5, VII-2-6] we get
that W [n, j]→∞ with probability 1.

From the definition of bn it easily follows that

(4.1) bn =
Γ(n+ 1)Γ(1 + α)

Γ(n+ 1 + α)
∼ Γ(1 + α)n−α,

as n→∞. Hence, by using equation (2.1) and the positivity of α, we get

dn = βp

n∑
i=1

bi
Vi−1

= β Γ(1 + α)

n−1∑
i=1

i−α−1
(
1 + o(1)

)
.

Thus dn is almost surely convergent as n→∞, hence the martingale of Lemma
4.1 is bounded from below. This martingale has bounded differences, for

Z[n+ 1, j]− Z[n, j] ≤ bn
(
W [n+ 1, j]−W [n, j]

)
≤ bn ≤ 1,

and

Z[n, j]− Z[n+ 1, j] ≤
(
bn − bn+1

)
W [n, j] +

(
dn+1 − dn

)
≤

≤ bn+1α+ bn+1

βp

3
≤ α+

βp

3
.

By Proposition VII-3-9 of [5] such a martingale either converges or oscillates
between −∞ and +∞, but now the latter is excluded, hence it must converge
almost surely.

Going further, we get that bnW [n, j] is convergent almost everywhere on
the event that the weight of vertex j is greater than 1 after step k. Since that
weight tends to infinity, the limit as k →∞ of this increasing sequence of events
has probability 1. Thus bnW [n, j] is almost surely convergent, and by equation
(4.1) we get that the statement of the theorem holds with a nonnegative ζj .

Now we only have to prove that ζj is positive with probability 1.
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In what follows, if the indicator in the numerator is zero, let us define the
fractions to be zero. Similarly to the previous lemma, for n ≥ k we can write

E

(
I[k, j]

W [n+ 1, j]− 1

∣∣∣∣Fn

)
=

(
αW [n, j]

n+ 1
+

βp

Vn

)
I[k, j]

W [n, j]
+

+

[
1−

(
αW [n, j]

n+ 1
+

βp

Vn

)]
I[k, j]

W [n, j]− 1
.

It is clear that(
αW [n, j]

n+ 1
+

βp

Vn

)(
I[k, j]

W [n, j]
− I[k, j]

W [n, j]− 1

)
≤ − αI[k, j]

(n+ 1) (W [n, j]− 1)
.

Hence we get

E

(
I[k, j]

W [n+ 1, j]− 1

∣∣∣∣Fn

)
≤ I[k, j]

W [n, j]− 1

(
1− α

n+ 1

)
.

From this it follows that (
enI[k, j]

W [n, j]− 1
, Fn

)
is a supermartingale for n ≥ j, where

en =

n∏
i=1

(
1− α

i

)−1

=
Γ(1− α)Γ(n+ 1)

Γ(n+ 1− α)
∼ Γ(1− α)nα.

This supermartingale is nonnegative, hence it converges almost surely. Since

limk→∞ I[k, j] = 1 holds a.s., we obtain that
en

W [n, j]− 1
is also convergent

almost surely as n → ∞. This implies that ζj > 0 with probability 1, as
stated. �

References
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